1
|
Mahat S, Almasi B, Kjelsen IS, Marmet DS, Heckel G, Roulin A, Buser AM, Mestrot A. Mercury accumulation and biomagnification in the barn owl (Tyto alba) food chain. JOURNAL OF HAZARDOUS MATERIALS 2025; 492:138269. [PMID: 40239524 DOI: 10.1016/j.jhazmat.2025.138269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2025] [Revised: 03/25/2025] [Accepted: 04/10/2025] [Indexed: 04/18/2025]
Abstract
Mercury (Hg) accumulation and biomagnification in the barn owl (Tyto alba) food chain were investigated using bioindicator samples from three trophic levels: (1) soil and moss (atmospheric deposition indicators), (2) small mammal fur from regurgitated pellets (herbivores and omnivores), and (3) barn owl down feathers (apex predators). Spatial analysis identified regional Hg variation in soil, fur and feathers. Statistical models explored the effects of proximity to water bodies, wetlands and nearby pollution sources. The highest total Hg (THg) concentrations were found in feathers (170 ± 160 µg kg-1, n = 246) and fur in regurgitated pellets (150 ± 200 µg kg-1, n = 150), followed by soil (63 ± 17 µg kg-1, n = 63). Bioaccumulation factors were 2.3 (soil to fur) and 2.7 (soil to feather). Biomagnification factor from fur to feathers was 1.8. Methyl Hg (MeHg), measured in a subset of samples, was 120 ± 130 µg kg-1 in fur (n = 29) and 150 ± 98 µg kg-1 in feathers (n = 42), with 75-97 % of THg in feathers as MeHg. Prey composition significantly influenced fur THg levels, with higher concentrations in diets with omnivorous prey (Apodemus flavicollis) compared to herbivorous prey (Microtus arvalis). These findings highlight the importance of diet in Hg monitoring and biomagnification studies.
Collapse
Affiliation(s)
- Sabnam Mahat
- Institute of Geography, University of Bern, Hallerstrasse 12, Bern 3012, Switzerland
| | - Bettina Almasi
- Swiss Ornithological Institute, Seerose 1, Sempach 6204, Switzerland
| | - Ingrid S Kjelsen
- Institute of Geography, University of Bern, Hallerstrasse 12, Bern 3012, Switzerland
| | - Dan S Marmet
- Institute of Geography, University of Bern, Hallerstrasse 12, Bern 3012, Switzerland
| | - Gerald Heckel
- Institute of Ecology and Evolution, University of Bern, Baltzerstrasse 6, Bern 3012, Switzerland
| | - Alexandre Roulin
- Department of Ecology and Evolution, University of Lausanne, Lausanne 1015, Switzerland
| | - Andreas M Buser
- Swiss Federal Office for the Environment, Monbijoustrasse 40, Bern 3003, Switzerland
| | - Adrien Mestrot
- Institute of Geography, University of Bern, Hallerstrasse 12, Bern 3012, Switzerland; Oeschger Centre for Climate Change Research, University of Bern, Hallerstrasse 12, Bern 3012, Switzerland.
| |
Collapse
|
2
|
Luo K, Yuan W, Lu Z, Xiong Z, Huang JH, Wang X, Feng X. Riverine songbirds capture high levels of atmospheric mercury pollution from brown food webs in forests by mercury isotopic evidence. JOURNAL OF HAZARDOUS MATERIALS 2025; 488:137347. [PMID: 39869980 DOI: 10.1016/j.jhazmat.2025.137347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Revised: 01/21/2025] [Accepted: 01/22/2025] [Indexed: 01/29/2025]
Abstract
Elevated methylmercury (MeHg) exposure poses significant risks to bird health, behavior, and reproduction. Still, the risk of MeHg exposure to forest birds, accounting for over 80 % of the world's bird species, is poorly understood. This study combines Hg isotopes and video analysis, aiming to assess MeHg exposure risks to a forest riverine songbird, the spotted forktail (Enicurus maculatus) from a remote subtropical montane forest. Noticeably, 83 % of feather MeHg concentrations of adult forktails exceeded 5000 ng g-1, a threshold level potentially impacting bird reproduction, and 50 % of feather MeHg concentrations in forktail nestlings exceeded the threshold level of 1000 ng g-1, that potentially impacts the nestling growth. Forktail nestlings ingested ∼ 99 % of their MeHg from prey within brown food webs (i.e., from forest floor, aquatic, and emergent aquatic prey). The Hg isotopes reveal that MeHg along the bird food chain is mostly derived from in situ methylation of litterfall deposited atmospheric Hg0, with limited photo-demethylation (i.e., 4-12 %) in shaded forest environments. The risk of MeHg exposure of forest songbirds correlated positively with the proportion of prey consumed from brown food webs. We recommend incorporating resident riverine songbirds in monitoring programs to better evaluate the effectiveness of the Minamata Convention, especially in remote forest ecosystems where in situ MeHg production may be underestimated.
Collapse
Affiliation(s)
- Kang Luo
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China; Southeast Asia Biodiversity Research Institute, Chinese Academy of Sciences & Center for Integrative Conservation, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla 666303, China
| | - Wei Yuan
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China
| | - Zhiyun Lu
- Ailaoshan Station for Subtropical Forest Ecosystem Studies, Chinese Academy of Sciences, Jingdong, Yunnan 676200, China
| | - Zichun Xiong
- Ailaoshan Station for Subtropical Forest Ecosystem Studies, Chinese Academy of Sciences, Jingdong, Yunnan 676200, China
| | - Jen-How Huang
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China
| | - Xun Wang
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China.
| | - Xinbin Feng
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China; University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
3
|
Wang D, Lin X, Wu G, Xu Z, Liu J, Xu X, Jia D, Liang L, Habibullah-Al-Mamun M, Qiu G. Synchronous changes in mercury stable isotopes and compound-specific amino acid nitrogen isotopes in organisms through food chains. ENVIRONMENT INTERNATIONAL 2025; 196:109327. [PMID: 39952203 DOI: 10.1016/j.envint.2025.109327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2024] [Revised: 01/17/2025] [Accepted: 02/10/2025] [Indexed: 02/17/2025]
Abstract
The relationship between stable isotope of mercury (Hg, Δ199Hg and δ202Hg) and compound-specific nitrogen isotope of amino acids (CSIA-AA, δ15NGlu and δ15NPhe) remains poorly understood. In this study, we investigated bird species and their prey in an abandoned Hg mining area, southern China to elucidate these correlations for a better understanding of Hg sources, biological transfer, accumulation and amplification through food chains. Our findings revealed distinct isotopic patterns: Δ199Hg showed a positive correlation with δ15NGlu, indicating trophic transfer processes, while a negative correlation with δ15NPhe suggested differences in Hg sources among birds. The wide ranges of δ15NPhe and Δ199Hg observed in birds appear to reflect mixtures of multiple nitrogen and Hg sources, likely due to their diverse food sources and the large variation in the proportion of MeHg in total Hg (MeHg%). The consistent slope between Δ199Hg/δ15Nphe and MeHg%/δ15Nphe, reflecting both energy and Hg sources, provides new insights into the biotransfer and accumulation of Hg in organisms. Notably, the trophic magnification factor (TMF) of MeHg observed in water birds, such as egrets, reached an exceptionally high value of 97.7 estimated from CSIA of multiple amino acids (i.e., TMFM), underscoring the significance of investigating Hg sources in birds. Our results demonstrate that the synchronous changes between CSIA-AA and odd Hg isotopes effectively identify Hg sources and transfer across multiple ecological systems.
Collapse
Affiliation(s)
- Dawei Wang
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081 China; University of Chinese Academy of Sciences, Beijing 100049 China
| | - Xiaoyuan Lin
- The First Hospital of Hunan University of Chinese Medicine, Changsha 410007 China
| | - Gaoen Wu
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou 570228 China
| | - Zhidong Xu
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081 China
| | - Jiemin Liu
- Guizhou Provincial People's Hospital, Guiyang 550002 China
| | - Xiaohang Xu
- Key Laboratory of Karst Georesources and Environment, Ministry of Education, College of Resources and Environmental Engineering, Guizhou University, Guiyang 550025 China
| | - Dongya Jia
- School of Chemistry and Materials Science, Guizhou Normal University, Guiyang 550025 China
| | - Longchao Liang
- School of Chemistry and Materials Science, Guizhou Normal University, Guiyang 550025 China
| | - Md Habibullah-Al-Mamun
- Department of Fisheries, Faculty of Biological Sciences, University of Dhaka, Dhaka 1000 Bangladesh
| | - Guangle Qiu
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081 China.
| |
Collapse
|
4
|
Liu X, Wang Z, Niu X, Wang B, Wang C, Cao H, Zhang X. Methylmercury exposure and risk of wintering migratory birds in the Poyang Lake basin, China. ENVIRONMENTAL RESEARCH 2024; 261:119641. [PMID: 39053757 DOI: 10.1016/j.envres.2024.119641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 07/16/2024] [Accepted: 07/17/2024] [Indexed: 07/27/2024]
Abstract
Mercury (Hg), especially methylmercury (MeHg), is a pervasive contaminant that poses significant risks to birds occupying high trophic levels. However, we have little knowledge about the mercury exposure and its risks for birds in Poyang Lake basin, China. Therefore, during 2020-2021, we investigated MeHg concentrations in breast feathers of wintering migratory birds (n = 430 from 43 species belonging to 9 orders) in Poyang Lake Nanji Wetland and Jiangxi Nanfengmian National Nature Reserve, China. MeHg concentrations in breast feathers varied greatly by species, foraging guilds and taxonomic orders, among which the highest concentration was detected in great egret (8849 ± 5975 ng g-1 dw). Comparing with studies worldwide, high MeHg concentrations in feathers of Ardeidae from Pelecaniformes were found in this area. Moreover, herons migrating between northern and southern China had lower MeHg concentration than residents in southern China related to habitat Hg. Considering the applicability and sensitivity of the equations for the transformation of MeHg concentrations in feathers to blood-equivalent total Hg (THg) values, method CJ that the equation based on songbirds was used for the transformation of the songbirds and the equation based on seabirds for the others performed better than other three for risk assessment of bird Hg in this study. 23.1% of birds from Poyang Lake were at risk of Hg exposure based on the method CJ. Carnivorous birds from Pelecaniformes had the highest risk levels, with 37.2% categorized as no risk (≤200 ng g-1 ww), 48.9% as low risk (200-1000 ng g-1 ww), 11.1% as moderate risk (1000-3000 ng g-1 ww), 1.1% as high risk (3000-4000 ng g-1 ww), and 1.7% as severe risk (>4000 ng g-1 ww). These risks suggest long-term monitoring and further advanced studies about freshwater waterbirds Hg exposure is necessary.
Collapse
Affiliation(s)
- Xu Liu
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhangwei Wang
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Xiang Niu
- Ecology and Nature Conservation Institute, Chinese Academy of Forestry, Beijing, 100091, China.
| | - Bing Wang
- Ecology and Nature Conservation Institute, Chinese Academy of Forestry, Beijing, 100091, China
| | - Chunjie Wang
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Huabin Cao
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Xiaoshan Zhang
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
5
|
Bandouchova H, Novotna Kruzikova K, Zukal J, Linhart P, Sedlackova J, Veitova L, Kalocsanyiova V, Pikula J, Svobodova Z. Natural mercury exposure of European insectivorous bats may exceed a recognized toxicity threshold. ECOTOXICOLOGY (LONDON, ENGLAND) 2024; 33:948-958. [PMID: 39028383 PMCID: PMC11399212 DOI: 10.1007/s10646-024-02785-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 07/05/2024] [Indexed: 07/20/2024]
Abstract
Heavy metals are an important group of toxic substances harmful for many organisms. Of these, mercury is one of the most monitored in the environment. Several matrices are used for the monitoring of environmental load, including a range of organisms; bats, however, have only been examined rarely. Insectivorous bats are apex predators threatened by several human interventions in their natural environment, including heavy metal pollution. The aim of this study was to analyze the content of total mercury in the fur, flight membrane, and pectoral muscle of greater mouse-eared bats (Myotis myotis). Total mercury concentrations were also measured in carabid beetles from the catch locality Zastávka u Brna. Samples were obtained from 43 bat carcasses at two different localities in the Czech Republic (Zastávka u Brna, Malá Morávka). Total mercury content varied between 1.76-72.20 µg/g in fur, 0.04-0.14 µg/g in skin, and 0.05-0.20 µg/g in muscle. Total mercury values in the fur of some individuals from Malá Morávka exceeded the recognized toxicity limit. Furthermore, there was a significant difference (p < 0.001) in content of total mercury in fur between localities, and there was a clear effect of age on concentrations in fur, skin, and muscle, the concentrations being significantly correlated (fur and skin rs = 0.783; fur and muscle rs = 0.716; skin and muscle rs = 0.884). These findings confirm the usefulness of fur samples from living bats for biomonitoring mercury burden in the environment.
Collapse
Affiliation(s)
- Hana Bandouchova
- Department of Ecology & Diseases of Zoo Animals, Game, Fish and Bees, University of Veterinary Sciences Brno, Brno, Czech Republic
| | - Kamila Novotna Kruzikova
- Department of Animal Protection and Welfare & Veterinary Public Health, University of Veterinary Sciences Brno, Brno, Czech Republic.
| | - Jan Zukal
- Department of Ecology & Diseases of Zoo Animals, Game, Fish and Bees, University of Veterinary Sciences Brno, Brno, Czech Republic
- Institute of Vertebrate Biology, Czech Academy of Sciences, Brno, Czech Republic
| | - Petr Linhart
- Department of Animal Protection and Welfare & Veterinary Public Health, University of Veterinary Sciences Brno, Brno, Czech Republic
| | - Jana Sedlackova
- Department of Ecology & Diseases of Zoo Animals, Game, Fish and Bees, University of Veterinary Sciences Brno, Brno, Czech Republic
| | - Lucie Veitova
- Department of Ecology & Diseases of Zoo Animals, Game, Fish and Bees, University of Veterinary Sciences Brno, Brno, Czech Republic
| | - Vendula Kalocsanyiova
- Department of Ecology & Diseases of Zoo Animals, Game, Fish and Bees, University of Veterinary Sciences Brno, Brno, Czech Republic
| | - Jiri Pikula
- Department of Ecology & Diseases of Zoo Animals, Game, Fish and Bees, University of Veterinary Sciences Brno, Brno, Czech Republic
| | - Zdenka Svobodova
- Department of Animal Protection and Welfare & Veterinary Public Health, University of Veterinary Sciences Brno, Brno, Czech Republic
| |
Collapse
|
6
|
Wang D, Wu G, Xu Z, Liang L, Liu J, Qiu G. Compound-specific nitrogen isotope of amino acids: Toward an improved understanding of mercury trophic transfer in different habitats. JOURNAL OF HAZARDOUS MATERIALS 2024; 475:134927. [PMID: 38885586 DOI: 10.1016/j.jhazmat.2024.134927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 05/27/2024] [Accepted: 06/13/2024] [Indexed: 06/20/2024]
Abstract
Herein, we investigated the trophic transfer of mercury (Hg) through food chains in different habitats (namely aquatic, riparian, and terrestrial) through bulk stable isotope analysis of nitrogen (δ15Nbulk) and compound-specific isotope analysis of nitrogen in amino acids (δ15NAA) using bird feathers and their potential food sources from a Hg-contaminated site in southwest China. Results showed similar δ15Nphe for water birds (4.7 ± 2.6 ‰) and aquatic food sources (5.2 ± 2.1 ‰) and for land-based food sources (10.1 ± 0.4 ‰) and terrestrial birds (11.6 ± 3.0 ‰), verifying δ15Nphe as a potential discriminant indicator for different food sources. The trophic positions (TPs) of most organisms based on δ15Nbulk (TPbulk) tended to overestimate compared with those based on δ15NAA (TPAA), especially for predators (such as kingfisher: ΔTP = 1.3). Additionally, significant differences were observed in the aquatic, riparian, and terrestrial food webs between trophic magnification slope (TMS)bulk and TMSAA (p < 0.05). The trophic magnification factor (TMF)AA-multiple based on multiple-AAs in three food webs were higher than the TMFAA and TMFbulk, probably because of the greater variation of δ15Nbaseline, complex food sources or the notably different in individual organisms. Altogether, our results improve the understanding of Hg trophic transfer in aquatic, riparian, and terrestrial food webs.
Collapse
Affiliation(s)
- Dawei Wang
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Gaoen Wu
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou 570228, China
| | - Zhidong Xu
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China
| | - Longchao Liang
- School of Chemistry and Materials Science, Guizhou Normal University, Guiyang 550025, China
| | - Jiemin Liu
- Guizhou Provincial People's Hospital, Guiyang 550002, China
| | - Guangle Qiu
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China.
| |
Collapse
|
7
|
Monteiro LC, Vieira LCG, Bernardi JVE, Recktenvald MCNDN, Nery AFDC, Fernandes IO, de Miranda VL, da Rocha DMS, de Almeida R, Bastos WR. Mercury distribution, bioaccumulation, and biomagnification in riparian ecosystems from a neotropical savanna floodplain, Araguaia River, central Brazil. ENVIRONMENTAL RESEARCH 2024; 252:118906. [PMID: 38609069 DOI: 10.1016/j.envres.2024.118906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 04/01/2024] [Accepted: 04/08/2024] [Indexed: 04/14/2024]
Abstract
Litterfall is the main source of dry deposition of mercury (Hg) into the soil in forest ecosystems. The accumulation of Hg in soil and litter suggests the possibility of transfer to terrestrial invertebrates through environmental exposure or ingestion of plant tissues. We quantified total mercury (THg) concentrations in two soil layers (organic: 0-0.2 m; mineral: 0.8-1 m), litter, fresh leaves, and terrestrial invertebrates of the Araguaia River floodplain, aiming to evaluate the THg distribution among terrestrial compartments, bioaccumulation in invertebrates, and the factors influencing THg concentrations in soil and invertebrates. The mean THg concentrations were significantly different between the compartments evaluated, being higher in organic soil compared to mineral soil, and higher in litter compared to mineral soil and fresh leaves. Soil organic matter content was positively related to THg concentration in this compartment. The order Araneae showed significantly higher Hg concentrations among the most abundant invertebrate taxa. The higher Hg concentrations in Araneae were positively influenced by the concentrations determined in litter and individuals of the order Hymenoptera, confirming the process of biomagnification in the terrestrial trophic chain. In contrast, the THg concentrations in Coleoptera, Orthoptera and Hymenoptera were not significantly related to the concentrations determined in the soil, litter and fresh leaves. Our results showed the importance of organic matter for the immobilization of THg in the soil and indicated the process of biomagnification in the terrestrial food web, providing insights for future studies on the environmental distribution of Hg in floodplains.
Collapse
Affiliation(s)
- Lucas Cabrera Monteiro
- Programa de Pós-Graduação em Ecologia, Instituto de Ciências Biológicas, Universidade de Brasília, Brasília, DF, Brazil; Núcleo de Estudos e Pesquisas Ambientais e Limnológicas, Faculdade UnB Planaltina, Universidade de Brasília, Planaltina, DF, Brazil; Laboratório de Geoestatística e Geodésia, Faculdade UnB Planaltina, Universidade de Brasília, Planaltina, DF, Brazil.
| | - Ludgero Cardoso Galli Vieira
- Núcleo de Estudos e Pesquisas Ambientais e Limnológicas, Faculdade UnB Planaltina, Universidade de Brasília, Planaltina, DF, Brazil
| | - José Vicente Elias Bernardi
- Laboratório de Geoestatística e Geodésia, Faculdade UnB Planaltina, Universidade de Brasília, Planaltina, DF, Brazil
| | | | | | - Iara Oliveira Fernandes
- Programa de Pós-Graduação em Ciências Ambientais, Faculdade UnB Planaltina, Universidade de Brasília, Planaltina, DF, Brazil
| | - Vinicius Lima de Miranda
- Programa de Pós-Graduação em Zoologia, Instituto de Ciências Biológicas, Universidade de Brasília, Brasília, DF, Brazil
| | | | - Ronaldo de Almeida
- Laboratório de Biogeoquímica Ambiental, Universidade Federal de Rondônia, Porto Velho, RO, Brazil
| | | |
Collapse
|
8
|
Xu Z, Lu Q, Jia D, Li S, Luo K, Su T, Chen Z, Qiu G. Significant biomagnification of methylmercury in songbird nestlings through a rice-based food web: Insights from stable mercury isotopes. JOURNAL OF HAZARDOUS MATERIALS 2024; 468:133783. [PMID: 38367440 DOI: 10.1016/j.jhazmat.2024.133783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 02/07/2024] [Accepted: 02/12/2024] [Indexed: 02/19/2024]
Abstract
To elucidate the sources and transfer of mercury (Hg) in terrestrial food chains, particularly in heavily Hg-contaminated rice paddy ecosystems, we collected rice leaves, invertebrates, and Russet Sparrow nestlings from a clear food chain and analyzed the dietary compositions and potential Hg sources using stable Hg isotopes coupled with a Bayesian isotope mixing model (BIMM). Our findings indicated that MeHg exposure is dominant through the dietary route, with caterpillars, grasshoppers, and katydids being the main prey items, while the less provisioned spiders, dragonflies, and mantises contributed the most of the Hg to nestlings. We found minimal MIF but certain MDF in this terrestrial food chain and identified two distinct MeHg sources of dietary exposure and maternal transfer. We firstly found that the dietary route contributed substantially (almost tenfold) more MeHg to the nestlings than maternal transfer. These findings offer new insights into the integration of Hg from the dietary route and maternal transfers, enhancing our understanding of fluctuating Hg exposure risk during the nestling stage. Our study suggested that Hg isotopes combined with BIMM is an effective approach for tracing Hg sources in birds and for gaining in-depth insight into the trophic transfers and biomagnification of MeHg in food chains.
Collapse
Affiliation(s)
- Zhidong Xu
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China
| | - Qinhui Lu
- The Key Laboratory of Environment Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Provincial Engineering Research Center of Ecological Food Innovation, School of Public Health, Guizhou Medical University, Guiyang 550025, China
| | - Dongya Jia
- School of Chemistry and Materials Science, Guizhou Normal University, Guiyang 550001, China
| | - Shenghao Li
- School of Chemistry and Materials Science, Guizhou Normal University, Guiyang 550001, China
| | - Kang Luo
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China; Ailaoshan Station for Subtropical Forest Ecosystem Studies, Chinese Academy of Sciences, Jingdong 676200, China
| | - Tongping Su
- Key Laboratory of Environment Change and Resources Use in Beibu Gulf, Ministry of Education, Nanning Normal University, Nanning 530001, China
| | - Zhuo Chen
- School of Chemistry and Materials Science, Guizhou Normal University, Guiyang 550001, China.
| | - Guangle Qiu
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China.
| |
Collapse
|
9
|
Luo K, Yuan W, Lu Z, Xiong Z, Lin CJ, Wang X, Feng X. Unveiling the Sources and Transfer of Mercury in Forest Bird Food Chains Using Techniques of Vivo-Nest Video Recording and Stable Isotopes. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:6007-6018. [PMID: 38513264 DOI: 10.1021/acs.est.3c10972] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/23/2024]
Abstract
Knowledge gaps in mercury (Hg) biomagnification in forest birds, especially in the most species-rich tropical and subtropical forests, limit our understanding of the ecological risks of Hg deposition to forest birds. This study aimed to quantify Hg bioaccumulation and transfer in the food chains of forest birds in a subtropical montane forest using a bird diet recorded by video and stable Hg isotope signals of biological and environmental samples. Results show that inorganic mercury (IHg) does not biomagnify along food chains, whereas methylmercury (MeHg) has trophic magnification factors of 7.4-8.1 for the basal resource-invertebrate-bird food chain. The video observations and MeHg mass balance model suggest that Niltava (Niltava sundara) nestlings ingest 78% of their MeHg from forest floor invertebrates, while Flycatcher (Eumyias thalassinus) nestlings ingest 59% from emergent aquatic invertebrates (which fly onto the canopy) and 40% from canopy invertebrates. The diet of Niltava nestlings contains 40% more MeHg than that of Flycatcher nestlings, resulting in a 60% higher MeHg concentration in their feather. Hg isotopic model shows that atmospheric Hg0 is the main Hg source in the forest bird food chains and contributes >68% in most organisms. However, three categories of canopy invertebrates receive ∼50% Hg from atmospheric Hg2+. Overall, we highlight the ecological risk of MeHg exposure for understory insectivorous birds caused by atmospheric Hg0 deposition and methylation on the forest floor.
Collapse
Affiliation(s)
- Kang Luo
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China
| | - Wei Yuan
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China
| | - Zhiyun Lu
- Ailaoshan Station for Subtropical Forest Ecosystem Studies, Chinese Academy of Sciences, Jingdong, Yunnan 676200, China
| | - Zichun Xiong
- Ailaoshan Station for Subtropical Forest Ecosystem Studies, Chinese Academy of Sciences, Jingdong, Yunnan 676200, China
| | - Che-Jen Lin
- Center for Advances in Water and Air Quality, Lamar University, Beaumont, Texas 77710, United States
| | - Xun Wang
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China
| | - Xinbin Feng
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
10
|
Li S, Zhang F, Xu Z, Jia D, Wu G, Liu H, Li C, Liang L, Liu J, Chen Z, Qiu G. Using live videography observation and Bayesian isotope mixing model to identify food composition and dietary contribution to inorganic mercury and methylmercury intake by songbird nestlings. ENVIRONMENTAL RESEARCH 2024; 244:117902. [PMID: 38092237 DOI: 10.1016/j.envres.2023.117902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 11/30/2023] [Accepted: 12/07/2023] [Indexed: 12/17/2023]
Abstract
Mercury (Hg) exposure is increasing in terrestrial birds; however, studies on its sources are scarce. In the present study, we elucidated the food composition of green-backed tit nestlings from three urban forest parks (CPL, AHL, and LCG) using live videography observation (LVO). Furthermore, the daily dietary intakes of inorganic Hg (IHg) (MDIIHg) and methylmercury (MeHg) (MDIMeHg) were determined using the Bayesian isotope mixing model (BIMM) to uncover the nestlings' specific dietary Hg contribution. Both LVO and BIMM indicated that Lepidoptera (primarily caterpillar) constituted the primary food source for the nestlings in the three forests, accounting for approximately 60% of their diet in all three forest parks. The estimated MDI of Hg revealed that lepidopterans and spiders primarily contributed to IHg exposure, with a co-contribution ratio of 71.8%-97.7%. Unexpectedly, dietary MeHg was mostly derived from spiders; the highest contribution ratio of 93.6% was recorded at CPL, followed by another peak ratio of 92.9% at LCG. However, the dietary exposure was primarily IHg, accounting for 69.8% (AHL), 62.0% (LCG), and 61.3% (CPL) of the nestlings. Our study findings highlight the importance of dietary IHg transfer in evaluating the effects of Hg in nestlings. LVO, coupled with BIMM, is an effective tool for determining the food compositions of songbird nestlings and estimating the contribution of specific diets.
Collapse
Affiliation(s)
- Shenghao Li
- School of Chemistry and Materials Science, Guizhou Normal University, Guiyang, 550001, China
| | - Fudong Zhang
- College of Resources and Environmental Engineering, Guizhou University, Guiyang, 550025, China
| | - Zhidong Xu
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang, 550081, China
| | - Dongya Jia
- School of Chemistry and Materials Science, Guizhou Normal University, Guiyang, 550001, China
| | - Gaoen Wu
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou, 570228, China
| | - Hongjiang Liu
- School of Chemistry and Materials Science, Guizhou Normal University, Guiyang, 550001, China
| | - Chan Li
- School of Ecology and Environmental Science, Yunnan University, Kunming, 650091, China
| | - Longchao Liang
- School of Chemistry and Materials Science, Guizhou Normal University, Guiyang, 550001, China
| | - Jiemin Liu
- Guizhou Provincial People's Hospital, Guiyang, 550002, China
| | - Zhuo Chen
- School of Chemistry and Materials Science, Guizhou Normal University, Guiyang, 550001, China.
| | - Guangle Qiu
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang, 550081, China.
| |
Collapse
|
11
|
Meloni F, Farieri A, Higueras PL, Esbrí JM, Nisi B, Cabassi J, Rappuoli D, Vaselli O. Mercury distribution in plants and soils from the former mining area of Abbadia San Salvatore (Tuscany, Central Italy). ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2023; 45:8523-8538. [PMID: 37648955 PMCID: PMC10611595 DOI: 10.1007/s10653-023-01739-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Accepted: 08/17/2023] [Indexed: 09/01/2023]
Abstract
The distribution of heavy metals in plants (Castanea sativa, Sambucus nigra, Verbascum thapsus, Popolus spp., Salix spp., Acer pseudoplatanus, Robinia pseudoacacia) growing in soils from active and abandoned mining areas is of scientific significance as it allows to recognize their ability to survive in a hostile environment and provide useful indications for phytoremediation operations. In this work, soils from the former Hg-mining area of Abbadia San Salvatore (Tuscany, Central Italy) were analyzed for total, leached Hg, % of organic and inorganic-related Hg. The dehydrogenase enzyme activity (DHA) was also measured with the aim to evaluate the status of the soil, being characterized by high Hg contents (up to 1068 mg kg-1). Eventually, the concentration of Hg in the different parts of the plants growing on these soils was also determined. Most studied soils were dominated by inorganic Hg (up to 92%) while the DHA concentrations were < 151 µg TPF g-1 day-1, suggesting that the presence of Hg is not significantly affecting the enzymatic soil activity. This is also supported by the bioaccumulation factor (BF), being predominantly characterized by values < 1. Sambucus nigra and Verbascum thapsus had the highest Hg contents (39.42 and 54.54 mg kg-1, respectively). The plant leaves appear to be the main pathways of Hg uptake, as also observed in other mining areas, e.g., Almadèn (Spain), indicating that particulate-Hg and Hg0 are the main forms entering the plant system, the latter derived by the GEM emitted by both the edifices hosting the roasting furnaces and the soils themselves.
Collapse
Affiliation(s)
- Federica Meloni
- Department of Earth Sciences, Via G. La Pira, 4-50121, Florence, Italy.
- CNR-IGG Institute of Geosciences and Earth Resources, Via G. La Pira, 4-50121, Florence, Italy.
| | | | - Pablo L Higueras
- Instituto de Geología Aplicada, EIMIA - Pl. Manuel Meca 1 13400 Almadén, Ciudad Real, Spain
| | - José M Esbrí
- Departament of Mineralogy and Petrology, (UCM), C. de José Antonio Novais, 12, 28040, Madrid, Spain
| | - Barbara Nisi
- CNR-IGG Institute of Geosciences and Earth Resources, Via G. La Pira, 4-50121, Florence, Italy
| | - Jacopo Cabassi
- CNR-IGG Institute of Geosciences and Earth Resources, Via G. La Pira, 4-50121, Florence, Italy
| | - Daniele Rappuoli
- Unione Dei Comuni Amiata Val d'Orcia, Unità Di Bonifica, Via Grossetana, 209-53025, Piancastagnaio, Siena, Italy
- Parco Museo Minerario Di Abbadia San Salvatore - Via Suor Gemma, 53021 Abbadia San Salvatore 1, Siena, Italy
| | - Orlando Vaselli
- Department of Earth Sciences, Via G. La Pira, 4-50121, Florence, Italy.
- CNR-IGG Institute of Geosciences and Earth Resources, Via G. La Pira, 4-50121, Florence, Italy.
| |
Collapse
|
12
|
Xu Z, Luo K, Lu Q, Shang L, Tian J, Lu Z, Li Q, Chen Z, Qiu G. The mercury flow through a terrestrial songbird food chain in subtropical pine forest: Elucidated by Bayesian isotope mixing model and stable mercury isotopes. JOURNAL OF HAZARDOUS MATERIALS 2023; 459:132263. [PMID: 37573826 DOI: 10.1016/j.jhazmat.2023.132263] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Revised: 07/31/2023] [Accepted: 08/08/2023] [Indexed: 08/15/2023]
Abstract
In order to comprehend the transfer of inorganic mercury (IHg) and methylmercury (MeHg) within food chains in terrestrial pine forests, we collected samples of Great Tit nestlings, common invertebrates, plants, and soil in a subtropical pine forest and used Bayesian isotope mixing model analysis, Hg daily intake, and stable Hg isotopes to elucidate the flow of MeHg and IHg in these food chains. Results indicate that caterpillars and cockroaches are the predominant prey items for nestlings, accounting for a combined contribution of 81.5%. Furthermore, caterpillars, cockroaches, and spiders were found to contribute the most (∼80%) of both IHg and MeHg that dietary accumulated in nestlings. The provisoned invertebrates tend to supply more IHg and diluting the proportion of MeHg as total Hg (MeHg%). Notably, nestling feathers displayed the highest Δ199Hg values but a relatively lower MeHg%, suggesting an imbalanced incorporation of Hg from maternal transfer and dietary accumulation during the nestling stage. This study highlights the efficacy of nestlings as indicators for identifying Hg sources and transfers in avian species and food chains. However, caution must be exercised when using Hg isotope compositions in growing feathers, and the contribution of maternally transferred Hg should not be ignored.
Collapse
Affiliation(s)
- Zhidong Xu
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China
| | - Kang Luo
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China; Ailaoshan Station for Subtropical Forest Ecosystem Studies, Chinese Academy of Sciences, Jingdong 676200, China
| | - Qinhui Lu
- The Key Laboratory of Environment Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang 550025, China
| | - Lihai Shang
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China
| | - Jing Tian
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China
| | - Zhiyun Lu
- Ailaoshan Station for Subtropical Forest Ecosystem Studies, Chinese Academy of Sciences, Jingdong 676200, China
| | - Qiuhua Li
- Guizhou Key Laboratory for Mountainous Environmental Information and Ecological Protection, Guizhou Normal University, Guiyang 550001, China
| | - Zhuo Chen
- School of Chemistry and Materials Science, Guizhou Normal University, Guiyang 550001, China
| | - Guangle Qiu
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China.
| |
Collapse
|
13
|
Xu Z, Lu Q, Xu X, Liang L, Abeysinghe KS, Chen Z, Qiu G. Aquatic methylmercury is a significant subsidy for terrestrial songbirds: Evidence from the odd mass-independent fractionation of mercury isotopes. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 880:163217. [PMID: 37011675 DOI: 10.1016/j.scitotenv.2023.163217] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Revised: 03/27/2023] [Accepted: 03/28/2023] [Indexed: 05/27/2023]
Abstract
In contrast to aquatic food chains, knowledge of the origins and transfer of mercury (Hg) and methylmercury (MeHg) in terrestrial food chains is relatively limited, especially in songbirds. We collected soil, rice plants, aquatic and terrestrial invertebrates, small wild fish, and resident songbird feathers from an Hg-contaminated rice paddy ecosystem for an analysis of stable Hg isotopes to clarify the sources of Hg and its transfer in songbirds and their prey. Significant mass-dependent fractionation (MDF, δ202Hg), but no mass-independent fractionation (MIF, ∆199Hg) occurred in the trophic transfers in terrestrial food chains. Piscivorous, granivorous, and frugivorous songbirds and aquatic invertebrates were all characterized by elevated Δ199Hg values. The estimated MeHg isotopic compositions obtained using linear fitting and a binary mixing model explained both the terrestrial and aquatic origins of MeHg in the terrestrial food chains. We found that MeHg from aquatic habitats is an important subsidy for terrestrial songbirds, even those that feed mainly on seeds, fruits, or cereals. The results show that MIF of the MeHg isotope is a reliable tool to reveal MeHg sources in songbirds. Because the MeHg isotopic compositions was calculated with a binary mixing model or directly estimated from the high proportions of MeHg, compound-specific isotope analysis of Hg would be more useful for the interpretation of the Hg sources, and is highly recommended for future studies.
Collapse
Affiliation(s)
- Zhidong Xu
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China
| | - Qinhui Lu
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China; The Key Laboratory of Environment Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang 550025, China
| | - Xiaohang Xu
- College of Resources and Environmental Engineering, Guizhou University, Guiyang 550025, China; Key Laboratory of Karst Georesources and Environment (Guizhou University), Ministry of Education, Guiyang 550025, China
| | - Longchao Liang
- School of Chemistry and Materials Science, Guizhou Normal University, Guiyang 550001, China
| | - Kasun S Abeysinghe
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China
| | - Zhuo Chen
- School of Chemistry and Materials Science, Guizhou Normal University, Guiyang 550001, China
| | - Guangle Qiu
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China.
| |
Collapse
|
14
|
Meloni F, Farieri A, Higueras PL, Esbrí JM, Nisi B, Cabassi J, Rappuoli D, Vaselli O. Mercury distribution in plants and soils from the former mining area of Abbadia San Salvatore (Tuscany, central Italy). RESEARCH SQUARE 2023:rs.3.rs-2823040. [PMID: 37131725 PMCID: PMC10153366 DOI: 10.21203/rs.3.rs-2823040/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
The distribution of heavy metals in plants growing in soils from active and abandoned mining areas is of scientific significance as it allows one to recognize their ability to survive in a hostile environment and to provide useful indications for phytoremediation operations. In this work, soils developed in the former Hg-mining area of Abbadia San Salvatore (Tuscany, Central Italy) were analyzed for total, leached Hg, % of organic- and inorganic-related Hg. The dehydrogenase enzyme activity (DHA) was also measured with the aim to evaluate the status of the soil, being characterized by high Hg content. Eventually, the concentration of Hg in the different parts of the plants growing on these soils was analyzed. The soils showed Hg content up to 1068 mg kg - 1 and in most of them is dominated by inorganic Hg (up to 92%). The DHA concentrations were < 151 µg TPF g - 1 day - 1 , suggesting that the presence of Hg is not significantly affecting the enzymatic soil activity. This is also supported by the bioaccumulation factor (BF) that is < 1 in most of the studied plants. Generally speaking, the plant leaves appear to be one of the main pathways of Hg uptake, as also observed in other mining areas, e.g. Almaden (Spain), suggesting that particulate-Hg and Hg 0 are the main forms entering the plant system, the latter derived by the GEM emitted by both the edifices hosting the roasting furnaces and the soils themselves.
Collapse
Affiliation(s)
| | | | | | | | - Barbara Nisi
- CNR-IGG Institute of Geosciences and Earth Resources
| | | | | | | |
Collapse
|
15
|
Li C, Luo K, Shao Y, Xu X, Chen Z, Liang T, Xu Z, Dong X, Wang H, Qiu G. Total and methylmercury concentrations in nocturnal migratory birds passing through Mount Ailao, Southwest China. ENVIRONMENTAL RESEARCH 2022; 215:114373. [PMID: 36165871 DOI: 10.1016/j.envres.2022.114373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 09/14/2022] [Accepted: 09/15/2022] [Indexed: 06/16/2023]
Abstract
Despite growing concerns over mercury (Hg) accumulation in birds in recent decades, little is known about Hg exposure in nocturnal migratory birds. Here, total mercury (THg) and methylmercury (MeHg) were detected in the feathers of nocturnal migratory birds (n = 286, belonging to 46 species) passing through Mount Ailao in Southwest China. The stable isotope ratios of carbon (δ13C) and nitrogen (δ15N) were also determined to clarify the effects of trophic position, foraging guild, and foraging behavior on Hg bioaccumulation. Our results show that the THg and MeHg concentrations varied by two orders of magnitude among all nocturnal migratory birds investigated, with the lowest values (THg: 0.056 mg kg-1; MeHg: 0.038 mg kg-1) in the Asian koel (Eudynamys scolopaceus) and the highest (THg: 12 mg kg-1; MeHg: 7.8 mg kg-1) in the hair-crested drongo (Dicrurus hottentottus). Waterbirds showed higher δ15N values and higher THg and MeHg concentrations than songbirds, and the Hg concentrations in piscivorous species were significantly higher than those in herbivores, omnivores, and insectivores. Significant effects of foraging guilds (Kruskal-Wallis one-way ANOVA, p < 0.001) and foraging behaviors (Kruskal-Wallis one-way ANOVA, p < 0.001) on the Hg concentrations in migratory bird feathers were detected. A risk assessment indicated that approximately 7.0% of individuals were at moderate (2.4-5.0 mg kg-1) to high (>5.0 mg kg-1) risk of Hg exposure, and were therefore vulnerable to adverse physiological and behavioral effects. A long-term monitoring campaign during the migratory period is highly recommended to better understand the bioaccumulation of Hg in these nocturnal migratory bird populations over time.
Collapse
Affiliation(s)
- Chan Li
- School of Chemistry and Materials Science, Guizhou Normal University, Guiyang, 550001, China
| | - Kang Luo
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang, 550081, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yuxiao Shao
- School of Geography and Environmental Science, Guizhou Normal University, Guiyang, 550001, China
| | - Xiaohang Xu
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang, 550081, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhuo Chen
- School of Chemistry and Materials Science, Guizhou Normal University, Guiyang, 550001, China.
| | - Tao Liang
- Zhenyuan Management and Protection Bureau of Ailao Mountain National Nature Reserve, Zhenyuan, 666500, China
| | - Zhidong Xu
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang, 550081, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xian Dong
- School of Chemistry and Materials Science, Guizhou Normal University, Guiyang, 550001, China
| | - Hongdong Wang
- Zhenyuan Management and Protection Bureau of Ailao Mountain National Nature Reserve, Zhenyuan, 666500, China
| | - Guangle Qiu
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang, 550081, China.
| |
Collapse
|