1
|
Jiang H, Yi Z, Chen Y, Li Y, Chen L, Wang J, Nie Y, Luo M, Wang Q, Zhang W, Wu Y, Zeng G. Unraveling the mechanisms of post-treatment to enhance humification and Cd remediation in compost through EDTA-Fenton-Like systems. THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 959:178236. [PMID: 39729843 DOI: 10.1016/j.scitotenv.2024.178236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 09/12/2024] [Accepted: 12/19/2024] [Indexed: 12/29/2024]
Abstract
This study aimed to enhance humification and cadmium (Cd) remediation in compost by investigating the effects of three post-treatments: ultrapure water, citric acid, and ethylenediaminetetraacetic acid disodium (EDTA). The results revealed that the EDTA post-treatment significantly enhanced humification by facilitating an EDTA-Fenton-like system within compost comprising rice straw and river sediment to remediate Cd-contaminated sediment. EDTA post-treatment not only promoted humic substances and humic acid concentrations of up to 66.30 g/kg and 30.40 g/kg, respectively, but also led to a reduction in the Cd content and bioavailability factor by 75.02 % and 9.76 %, respectively. In addition, parallel factor analysis revealed two distinct components, while two-dimensional correlation spectroscopy showed that the polysaccharides and carboxyl groups in humic acid were preferentially bound to Cd. Overall, this study proposes a promising approach for enhancing humification and Cd remediation in compost by the EDTA post-treatment.
Collapse
Affiliation(s)
- Hongjuan Jiang
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, China
| | - Zhigang Yi
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, China
| | - Yaoning Chen
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, China.
| | - Yuanping Li
- School of Municipal and Geomatics Engineering, Hunan City University, Yiyang, Hunan 413000, China.
| | - Li Chen
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, China
| | - Jun Wang
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, China
| | - Yaoqin Nie
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, China
| | - Mengwei Luo
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, China
| | - Qianruyu Wang
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, China
| | - Wei Zhang
- School of Municipal and Geomatics Engineering, Hunan City University, Yiyang, Hunan 413000, China
| | - Yanting Wu
- School of Municipal and Geomatics Engineering, Hunan City University, Yiyang, Hunan 413000, China
| | - Guangming Zeng
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, China.
| |
Collapse
|
2
|
Ramanamane N, Pita M, Sob B. Advanced Low-Cost Natural Materials for High-Performance Oil-Water Filtration Membranes: Achievements, Challenges, and Future Directions. MEMBRANES 2024; 14:264. [PMID: 39728714 DOI: 10.3390/membranes14120264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 11/25/2024] [Accepted: 12/03/2024] [Indexed: 12/28/2024]
Abstract
The development of affordable ceramic membranes is essential for reducing expenses and optimizing the treatment of oily wastewater. There is an urgent demand for membranes that are not only affordable and easy to operate but also stable and capable of managing high fluxes to address the increasing volumes of oily wastewater. The significant production demands associated with many commercially available ceramic membranes, primarily due to the use of specialised raw materials and intricate processing methods, limiting their suitability for many wastewater treatment applications. Consequently, there is a rising interest in creating innovative ceramic membranes using affordable materials and simpler production techniques. This study reviewed the oil-water ceramic membranes utilizing affordable natural ceramic materials aimed at improving membrane performance. It focused on reviewing the environmentally friendly and economically viable membranes derived from natural ceramic resources as an alternative to conventional synthetic membranes. These natural ceramic materials possess crucial properties like hydrophilicity and oleophobicity, which are vital for effective oil-water separation. The ceramic membranes were reviewed for their filtration performance and advantages. It was reported that these natural ceramic material-based membranes demonstrate superior separation efficiency, and strong mechanical stability, making them promising candidates for sustainable water treatment.
Collapse
Affiliation(s)
- Nthabiseng Ramanamane
- Department of Mechanical Engineering, Bioresources, and Biomedical Engineering, College of Science, Engineering and Technology, University of South Africa, Florida 1710, South Africa
| | - Mothibeli Pita
- Department of Mechanical Engineering, Bioresources, and Biomedical Engineering, College of Science, Engineering and Technology, University of South Africa, Florida 1710, South Africa
| | - Baonhe Sob
- Department of Mechanical Engineering, Mount Vernon Nazarene University, 800 Martinsburg Rd, Mt Vernon, OH 43050, USA
| |
Collapse
|
3
|
Chen L, Yi Z, Chen Y, Li Y, Jiang H, Wang J, Chen Y, Nie Y, Luo M, Wang Q, Zhang W, Wu Y. Improved humification and Cr(VI) immobilization by CaO 2 and Fe 3O 4 during composting. BIORESOURCE TECHNOLOGY 2024; 413:131479. [PMID: 39265754 DOI: 10.1016/j.biortech.2024.131479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 09/06/2024] [Accepted: 09/09/2024] [Indexed: 09/14/2024]
Abstract
The current research studied how Fe3O4 nanomaterials (NMs) and CaO2 affect humification and Cr(VI) immobilization and reduction during the composting of oil-tea Camellia meal and Cr-contaminated soil. The results showed that Fe3O4 NMs and CaO2 successfully construct a Fenton-like reaction in this system. The excitation-emission matrix-parallel factor (EEM-PARAFAC) demonstrated that this Fenton-like treatment increased the generation of humic acids and accelerated the humification. Meantime, RES-Cr increased by 5.91 % and Cr(VI) decreased by 16.36 % in the treatment group with CaO2 and Fe3O4 NMs after 60 days. Moreover, the microbial results showed that Fe3O4 NMs and CaO2 could promote the enrichment of Cr(VI) reducing bacteria, e.g., Bacillus, Pseudomonas, and Psychrobacter, and promote Cr(VI) reduction. This study gives a novel view and theoretical reference to remediate Cr(VI) pollution through composting.
Collapse
Affiliation(s)
- Li Chen
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Zhigang Yi
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Yaoning Chen
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China.
| | - Yuanping Li
- School of Municipal and Geomatics Engineering, Hunan City University, Yiyang, Hunan 413000, PR China.
| | - Hongjuan Jiang
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Jun Wang
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Yanrong Chen
- School of Resource & Environment, Hunan University of Technology and Business, Changsha 410205, PR China
| | - Yaoqin Nie
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Mengwei Luo
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Qianruyu Wang
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Wei Zhang
- School of Municipal and Geomatics Engineering, Hunan City University, Yiyang, Hunan 413000, PR China
| | - Yanting Wu
- School of Municipal and Geomatics Engineering, Hunan City University, Yiyang, Hunan 413000, PR China
| |
Collapse
|
4
|
Xie C, Wang X, Zhang B, Liu J, Zhang P, Shen G, Yin X, Kong D, Yang J, Yao H, You X, Li Y. Co-composting of tail vegetable with flue-cured tobacco leaves: analysis of nitrogen transformation and estimation as a seed germination agent for halophyte. Front Microbiol 2024; 15:1433092. [PMID: 39296297 PMCID: PMC11408338 DOI: 10.3389/fmicb.2024.1433092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Accepted: 08/21/2024] [Indexed: 09/21/2024] Open
Abstract
Resource utilization of tail vegetables has raised increasing concerns in the modern agriculture. However, the effect and related mechanisms of flue-cured tobacco leaves on the product quality, phytotoxicity and bacterially-mediated nitrogen (N) transformation process of tail vegetable composting were poorly understood. Amendments of high-dosed (5% and 10% w/w) tobacco leaves into the compost accelerated the heating process, prolonged the time of thermophilic stage, increased the peak temperature, thereby improving maturity and shortening composting duration. The tobacco leaf amendments at the 10% (w/w) increased the N conservation (TN and NH4-N content) of compost, due to the supply of N-containing nutrient and promotion of organic matter degradation by tobacco leaves. Besides, tobacco leaf amendments promoted the seed germination and root development of wild soybean, exhibiting the feasibility of composting product for promoting the growth of salt-tolerant plants, but no dose-dependent effect was found for tobacco leaf amendments. Addition of high dosed (5% and 10% w/w) tobacco leaves shifted the bacterial community towards lignocellulosic and N-fixing bacteria, contributing to increasing the compost maturity and N retention. PICRUSt 2 functional prediction revealed that N-related bacterial metabolism (i.e., hydroxylamine oxidation and denitrifying process) was enhanced in the tobacco leaf treatments, which contributed to N retention and elevated nutrient quality of composting. To the best knowledge, this was the first study to explore the effect of tobacco waste additives on the nutrient transformation and halophyte growth promotion of organic waste composting. These findings will deepen the understanding of microbially-mediated N transformation and composting processes involving flue-cured tobacco leaves.
Collapse
Affiliation(s)
- Chenghao Xie
- Marine Agriculture Research Center, Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, China
| | - Xiao Wang
- Marine Agriculture Research Center, Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, China
- National Center of Technology Innovation for Comprehensive Utilization of Saline-Alkali Land, Dongying, China
| | | | - Jiantao Liu
- Marine Agriculture Research Center, Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, China
| | - Peng Zhang
- Plant Functional Component Research Center, Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, China
| | - Guangcai Shen
- Tobacco Baoshan Industrial Co., Ltd., Baoshan, China
| | - Xingsheng Yin
- Tobacco Baoshan Industrial Co., Ltd., Baoshan, China
| | - Decai Kong
- Tobacco Shandong Industrial Co., Ltd., Jinan, China
| | - Junjie Yang
- Tobacco Shandong Industrial Co., Ltd., Jinan, China
| | - Hui Yao
- Marine Agriculture Research Center, Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, China
- National Center of Technology Innovation for Comprehensive Utilization of Saline-Alkali Land, Dongying, China
| | - Xiangwei You
- Marine Agriculture Research Center, Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, China
- National Center of Technology Innovation for Comprehensive Utilization of Saline-Alkali Land, Dongying, China
| | - Yiqiang Li
- Marine Agriculture Research Center, Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, China
- National Center of Technology Innovation for Comprehensive Utilization of Saline-Alkali Land, Dongying, China
| |
Collapse
|
5
|
Chen Y, Yuan Y, Li Y, Chen L, Jiang H, Wang J, Li H, Chen Y, Wang Q, Luo M. The effects of different electrode materials on the electric field-assisted co-composting system for the soil remediation of heavy metal pollution. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 924:171600. [PMID: 38461986 DOI: 10.1016/j.scitotenv.2024.171600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 02/08/2024] [Accepted: 03/07/2024] [Indexed: 03/12/2024]
Abstract
The electric field-assisted composting system (EACS) is an emerging technology that can enhance composting efficiency, but little attention has been given to electrode materials. Herein, an EACS was established to investigate the effects of electrode materials on humic substance formation and heavy metal speciation. Excitation-emission matrix analysis showed that carbon-felt and stainless-steel electrodes increased humic acid (HA) by 48.57 % and 47.53 %, respectively. In the EACS with the carbon-felt electrode, the bioavailability factors (BF) of Cu and Cr decreased by 18.00 % and 7.61 %, respectively. Despite that the stainless-steel electrodes decreased the BF of As by 11.26 %, the leaching of Cr, Ni, Cu, and Fe from the electrode itself is an inevitable concern. Microbial community analyses indicated that the electric field increased the abundance of Actinobacteria and stimulated the multiplication of heavy metal-tolerant bacteria. Redundancy analysis indicates that OM, pH, and current significantly affect the evolution of heavy metal speciation in the EACS. This study first evaluated the metal leaching risk of stainless-steel electrode, and confirmed that carbon-felt electrode is environment-friendly material with high performance and low risk in future research with EACS.
Collapse
Affiliation(s)
- Yaoning Chen
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, China.
| | - Yu Yuan
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, China
| | - Yuanping Li
- School of Municipal and Geomatics Engineering, Hunan City University, Yiyang, Hunan 413000, China.
| | - Li Chen
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, China
| | - Hongjuan Jiang
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, China
| | - Jun Wang
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, China
| | - Hui Li
- State Key Laboratory of Utilization of Woody Oil Resource and Institute of Biological and Environmental Engineering, Hunan Academy of Forestry, Changsha 410004, China
| | - Yanrong Chen
- School of Resource & Environment, Hunan University of Technology and Business, Changsha 410205, China
| | - Qianruyu Wang
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, China
| | - Mengwei Luo
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, China
| |
Collapse
|
6
|
Wang H, Liu H, Su R, Chen Y. Phytostabilization of Heavy Metals and Fungal Community Response in Manganese Slag under the Mediation of Soil Amendments and Plants. TOXICS 2024; 12:333. [PMID: 38787112 PMCID: PMC11125594 DOI: 10.3390/toxics12050333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 04/28/2024] [Accepted: 04/30/2024] [Indexed: 05/25/2024]
Abstract
The addition of soil amendments and plants in heavy metal-contaminated soil can result in a significant impact on physicochemical properties, microbial communities and heavy metal distribution, but the specific mechanisms remain to be explored. In this study, Koelreuteria paniculata was used as a test plant, spent mushroom compost (SMC) and attapulgite (ATP) were used as amendments, and manganese slag was used as a substrate. CK (100% slag), M0 (90% slag + 5% SMC + 5% ATP) and M1 (90% slag + 5% SMC + 5% ATP, planting K. paniculata) groups were assessed in a pilot-scale experiment to explore their different impacts on phytoremediation. The results indicated that adding the amendments significantly improved the pH of the manganese slag, enhancing and maintaining its fertility and water retention. Adding the amendments and planting K. paniculata (M1) significantly reduced the bioavailability and migration of heavy metals (HMs). The loss of Mn, Pb and Zn via runoff decreased by 15.7%, 8.4% and 10.2%, respectively, compared to CK. K. paniculata recruited and enriched beneficial fungi, inhibited pathogenic fungi, and a more stable fungal community was built. This significantly improved the soil quality, promoted plant growth and mitigated heavy metal toxicity. In conclusion, this study demonstrated that the addition of SMC-ATP and planting K. paniculata showed a good phytostabilization effect in the manganese slag and further revealed the response process of the fungal community in phytoremediation.
Collapse
Affiliation(s)
| | | | | | - Yonghua Chen
- College of Life and Environmental Sciences, Central South University of Forestry and Technology, Changsha 410004, China; (H.W.); (H.L.)
| |
Collapse
|
7
|
Di F, Han D, Wang G, Zhao W, Zhou D, Rong N, Yang S. Characteristics of bacterial community structure in the sediment of Chishui River (China) and the response to environmental factors. JOURNAL OF CONTAMINANT HYDROLOGY 2024; 263:104335. [PMID: 38520935 DOI: 10.1016/j.jconhyd.2024.104335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 03/05/2024] [Accepted: 03/14/2024] [Indexed: 03/25/2024]
Abstract
Sediment microorganisms performed an essential function in the biogeochemical cycle of aquatic ecosystems, and their structural composition was closely related to environmental carrying capacity and water quality. In this study, the Chishui River (Renhuai section) was selected as the research area, and the concentrations of environmental factors in the water and sediment were detected. High⁃throughput sequencing was adopted to reveal the characteristics of bacterial community structures in the sediment. In addition, the response of bacteria to environmental factors was explored statistically. Meanwhile, the functional characteristics of bacterial were also analyzed based on the KEGG database. The results showed that the concentration of environmental factors in the water and sediment displayed spatial differences, with the overall trend of midstream > downstream > upstream, which was related to the wastewater discharge from the Moutai town in the midstream directly. Proteobacteria was the most dominant phylum in the sediment, with the relative abundance ranged from 52.06% to 70.53%. The distribution of genus-level bacteria with different metabolic activities varied in the sediment. Upstream was dominated by Massilia, Acinetobacter, and Thermomonas. In the midstream, Acinetobacter, Cloacibacterium and Comamonas were the main genus. Nevertheless, the abundance of Lysobacter, Arenimonas and Thermomonas was higher in the downstream. Redundancy analysis (RDA) showed that total nitrogen (TN) and total phosphorus (TP) were the main environmental factors which affected the structure of bacterial communities in sediment, while total organic carbon (TOC) was the secondary. The bacterial community was primarily associated with six biological pathway categories such as metabolism. Carbohydrate metabolism and amino acid metabolism were the most active functions in the 31 subfunctions. This study could contribute to the understanding of the structural composition and driving forces of bacteria in the sediment, which might benefit for the ecological protection of Chishui River.
Collapse
Affiliation(s)
- Fei Di
- South China Institute of Environmental Sciences, MEE, Guangzhou 510655, China; School of Environment and Energy, South China University of Technology, Guangzhou 510006, China
| | - Donghui Han
- South China Institute of Environmental Sciences, MEE, Guangzhou 510655, China; State Environmental Protection Key Laboratory of Water Environmental Simulation and Pollution Control, South China Institute of Environmental Sciences, The Ministry of Environmental Protection of PRC, Guangzhou 510655, China; Guangdong Key Laboratory of Water and Air Pollution Control, Guangzhou 510655, China.
| | - Guang Wang
- South China Institute of Environmental Sciences, MEE, Guangzhou 510655, China; State Environmental Protection Key Laboratory of Water Environmental Simulation and Pollution Control, South China Institute of Environmental Sciences, The Ministry of Environmental Protection of PRC, Guangzhou 510655, China; Guangdong Key Laboratory of Water and Air Pollution Control, Guangzhou 510655, China
| | - Wenbo Zhao
- South China Institute of Environmental Sciences, MEE, Guangzhou 510655, China; State Environmental Protection Key Laboratory of Water Environmental Simulation and Pollution Control, South China Institute of Environmental Sciences, The Ministry of Environmental Protection of PRC, Guangzhou 510655, China; Guangdong Key Laboratory of Water and Air Pollution Control, Guangzhou 510655, China
| | - Daokun Zhou
- South China Institute of Environmental Sciences, MEE, Guangzhou 510655, China; State Environmental Protection Key Laboratory of Water Environmental Simulation and Pollution Control, South China Institute of Environmental Sciences, The Ministry of Environmental Protection of PRC, Guangzhou 510655, China; Guangdong Key Laboratory of Water and Air Pollution Control, Guangzhou 510655, China
| | - Nan Rong
- South China Institute of Environmental Sciences, MEE, Guangzhou 510655, China; State Environmental Protection Key Laboratory of Water Environmental Simulation and Pollution Control, South China Institute of Environmental Sciences, The Ministry of Environmental Protection of PRC, Guangzhou 510655, China; Guangdong Key Laboratory of Water and Air Pollution Control, Guangzhou 510655, China
| | - Shou Yang
- South China Institute of Environmental Sciences, MEE, Guangzhou 510655, China; State Environmental Protection Key Laboratory of Water Environmental Simulation and Pollution Control, South China Institute of Environmental Sciences, The Ministry of Environmental Protection of PRC, Guangzhou 510655, China; Guangdong Key Laboratory of Water and Air Pollution Control, Guangzhou 510655, China
| |
Collapse
|
8
|
Hou X, Nan H, Chen X, Ge F, Liu Y, Li F, Zhang D, Tian J. Slow release of attapulgite based nano-enabled glyphosate improves soil phosphatase activity, organic P-pool and proliferation of dominant bacterial community. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 336:122408. [PMID: 37597734 DOI: 10.1016/j.envpol.2023.122408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 08/14/2023] [Accepted: 08/17/2023] [Indexed: 08/21/2023]
Abstract
Glyphosate (Glp) was encapsulated onto the dopamine-modified attapulgite to develop an attapulgite-based nano-enabled Glp (DGlp) in this study with comparable weed control effects to pure Glp and commercial Glp solutions. Within 24 hours, the active Glp molecule was slowly released from DGlp at a maximum remaining rate of over 90%, and then degraded similarly to Glp solution in soil. The addition of DGlp improved soil available phosphorus (P) contents, phosphatase activity, and enzyme extractable P fraction. However, compared to Glp solution, DGlp addition had no effect on the transformation of soil inorganic P fractions. The 16S rRNA sequencing and co-occurrence network results revealed that DGlp had no significant effect on the soil bacterial diversity but diminished the complexity of soil bacterial network. According to the Mantel test, DGlp addition stimulated soil phosphatase activity and proliferation of dominant bacterial taxa (Proteobacteria and Firmicutes) capable of degrading Glp. Proteobacteria and Firmicutes that had been extensively recruited and enriched for their phosphatase activities may have mobilized reactive enzyme-P, significantly enhancing the transformation of reactive organic P and P-pool in soil. These results contributed to our understanding of the ecotoxicity and environmental impacts of nano-enabled Glp prior to its successful and sustainable application in agriculture.
Collapse
Affiliation(s)
- Xuejuan Hou
- Department of Environmental Science and Engineering, College of Environment and Resources, Xiangtan University, Xiangtan, China
| | - Hui Nan
- Department of Environmental Science and Engineering, College of Environment and Resources, Xiangtan University, Xiangtan, China
| | - Xin Chen
- Department of Environmental Science and Engineering, College of Environment and Resources, Xiangtan University, Xiangtan, China
| | - Fei Ge
- Department of Environmental Science and Engineering, College of Environment and Resources, Xiangtan University, Xiangtan, China
| | - Yun Liu
- Department of Environmental Science and Engineering, College of Environment and Resources, Xiangtan University, Xiangtan, China
| | - Feng Li
- Department of Environmental Science and Engineering, College of Environment and Resources, Xiangtan University, Xiangtan, China
| | - Dayi Zhang
- College of New Energy and Environment, Jilin University, Changchun, 130021, PR China; Key Laboratory of Groundwater Resources and Environment Ministry of Education, Jilin University, Changchun, 130021, PR China
| | - Jiang Tian
- Department of Environmental Science and Engineering, College of Environment and Resources, Xiangtan University, Xiangtan, China.
| |
Collapse
|
9
|
Liu Y, Chen Y, Li Y, Chen L, Jiang H, Jiang L, Yan H, Zhao M, Hou S, Zhao C, Chen Y. Elaborating the mechanism of lead adsorption by biochar: Considering the impacts of water-washing and freeze-drying in preparing biochar. BIORESOURCE TECHNOLOGY 2023; 386:129447. [PMID: 37399959 DOI: 10.1016/j.biortech.2023.129447] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 06/29/2023] [Accepted: 06/30/2023] [Indexed: 07/05/2023]
Abstract
This paper examined the impacts of different pretreatments on the characteristics of biochar and its adsorption behavior for Pb2+. Biochar with combined pretreatment of water-washing and freeze-drying (W-FD-PB) performed a maximum adsorption capacity for Pb2+ of 406.99 mg/g, higher than that of 266.02 mg/g on water-washing pretreated biochar (W-PB) and 188.21 mg/g on directly pyrolyzed biochar (PB). This is because the water-washing process partially removed the K and Na, resulting in the relatively enriched Ca and Mg on W-FD-PB. And the freeze-drying pretreatment broke the fiber structure of pomelo peel, favoring the development of a fluffy surface and large specific surface area during pyrolysis. Quantitative mechanism analysis implied that cation ion exchange and precipitation were the driving forces in Pb2+ adsorption on biochar, and both mechanisms were enhanced during Pb2+ adsorption on W-FD-PB. Furthermore, adding W-FD-PB to Pb-contaminated soil increased the soil pH and significantly reduced the availability of Pb.
Collapse
Affiliation(s)
- Yihuan Liu
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, China
| | - Yaoning Chen
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, China.
| | - Yuanping Li
- School of Municipal and Geomatics Engineering, Hunan City University, Yiyang 413000, China
| | - Li Chen
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, China
| | - Hongjuan Jiang
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, China
| | - Longbo Jiang
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, China
| | - Haoqin Yan
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, China
| | - Mengyang Zhao
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, China
| | - Suzhen Hou
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, China
| | - Chen Zhao
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, China
| | - Yanrong Chen
- School of Resource & Environment, Hunan University of Technology and Business, Changsha 410205, China
| |
Collapse
|
10
|
Jiang W, Li D, Yang J, Ye Y, Luo J, Zhou X, Yang L, Liu Z. A combined passivator of zeolite and calcium magnesium phosphate fertilizer: Passivation behavior and mechanism for Cd (II) in composting. ENVIRONMENTAL RESEARCH 2023; 231:116306. [PMID: 37268202 DOI: 10.1016/j.envres.2023.116306] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 05/27/2023] [Accepted: 05/31/2023] [Indexed: 06/04/2023]
Abstract
Passivation of heavy metals is one of the most efficient techniques to improve the quality of compost. Many studies confirmed the passivation effect of passivators (e.g., zeolite and calcium magnesium phosphate fertilizer) on cadmium (Cd), but passivators with single component could not effectively passivate Cd in the long-term operation of composting. In the present study, a combined passivator of zeolite and calcium magnesium phosphate fertilizer (ZCP) was used to explore its impacts of adding at different composting periods (heating period, thermophilic period, cooling period) on the Cd control, compost quality (e.g., temperature, moisture content and humification), microbial community structure as well as the compost available forms of Cd and addition strategy of ZCP. Results showed that Cd passivation rate could be increased by 35.70-47.92% under all treatments in comparison to the control treatment. By altering bacterial community structure, reducing Cd bioavailability and improving the chemical properties of the compost, the combined inorganic passivator could achieve high efficiency for Cd passivation. To sum up, the addition of ZCP at different composting periods has effects on the process and quality of composting, which could provide ideas for the optimization of the passivators addition strategy.
Collapse
Affiliation(s)
- Wei Jiang
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, No. 1037 Luoyu Road, Wuhan, 430074, China
| | - Dian Li
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, No. 1037 Luoyu Road, Wuhan, 430074, China
| | - Junlin Yang
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, No. 1037 Luoyu Road, Wuhan, 430074, China
| | - Yuanyao Ye
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, No. 1037 Luoyu Road, Wuhan, 430074, China.
| | - Jiwu Luo
- Central & Southern China Municipal Engineering Design and Research Institute Co,Ltd, No. 8 Jiefang Park Rord, Wuhan, 430010, China
| | - Xiaojuan Zhou
- Central & Southern China Municipal Engineering Design and Research Institute Co,Ltd, No. 8 Jiefang Park Rord, Wuhan, 430010, China
| | - Lin Yang
- Wuhan Huantou Solid Waste Operation Co., Ltd, No. 37 Xinye Road, Wuhan, 430024, China
| | - Zizheng Liu
- School of Civil Engineering, Wuhan University, No. 8 Donghu South Road, Wuhan, 430072, China
| |
Collapse
|
11
|
Tsou CH, Shui YJ, Du J, Yao WH, Wu CS, Suen MC, Chen S. Characterization and Morphology of Nanocomposite Hydrogels with a 3D Network Structure Prepared Using Attapulgite-Enhanced Polyvinyl Alcohol. Polymers (Basel) 2023; 15:polym15112535. [PMID: 37299334 DOI: 10.3390/polym15112535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 05/24/2023] [Accepted: 05/28/2023] [Indexed: 06/12/2023] Open
Abstract
In this investigation, purified attapulgite (ATT) and polyvinyl alcohol (PVA) were utilized to fabricate nanocomposite hydrogels and a xerogel, with a focus on studying the impact of minor additions of ATT on the properties of the PVA nanocomposite hydrogels and xerogel. The findings demonstrated that at a concentration of 0.75% ATT, the water content and gel fraction of the PVA nanocomposite hydrogel reached their peak. Conversely, the nanocomposite xerogel with 0.75% ATT reduced its swelling and porosity to the minimum. SEM and EDS analyses revealed that when the ATT concentration was at or below 0.5%, nano-sized ATT could be evenly distributed in the PVA nanocomposite xerogel. However, when the concentration of ATT rose to 0.75% or higher, the ATT began to aggregate, resulting in a decrease in porous structure and the disruption of certain 3D porous continuous structures. The XRD analysis further affirmed that at an ATT concentration of 0.75% or higher, a distinct ATT peak emerged in the PVA nanocomposite xerogel. It was observed that as the content of ATT increased, the concavity and convexity of the xerogel surface, as well as the surface roughness, decreased. The results also confirmed that the ATT was evenly distributed in the PVA, and a combination of hydrogen bonds and ether bonds resulted in a more stable gel structure. The tensile properties exhibited that when compared with pure PVA hydrogel, the maximum tensile strength and elongation at break were achieved at an ATT concentration of 0.5%, indicating increases of 23.0% and 11.8%, respectively. The FTIR analysis results showed that the ATT and PVA could generate an ether bond, further confirming that ATT could enhance the PVA properties. The TGA analysis showed that the thermal degradation temperature peaked when the ATT concentration was at 0.5%, providing further evidence that the compactness of the nanocomposite hydrogel and the dispersion of the nanofiller was superior, contributing to a substantial increase in the mechanical properties of the nanocomposite hydrogel. Finally, the dye adsorption results displayed a significant rise in dye removal efficiency for methylene blue with the increase in the ATT concentration. At an ATT concentration of 1%, the removal efficiency rose by 103% compared with that of the pure PVA xerogel.
Collapse
Affiliation(s)
- Chi-Hui Tsou
- School of Materials Science and Engineering, Sichuan University of Science and Engineering, Zigong 643000, China
- Material Corrosion and Protection Key Laboratory of Sichuan Province, Sichuan University of Science and Engineering, Zigong 643000, China
| | - Yu-Jie Shui
- School of Materials Science and Engineering, Sichuan University of Science and Engineering, Zigong 643000, China
- Material Corrosion and Protection Key Laboratory of Sichuan Province, Sichuan University of Science and Engineering, Zigong 643000, China
| | - Juan Du
- School of Materials Science and Engineering, Sichuan University of Science and Engineering, Zigong 643000, China
- Material Corrosion and Protection Key Laboratory of Sichuan Province, Sichuan University of Science and Engineering, Zigong 643000, China
| | - Wei-Hua Yao
- Department of Materials and Textiles, Asia Eastern University of Science and Technology, New Taipei City 220, Taiwan, China
| | - Chin-San Wu
- Department of Applied Cosmetology, KaoYuan University, Kaohsiung County 82101, Taiwan, China
| | - Maw-Cherng Suen
- Department of Fashion Business Administration, Lee-Ming Institute of Technology, New Taipei City 24305, Taiwan, China
| | - Shuang Chen
- School of Materials Science and Engineering, Sichuan University of Science and Engineering, Zigong 643000, China
- Material Corrosion and Protection Key Laboratory of Sichuan Province, Sichuan University of Science and Engineering, Zigong 643000, China
| |
Collapse
|
12
|
Sahoo MM, Swain JB. Investigation and comparative analysis of ecological risk for heavy metals in sediment and surface water in east coast estuaries of India. MARINE POLLUTION BULLETIN 2023; 190:114894. [PMID: 37018906 DOI: 10.1016/j.marpolbul.2023.114894] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 03/09/2023] [Accepted: 03/25/2023] [Indexed: 06/19/2023]
Abstract
The sediments and surface water from 8 stations each from Dhamara and Paradeep estuarine areas were sampled for investigation of heavy metals, Cd, Cu, Pb, Mn, Ni, Zn, Fe, and Cr contamination. The objective of the sediment and surface water characterization is to find the existing spatial and temporal intercorrelation. The sediment accumulation index (Ised), enrichment index (IEn), ecological risk index (IEcR) and probability heavy metals (p-HMI) reveal the contamination status with Mn, Ni, Zn, Cr, and Cu showing permissible (0 ≤ Ised ≤ 1, IEn ˂ 2, IEcR ≤ 150) to moderate (1 ≤ Ised ≤ 2, 40 ≤ Rf ≤ 80) contamination. The p-HMI reflects the range from excellent (p-HMI = 14.89-14.54) to fair (p-HMI = 22.31-26.56) in off shore stations of the estuary. The spatial patterns of the heavy metals load index (IHMc) along the coast lines indicate that the pollution hotspots are progressively divulged to trace metals pollution over time. Heavy metal source analysis coupled with correlation analysis and principal component analysis (PCA) was used as a data reduction technique, which reveals that the heavy metal pollution in marine coastline might originate from redox reactions (FeMn coupling) and anthropogenic sources.
Collapse
|
13
|
Song C, Chen Z, Zhao Y, Li J, Gao Y, Wang S, Wei Z. The driving mechanism of passivator islands adsorbing and immobilizing heavy metals during chicken manure composting. BIORESOURCE TECHNOLOGY 2023; 380:129115. [PMID: 37137451 DOI: 10.1016/j.biortech.2023.129115] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 04/24/2023] [Accepted: 04/27/2023] [Indexed: 05/05/2023]
Abstract
The aim of this study was to assess the effectiveness of biochar and montmorillonite islands on heavy metal adsorptive immobilization and identify crucial driving factors and pathways during chicken manure composting. Compared to montmorillonite (6.74 and 89.25 mg/kg), biochar exhibited an obviously higher ability of Cu and Zn enrichment (41.79 and 167.77mg/kg), might be attributed to its abundant active functional groups. Network analysis showed that compared to Cu, core bacteria positively and negatively related to Zn was obviously more and less in passivator islands, respectively, which might explain significantly higher Zn concentration. Structural Equation Model displayed that dissolved organic carbon (DOC), pH and bacteria were critical driving factors. Pretreatment of passivator packages, such as soaking in the solution being rich in DOC and inoculating specific microbial agents accumulating heavy metals via extracellular adsorption /intracellular interception would significantly improve the effectiveness of adsorptive passivation on heavy metals.
Collapse
Affiliation(s)
- Caihong Song
- College of Life Science, Liaocheng University, Liaocheng 252000, China; College of Life Science, Northeast Agricultural University, Harbin 150030, China
| | - Zhiru Chen
- College of Life Science, Liaocheng University, Liaocheng 252000, China
| | - Yue Zhao
- College of Life Science, Northeast Agricultural University, Harbin 150030, China
| | - Jie Li
- College of Life Science, Liaocheng University, Liaocheng 252000, China
| | - Yunxiang Gao
- College of Life Science, Liaocheng University, Liaocheng 252000, China
| | - Shenghui Wang
- College of Life Science, Liaocheng University, Liaocheng 252000, China
| | - Zimin Wei
- College of Life Science, Liaocheng University, Liaocheng 252000, China; Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, Tianjin 300387, China.
| |
Collapse
|
14
|
Chen L, Chen Y, Li Y, Liu Y, Jiang H, Li H, Yuan Y, Chen Y, Zou B. Improving the humification by additives during composting: A review. WASTE MANAGEMENT (NEW YORK, N.Y.) 2023; 158:93-106. [PMID: 36641825 DOI: 10.1016/j.wasman.2022.12.040] [Citation(s) in RCA: 43] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 12/13/2022] [Accepted: 12/31/2022] [Indexed: 06/17/2023]
Abstract
Humic substances (HSs) are key indicators of compost maturity and are important for the composting process. The application of additives is generally considered to be an efficient and easy-to-master strategy to promote the humification of composting and quickly caught the interest of researchers. This review summarizes the recent literature on humification promotion by additives in the composting process. Firstly, the organic, inorganic, biological, and compound additives are introduced emphatically, and the effects and mechanisms of various additives on composting humification are systematically discussed. Inorganic, organic, biological, and compound additives can promote 5.58-82.19%, 30.61-50.92%, 2.3-40%, and 28.09-104.51% of humification during composting, respectively. Subsequently, the advantages and disadvantages of various additives in promoting composting humification are discussed and indicated that compound additives are the most promising method in promoting composting humification. Finally, future research on humification promotion is also proposed such as long-term stability, environmental impact, and economic feasibility of additive in the large-scale application of composting. It is aiming to provide a reference for future research and the application of additives in composting.
Collapse
Affiliation(s)
- Li Chen
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, China
| | - Yaoning Chen
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, China.
| | - Yuanping Li
- College of Municipal and Mapping Engineering, Hunan City University, Yiyang, Hunan 413000, China.
| | - Yihuan Liu
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, China
| | - Hongjuan Jiang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, China
| | - Hui Li
- State Key Laboratory of Utilization of Woody Oil Resource and Institute of Biological and Environmental Engineering, Hunan Academy of Forestry, Changsha, 410004, China
| | - Yu Yuan
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, China
| | - Yanrong Chen
- School of Resource & Environment, Hunan University of Technology and Business, Changsha 410205, China
| | - Bin Zou
- College of Municipal and Mapping Engineering, Hunan City University, Yiyang, Hunan 413000, China
| |
Collapse
|
15
|
Zha A, Tan B, Wang J, Qi M, Deng Y, Li R, Liao P. Dietary supplementation modified attapulgite promote intestinal epithelial barrier and regulate intestinal microbiota composition to prevent diarrhea in weaned piglets. Int Immunopharmacol 2023; 117:109742. [PMID: 36822096 DOI: 10.1016/j.intimp.2023.109742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 12/11/2022] [Accepted: 12/24/2022] [Indexed: 02/25/2023]
Abstract
Attapulgite is a kind of natural clay mineral. Its unique pore structure makes it an ideal adsorption material and carrier material. However, the beneficial effect of modified attapulgites (SLK) in livestock is still unknown. The study was aimed to investigate the beneficial effect of modified attapulgites on diarrhea. 135 piglets were randomly divided into 5 groups and fed with control diet, traditional antibiotic substitute (TAS) supplementation diet, 0.5 mg/kg SLK supplementation diet, 1 mg/kg SLK supplementation diet, and 1.5 mg/kg SLK supplementation diet. This experiment lased two weeks. According to our result, 1.5 mg/kg SLK supplementation diet significantly decreased diarrhea score and diarrhea frequency, and effectively increased survival rate (P < 0.05). Dietary supplementation with 1.5 mg/kg SLK significantly increased high density lipoprotein cholesterol (HDLC), and choline esterase (CHE) concentration in serum (P < 0.05). AS compared with TAS group, 1.5 mg/kg SLK supplementation diet significantly decreased villus height and increased goblet number in jejunum, and increased villus height and decreased goblet number in ileum (P < 0.05). 1.5 mg/kg SLK supplementation diet also significantly changed cecal microbial community composition, including increased Limosilactobacillus abundance (P < 0.05). 1.5 mg/kg SLK supplementation diet significantly increased colonic microbial community composition, including decreased Escherichia-shigella abundance and increased Limosilactobacillus abundance (P < 0.05). Moreover, 1.5 mg/kg SLK supplementation diet significantly increased valerate, propionate, butyrate, and total short chain fatty acid contents in colon (P < 0.05). Valerate, propionate, butyrate, and total short chain fatty acid significantly associated with Lactobacillus. Fourerenilla and Fourerenilla.unclassfied significantly associated with acetate contents in colon (P < 0.05). In conclusion, dietary supplementation with modified apptapulgites significantly regulate intestinal microbial community composition and alleviate intestinal epithelial barrier to prevent diarrhea in piglets.
Collapse
Affiliation(s)
- Andong Zha
- Laboratory of Animal Nutritional Physiology and Metabolic Process, Key Laboratory of Agro-ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China; University of Chinese Academy of Sciences, Beijing 100008, China
| | - Bie Tan
- College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China
| | - Jing Wang
- College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China
| | - Ming Qi
- Laboratory of Animal Nutritional Physiology and Metabolic Process, Key Laboratory of Agro-ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China; University of Chinese Academy of Sciences, Beijing 100008, China
| | - Yuankun Deng
- College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China
| | - Rui Li
- Laboratory of Animal Nutritional Physiology and Metabolic Process, Key Laboratory of Agro-ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China.
| | - Peng Liao
- Laboratory of Animal Nutritional Physiology and Metabolic Process, Key Laboratory of Agro-ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China.
| |
Collapse
|