1
|
Molino C, Lacchetti I, Cristiano W, di Domenico K, Carere M, Angeletti D. Zebrafish Embryo Model as a Tool for Ecotoxicological Studies in Central Italy's Transitional Waters. ENVIRONMENTAL MANAGEMENT 2025; 75:1602-1614. [PMID: 40285848 DOI: 10.1007/s00267-025-02178-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2025] [Accepted: 04/17/2025] [Indexed: 04/29/2025]
Abstract
Thousands of chemical pollutants are commonly widespread in European water bodies. The Water Framework Directive obliges the European Member States to monitor and assess waterbodies quality to minimize the adverse effects of such pollution on ecosystems and human health. In this context, Effect-based methods represent key tools for investigating the potential impacts of water pollution on ecosystems as they provide essential information on different chemical modes of action and their related effects on living organisms. In this study, we used the Fish Embryo Acute Toxicity test with the zebrafish model to analyze transitional and artificial waterbodies of the Tyrrhenian coastal area in Central Italy. Five samples were collected in a highly populated coastal area in two different periods of the year. Both lethal and sublethal effects across 96 hours of exposure post-fertilization were assessed. All the samples showed high acute toxicity within 96 hours of exposure, leading to increased mortality rates (>30%) and sublethal effects on embryos. Overall, different sublethal endpoints were observed such as spine deformation, unhatched embryos, depigmentation, and pericardial oedema. Comparing the sampling campaigns, a significant difference between mortality rates was detected for two samples, potentially indicating the influence of seasonality in the chemical fingerprinting. The use of the zebrafish model has confirmed to be a very sensitive tool in environmental monitoring closely linked with human health. Our findings might be further investigated to better understand the potential risks for the environment and human health within the study area.
Collapse
Affiliation(s)
- Chiara Molino
- Department of Ecological and Biological Sciences, Ichthyogenic Experimental Marine Center (CISMAR), University of Tuscia, Borgo Le Saline, 01016, Tarquinia, VT, Italy.
- Stazione Zoologica Anton Dohrn - CRIMAC, Calabria Marine Centre, Department of Integrative Marine Ecology, C.da Torre Spaccata, 87071, Amendolara, CS, Italy.
| | - Ines Lacchetti
- Unit of Ecosystems and Health, Department of Environment and Health, Italian National Institute of Health (ISS), 00161, Rome, Italy
| | - Walter Cristiano
- Unit of Ecosystems and Health, Department of Environment and Health, Italian National Institute of Health (ISS), 00161, Rome, Italy
| | - Kevin di Domenico
- Unit of Ecosystems and Health, Department of Environment and Health, Italian National Institute of Health (ISS), 00161, Rome, Italy
| | - Mario Carere
- Unit of Ecosystems and Health, Department of Environment and Health, Italian National Institute of Health (ISS), 00161, Rome, Italy
| | - Dario Angeletti
- Department of Ecological and Biological Sciences, Ichthyogenic Experimental Marine Center (CISMAR), University of Tuscia, Borgo Le Saline, 01016, Tarquinia, VT, Italy
| |
Collapse
|
2
|
Gonzalez MF, Filippi I, Amé MV. Optimized Metolachlor, Epoxiconazole and Chlorantraniliprole Mixture Analysis for Aquatic Toxicity Testing Using UHPLC-MS/MS. BULLETIN OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2025; 114:22. [PMID: 39831964 DOI: 10.1007/s00128-024-04000-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Accepted: 12/17/2024] [Indexed: 01/22/2025]
Abstract
The co-occurrence of pesticides in aquatic ecosystems highlights the need for studies investigating their potential toxicity as mixtures to the aquatic biota. Well-designed studies are essential to assess the presence and toxicity of relevant pesticide mixtures, particularly those such as the chloroacetamide herbicide metolachlor (MET), the triazole fungicide epoxiconazole (EP) and the diamide anthranilic insecticide chlorantraniliprole (CAP), which have not been previously tested, and whose co-occurrence is possible in waters close to cultivated areas. A solid phase extraction ultra-performance liquid chromatography-tandem quadrupole mass spectrometry method was developed to quantify equivalent toxicity concentrations for CAP, EP, and MET in artificial freshwater during acute toxicity tests. Compounds were separated within 1.30 min, showing linearity over the calibration ranges of 2-150 µgL-1 for CAP and 50-3000 µgL-1 for EP and MET. Detection and quantification limits were (µgL-1): 0.001 and 0.0037 MET; 0.000038 and 0.00013 EP; and 0.002 and 0.007 CAP, respectively. Precision and accuracy met intra-assay validation requirements. Recoveries were tested at low and high concentration levels and were between 77% and 120%. Additionally, matrix effect showed different behavior among compounds. In an acute toxicity test proposed, MET and EP remained stable (24 h), while CAP decayed 27% ± 4% in the same period. The method proved effective despite different concentrations in toxicity testing design.
Collapse
Affiliation(s)
- María Florencia Gonzalez
- Centro de Investigaciones en Bioquímica Clínica e Inmunología-CIBICI, Facultad de Ciencias Químicas, CONICET, Universidad Nacional de Córdoba, Haya de La Torre Esq., Medina Allende, 5000, Córdoba, Argentina
| | - Iohanna Filippi
- Centro de Investigaciones en Bioquímica Clínica e Inmunología-CIBICI, Facultad de Ciencias Químicas, CONICET, Universidad Nacional de Córdoba, Haya de La Torre Esq., Medina Allende, 5000, Córdoba, Argentina
- Instituto de Investigaciones en Ciencias de La Salud-INICSA, Facultad de Ciencias Médicas, CONICET, Universidad Nacional de Córdoba, 5000, Córdoba, Argentina
| | - María Valeria Amé
- Centro de Investigaciones en Bioquímica Clínica e Inmunología-CIBICI, Facultad de Ciencias Químicas, CONICET, Universidad Nacional de Córdoba, Haya de La Torre Esq., Medina Allende, 5000, Córdoba, Argentina.
| |
Collapse
|
3
|
Libanio Reis Santos E, Silva O, Nascimento Araújo BJ, de Lima Rodrigues M, de Oliveira-Lima J, Camargo-Mathias MI. Effects of sodium dodecylbenzene sulfonate (SDBS) on zebrafish ( Danio rerio) gills and blood. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2024; 87:357-370. [PMID: 38305282 DOI: 10.1080/15287394.2024.2312253] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2024]
Abstract
Sodium dodecylbenzene sulfonate (SDBS) is an important surfactant used as a cleaning agent and industrial additive to remove unwanted chemicals which have been detected in the aquatic environment. The aim of this study was to examine the toxicological potential of SDBS on the gills of adult male zebrafish (Danio rerio) exposed to this chemical. For the 96 hr acute exposure, fish were divided into three groups: control, 0.25 mg/L, and 0.5 mg/L of SDBS. After the experiment, morphophysiological analyses (gill histopathology and histochemistry), oxidative stress (determination of gill activities of superoxide dismutase (SOD) and catalase (CAT)), and hematological analyses (leukocyte differentiation) were conducted. Data demonstrated that SDBS at both tested concentrations altered the histopathological index and initiated circulatory disturbances, as well as adverse, progressive, and immunological changes in the gills. In the 0.5 mg/L group, SOD activity decreased significantly, but CAT activity was not altered. Prominent blood changes observed in this group were neutrophilia and lymphocytosis. The number of mucous and chloride cells increased significantly in both groups. Taken together, our findings demonstrated that exposure of D. rerio to SDBS, even for 96 hr, produced adverse morphological and hematological effects associated with a reduction in SOD activity. Our findings indicate that exposure of aquatic species to the anionic surfactant SDBS may lead to adverse consequences associated with oxidative stress. Therefore, this study highlights the risks that this substance may pose to aquatic ecosystems and emphasizes the need for further investigations and strict regulations on its disposal.
Collapse
Affiliation(s)
- Eduardo Libanio Reis Santos
- Department of General and Applied Biology, Institute of Biosciences of Universidade Estadual Paulista "Júlio de Mesquita Filho" (Unesp), Rio Claro, São Paulo, Brazil
- Faculty of Medicine, Universidade de Gurupi (UnirG), Paraíso do Tocantins, Tocantins, Brazil
| | - Odaiza Silva
- Department of General and Applied Biology, Institute of Biosciences of Universidade Estadual Paulista "Júlio de Mesquita Filho" (Unesp), Rio Claro, São Paulo, Brazil
| | - Bruna Jéssyca Nascimento Araújo
- Department of General and Applied Biology, Institute of Biosciences of Universidade Estadual Paulista "Júlio de Mesquita Filho" (Unesp), Rio Claro, São Paulo, Brazil
| | - Milena de Lima Rodrigues
- Department of General and Applied Biology, Institute of Biosciences of Universidade Estadual Paulista "Júlio de Mesquita Filho" (Unesp), Rio Claro, São Paulo, Brazil
| | | | - Maria Izabel Camargo-Mathias
- Department of General and Applied Biology, Institute of Biosciences of Universidade Estadual Paulista "Júlio de Mesquita Filho" (Unesp), Rio Claro, São Paulo, Brazil
| |
Collapse
|
4
|
Sousa B, Domingues I, Nunes B. Biological responses in Danio rerio by the disinfectant SDBS in SARS-CoV-2 pandemic. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2024; 107:104431. [PMID: 38554987 DOI: 10.1016/j.etap.2024.104431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 03/20/2024] [Accepted: 03/26/2024] [Indexed: 04/02/2024]
Abstract
The use of disinfectants, such as Sodium Dodecylbenzene Sulfonic acid salt (SDBS), has grown since the SARS-CoV-2 pandemic, with environmentally unknown consequences. The present study analyzed SDBS effects in the fish species Danio rerio, using a combination of biomarkers. Our data reported that larvae had their total locomotor activity increased when exposed to 1 mg/L of SDBS, but this parameter was decreased in fish exposed to 5 mg/L. A significant increment of erratic movements was reported in fish exposed to 1 and 5 mg/L of SDBS. These concentrations inhibited CYP1A1/CYP1A2, and of GSTs inhibition, suggesting SDBS is not preferentially biotransformed by these routes. Results concerning the antioxidant defense biomarkers (CAT and GPx) showed no straightforward pattern, suggesting SDBS exposure may have resulted in changes in redox balance. Finally, acetylcholinesterase activity increased. In summary, increased use of SDBS in a near future may result in deleterious effects in environmentally exposed fish.
Collapse
Affiliation(s)
- Beatriz Sousa
- Centro de Estudos do Ambiente e do Mar (CESAM), Universidade de Aveiro, Campus Universitário, Aveiro 3810-193, Portugal; Departamento de Biologia, Universidade de Aveiro, Campus Universitário de Santiago, Aveiro 3810-193, Portugal
| | - Inês Domingues
- Centro de Estudos do Ambiente e do Mar (CESAM), Universidade de Aveiro, Campus Universitário, Aveiro 3810-193, Portugal; Departamento de Biologia, Universidade de Aveiro, Campus Universitário de Santiago, Aveiro 3810-193, Portugal
| | - Bruno Nunes
- Centro de Estudos do Ambiente e do Mar (CESAM), Universidade de Aveiro, Campus Universitário, Aveiro 3810-193, Portugal; Departamento de Biologia, Universidade de Aveiro, Campus Universitário de Santiago, Aveiro 3810-193, Portugal.
| |
Collapse
|
5
|
Xiong Q, Liang W, Shang W, Xie Z, Cheng J, Yu B, Fang Y, Sun L, Zhao J. Bidirectional Uptake, Transfer, and Transport of Dextran-Based Nanoparticles in Plants for Multidimensional Enhancement of Pesticide Utilization. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2305693. [PMID: 37828638 DOI: 10.1002/smll.202305693] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 09/13/2023] [Indexed: 10/14/2023]
Abstract
The development of effective multifunctional nano-delivery approaches for pesticide absorption remains a challenge. Here, a dextran-based pesticide delivery system (MBD) is constructed to deliver tebuconazole for multidimensionally enhancing its effective utilization on tomato plants. Spherical MBD nanoparticles are obtained through two-step esterification of dextran, followed by tebuconazole loading using the Michael addition reaction. Confocal laser scanning microscopy shows that fluorescein isothiocyanate-labeled MBD nanoparticles can be bidirectionally transported in tomato plants and a modified quick, easy, cheap, effective, rugged, and safe-HPLC approach demonstrates the capacity to carry tebuconazole to plant tissues after 24 h of root uptake and foliar spray, respectively. Additionally, MBD nanoparticles could increase the retention of tebuconazole on tomato leaves by up to nearly 2.1 times compared with the tebuconazole technical material by measuring the tebuconazole content retained on the leaves. In vitro antifungal and pot experiments show that MBD nanoparticles improve the inhibitory effect of tebuconazole against botrytis cinerea by 58.4% and the protection against tomato gray molds by 74.9% compared with commercial suspensions. Furthermore, the MBD nanoparticles do not affect the healthy growth of tomato plants. These results underline the potential for the delivery system to provide a strategy for multidimensional enhancement of pesticide efficacy.
Collapse
Affiliation(s)
- Qiuyu Xiong
- Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, Zhejiang University, Hangzhou, 310058, P. R. China
| | - Wenlong Liang
- Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, Zhejiang University, Hangzhou, 310058, P. R. China
| | - Wenxuan Shang
- Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, Zhejiang University, Hangzhou, 310058, P. R. China
| | - Zhengang Xie
- Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, Zhejiang University, Hangzhou, 310058, P. R. China
| | - Jingli Cheng
- Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, Zhejiang University, Hangzhou, 310058, P. R. China
| | - Bin Yu
- Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, Zhejiang University, Hangzhou, 310058, P. R. China
| | - Yun Fang
- Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, Zhejiang University, Hangzhou, 310058, P. R. China
| | - Li Sun
- Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, P. R. China
| | - Jinhao Zhao
- Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, Zhejiang University, Hangzhou, 310058, P. R. China
| |
Collapse
|
6
|
Sousa B, Domingues I, Nunes B. A fish perspective on SARS-CoV-2: Toxicity of benzalkonium chloride on Danio rerio. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2023; 102:104200. [PMID: 37394081 DOI: 10.1016/j.etap.2023.104200] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 06/16/2023] [Accepted: 06/26/2023] [Indexed: 07/04/2023]
Abstract
SARS-CoV-2 outbreak led to an increased marketing of disinfectants, creating a potential environmental problem. For instance, pre-pandemic environmental levels of the disinfectant benzalkonium chloride (BAC) ranging from 0.5 to 5 mgL-1 in effluents were expected to further increase threatening aquatic life. Our aim was to characterize potential adverse effects after an acute exposure of zebrafish to different concentrations of BAC. An increase in the overall swimming activity, thigmotaxis behavior, and erratic movements were observed. An increase in CYP1A1 and catalase activities, but inhibitions of CY1A2, GSTs and GPx activities were also noticed. BAC is metabolized by CYP1A1, increasing the production of H2O2, thereby activating the antioxidant enzyme CAT. Data also showed an increase of AChE activity. Our study highlights adverse embryonic, behavioral, and metabolic effects of noteworthy environmental significance, especially considering that the use and release of BAC is most likely to increase in a near future.
Collapse
Affiliation(s)
- Beatriz Sousa
- Centro de Estudos do Ambiente e do Mar (CESAM), Universidade De Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal; Departamento De Biologia, Universidade De Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| | - Inês Domingues
- Centro de Estudos do Ambiente e do Mar (CESAM), Universidade De Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal; Departamento De Biologia, Universidade De Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| | - Bruno Nunes
- Centro de Estudos do Ambiente e do Mar (CESAM), Universidade De Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal; Departamento De Biologia, Universidade De Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal.
| |
Collapse
|
7
|
Zhou R, Dong Z, Wang L, Zhou W, Zhao W, Wu T, Chang H, Lin W, Li B. Degradation of a New Herbicide Florpyrauxifen-Benzyl in Water: Kinetics, Various Influencing Factors and Its Reaction Mechanisms. Int J Mol Sci 2023; 24:10521. [PMID: 37445703 DOI: 10.3390/ijms241310521] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Revised: 06/16/2023] [Accepted: 06/18/2023] [Indexed: 07/15/2023] Open
Abstract
Florpyrauxifen-benzyl is a novel herbicide used to control weeds in paddy fields. To clarify and evaluate its hydrolytic behavior and safety in water environments, its hydrolytic characteristics were investigated under varying temperatures, pH values, initial mass concentrations and water types, as well as the effects of 40 environmental factors such as microplastics (MPs) and disposable face masks (DFMs). Meanwhile, hydrolytic products were identified by UPLC-QTOF-MS/MS, and its hydrolytic pathways were proposed. The effects of MPs and DFMs on hydrolytic products and pathways were also investigated. The results showed that hydrolysis of florpyrauxifen-benzyl was a spontaneous process driven by endothermic, base catalysis and activation entropy increase and conformed to the first-order kinetics. The temperature had an obvious effect on hydrolysis rate under alkaline condition, the hydrolysis reaction conformed to Arrhenius formula, and activation enthalpy, activation entropy, and Gibbs free energy were negatively correlated with temperature. Most of environmental factors promoted hydrolysis of florpyrauxifen-benzyl, especially the cetyltrimethyl ammonium bromide (CTAB). The hydrolysis mechanism was ester hydrolysis reaction with a main product of florpyrauxifen. The MPs and DFMs did not affect the hydrolytic mechanisms but the hydrolysis rate. The results are crucial for illustrating and assessing the environmental fate and risks of florpyrauxifen-benzyl.
Collapse
Affiliation(s)
- Rendan Zhou
- College of Land Resources and Environment, Jiangxi Agricultural University, Nanchang 330045, China
| | - Zemin Dong
- College of Land Resources and Environment, Jiangxi Agricultural University, Nanchang 330045, China
- Jiangxi Agricultural Technology Extension Center, Nanchang 330046, China
| | - Long Wang
- College of Land Resources and Environment, Jiangxi Agricultural University, Nanchang 330045, China
| | - Wenwen Zhou
- College of Food Sciences, Jiangxi Agricultural University, Nanchang 330045, China
| | - Weina Zhao
- Jiangxi Agricultural Technology Extension Center, Nanchang 330046, China
| | - Tianqi Wu
- College of Land Resources and Environment, Jiangxi Agricultural University, Nanchang 330045, China
| | - Hailong Chang
- College of Land Resources and Environment, Jiangxi Agricultural University, Nanchang 330045, China
| | - Wei Lin
- College of Land Resources and Environment, Jiangxi Agricultural University, Nanchang 330045, China
| | - Baotong Li
- College of Land Resources and Environment, Jiangxi Agricultural University, Nanchang 330045, China
| |
Collapse
|
8
|
Bonnefille B, Karlsson O, Rian MB, Raqib R, Parvez F, Papazian S, Islam MS, Martin JW. Nontarget Analysis of Polluted Surface Waters in Bangladesh Using Open Science Workflows. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:6808-6824. [PMID: 37083417 PMCID: PMC10157886 DOI: 10.1021/acs.est.2c08200] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Nontarget mass spectrometry has great potential to reveal patterns of water contamination globally through community science, but few studies are conducted in low-income countries, nor with open-source workflows, and few datasets are FAIR (Findable, Accessible, Interoperable, Reusable). Water was collected from urban and rural rivers around Dhaka, Bangladesh, and analyzed by liquid chromatography high-resolution mass spectrometry in four ionization modes (electrospray ionization ±, atmospheric pressure chemical ionization ±) with data-independent MS2 acquisition. The acquisition strategy was complementary: 19,427 and 7365 features were unique to ESI and APCI, respectively. The complexity of water pollution was revealed by >26,000 unique molecular features resolved by MS-DIAL, among which >20,000 correlated with urban sources in Dhaka. A major wastewater treatment plant was not a dominant pollution source, consistent with major contributions from uncontrolled urban drainage, a result that encourages development of further wastewater infrastructures. Matching of deconvoluted MS2 spectra to public libraries resulted in 62 confident annotations (i.e., Level 1-2a) and allowed semiquantification of 42 analytes including pharmaceuticals, pesticides, and personal care products. In silico structure prediction for the top 100 unknown molecular features associated with an urban source allowed 15 additional chemicals of anthropogenic origin to be annotated (i.e., Level 3). The authentic MS2 spectra were uploaded to MassBank Europe, mass spectral data were openly shared on the MassIVE repository, a tool (i.e., MASST) that could be used for community science environmental surveillance was demonstrated, and current limitations were discussed.
Collapse
Affiliation(s)
- Bénilde Bonnefille
- Department of Environmental Science, Exposure and Effects Unit, Science for Life Laboratory, Stockholm University, Stockholm 106 91, Sweden
| | - Oskar Karlsson
- Department of Environmental Science, Exposure and Effects Unit, Science for Life Laboratory, Stockholm University, Stockholm 106 91, Sweden
| | - May Britt Rian
- Department of Environmental Science, Exposure and Effects Unit, Science for Life Laboratory, Stockholm University, Stockholm 106 91, Sweden
| | - Rubhana Raqib
- Immunobiology, Nutrition and Toxicology Unit, Infectious Diseases Division, International Centre for Diarrhoeal Disease Research, Bangladesh (icddr,b), Dhaka 1212, Bangladesh
| | - Faruque Parvez
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, New York 10032, United States
| | - Stefano Papazian
- Department of Environmental Science, Exposure and Effects Unit, Science for Life Laboratory, Stockholm University, Stockholm 106 91, Sweden
- National Facility for Exposomics, Metabolomics Platform, Science for Life Laboratory, Stockholm University, Solna 171 65, Sweden
| | - M Sirajul Islam
- Laboratory of Food Safety and One Health, Laboratory Sciences and Services Division, International Centre for Diarrhoeal Disease Research, Bangladesh (icddr,b), Dhaka 1212, Bangladesh
| | - Jonathan W Martin
- Department of Environmental Science, Exposure and Effects Unit, Science for Life Laboratory, Stockholm University, Stockholm 106 91, Sweden
- National Facility for Exposomics, Metabolomics Platform, Science for Life Laboratory, Stockholm University, Solna 171 65, Sweden
| |
Collapse
|
9
|
Yao XF, Zhang N, Liu J, Yang H. Transport and Environmental Risks of Propachlor Within the Soil-Plant-Water Phase as Affected by Dissolved Organic Matter as a Nonionic Surfactant. ACS OMEGA 2023; 8:4694-4702. [PMID: 36777582 PMCID: PMC9909819 DOI: 10.1021/acsomega.2c06561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 01/17/2023] [Indexed: 06/18/2023]
Abstract
Propachlor is a widely used acylaniline herbicide for weeding annual gramineous and dicot plants in farmland. As a toxic agricultural chemical, it is overused in crop production and has become one of the most serious environmental pollutants. Yet, understanding the impact of environmental factors on its behavior in farmland soils is critically important for healthy crop production and food safety. In this study, we characterized the effect of dissolved organic matter (DOM) extracted from rice straw on the mobility behavior of propachlor in farmland soil using comprehensive approaches such as the batch equilibrium experiment, soil thin-layer chromatography, soil column leaching, and wheat bioaccumulation with Triton X-100 (TX-100) as a reference surfactant. The application of DOM at 60 and 120 mg DOC L-1 and TX-100 at 96, 192, and 288 mg L-1 reduced the sorption and increased the desorption of propachlor in soil. Freundlich constant K f values (sorption) of propachlor declined with the expansion of DOM and TX-100 concentrations. The addition of DOM and TX-100 increased the mobility of propachlor and the total concentration of propachlor in the leachate of soil columns. The retention factors (R f) were evaluated in the soil thin-layer chromatography as 0.741 and 0.772 (for DOM) and 0.731, 0.763, and 0.791 (for TX-100), all of which were greater than the control (0.710) under the treatment. The application of DOM or TX-100 reduced root growth (biomass) and increased bioaccumulation of propachlor in the roots and shoots of wheat. The outcome of the study can provide important references for the rational use of propachlor and help agronomic management to minimize pesticide contamination in realistic crop production.
Collapse
|