1
|
T S, S R, A K, G B. Sustainable photoelectrocatalytic oxidation of antibiotics using Ag-CoFe 2O 4@TiO 2 heteronanostructures for eco-friendly wastewater remediation. CHEMOSPHERE 2024; 362:142736. [PMID: 38950752 DOI: 10.1016/j.chemosphere.2024.142736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 06/10/2024] [Accepted: 06/28/2024] [Indexed: 07/03/2024]
Abstract
Developing high-performance and durable catalysts presents a significant challenge for oxidizing toxic inorganic and pharmaceutical compounds in wastewater. Recently, there has been a surge in the development of new heterogeneous catalysts for degrading pharmaceutical compounds, driven by advancements in electrocatalysts and photoelectrocatalysts. In this study, a plasmonic Ag nanoparticles decorated CoFe2O4@TiO2 heteronanostructures have been successfully designed to fabricate a high-performing photoelectrode for the oxidation of pharmaceutical compounds. The developed Ag-CoFe2O4@TiO2 possessed a higher electrochemical stability and effectively harvested the UV to visible and NIR radiation in sunlight which generates the enormous photochemical reactive species that involved in the oxidation of ibuprofen in wastewater. Under direct sunlight irradiation, Ag-CoFe2O4@TiO2 achieved complete oxidation of ibuprofen in wastewater at 0.8 V vs RHE. This indicates that metallic Ag nanoparticles are involved in the charge separation and transport of charge carriers from the photoactive sites of CoFe2O4@TiO2, promoting the generation of abundant hydroxy, oxy, and superoxide radicals that actively break the bonds of ibuprofen. Additionally, oxidation agents such as urea and H2O2 were utilized to enhance the formation of superoxide ions and hydroxyl radicals, which rapidly participate in the oxidation of ibuprofen. Significantly, testing for recyclability confirmed the stability of the Ag-CoFe2O4@TiO2 photoanode, ensuring its suitability for prolonged use in photoelectrochemical advanced oxidation processes. Integrating Ag-CoFe2O4@TiO2 photoanodes into water purification systems could enhance economic feasibility, reduce energy consumption, and improve efficiency.
Collapse
Affiliation(s)
- Sivaranjani T
- Department of Physics, Thiagarajar College, Affiliated to Madurai Kamaraj University, Madurai, Tamil Nadu, 625009, India
| | - Rajakarthihan S
- Department of Physics, Thiagarajar College, Affiliated to Madurai Kamaraj University, Madurai, Tamil Nadu, 625009, India.
| | - Karthigeyan A
- Department of Physics & Nanotechnology, SRM University of Science and Technology, Kattankulathur, Chennai, 603203, Tamil Nadu, India
| | - Bharath G
- Department of Physics & Nanotechnology, SRM University of Science and Technology, Kattankulathur, Chennai, 603203, Tamil Nadu, India.
| |
Collapse
|
2
|
Shanmugam P, Parasuraman B, Boonyuen S, Thangavelu P, AlSalhi MS, Zheng ALT, Viji A. Hydrothermal synthesis and photocatalytic application of ZnS-Ag composites based on biomass-derived carbon aerogel for the visible light degradation of methylene blue. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2024; 46:92. [PMID: 38367085 DOI: 10.1007/s10653-024-01871-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 01/12/2024] [Indexed: 02/19/2024]
Abstract
A facile and cost-effective hydrothermal followed by precipitation method is employed to synthesize visible light-driven ZnS-Ag ternary composites supported on carbon aerogel (CA). Extensive studies were conducted on the structural, morphological, and optical properties, confirming the successful formation of ternary nanocomposites. The obtained results evidently demonstrate the successful loading of ZnS and Ag onto the surface of the CA. High-resolution transmission electron microscopy analysis revealed that ZnS and Ag nanoparticles (AgNPs) were uniformly distributed on the surface of the CA with an average diameter of 18 nm. The biomass-derived CA, containing a hierarchical porous nano-architecture and an abundant number of -NH2 functional groups on the surface, can greatly prevent the agglomeration, stability and reduce particle size. Brunauer-Emmett-Teller analysis results indicated specific surface areas of 4.62 m2 g-1 for the CA, 48.50 m2 g-1 for the CA/ZnS composite, and 62.62 m2 g-1 for the CA/ZnS-Ag composite. These values demonstrate an increase in surface area upon the incorporation of ZnS and Ag into the CA matrix. Under visible light irradiation, the synthesized CA/ZnS-Ag composites displayed remarkably improved photodegradation efficiency of methylene blue (MB). Among the tested samples, the CA/ZnS-Ag composites exhibited the highest percentage of photodegradation efficiency, surpassing ZnS, CA, and CA/ZnS. The obtained percentages of degradation efficiency for CA, ZnS, CA/ZnS, and CA/ZnS-Ag composites were determined as 26.60%, 52.12%, 68.39%, and 98.64%, respectively. These results highlight the superior photocatalytic performance of the CA/ZnS-Ag composites in the degradation of MB under visible light conditions. The superior efficiency of the CA/ZnS-Ag composite can be attributed to multiple factors, including its elevated specific surface area, inhibition of electron-hole pair recombination, and enhanced photon absorption within the visible light spectrum. The CA/ZnS-Ag composites displayed consistent efficiency over multiple cycles, confirming their stable performance, reusability, and enduring durability, thereby showcasing the robust nature of this composite material.
Collapse
Affiliation(s)
- Paramasivam Shanmugam
- Department of Chemistry, Faculty of Science and Technology, Thammasat University, Pathum Thani, 12120, Thailand
| | - Balaji Parasuraman
- Smart Materials Laboratory, Department of Physics, Periyar University, Salem, Tamilnadu, 636011, India
| | - Supakorn Boonyuen
- Department of Chemistry, Faculty of Science and Technology, Thammasat University, Pathum Thani, 12120, Thailand.
| | - Pazhanivel Thangavelu
- Smart Materials Laboratory, Department of Physics, Periyar University, Salem, Tamilnadu, 636011, India
| | - Mohamad S AlSalhi
- Department of Physics and Astronomy, College of Science, King Saud University, P. O. Box 2455, 11451, Riyadh, Saudi Arabia
| | - Alvin Lim Teik Zheng
- Department of Science and Technology, Faculty of Humanities, Management and Science, Universiti Putra Malaysia Bintulu Campus, Bintulu, Sarawak, Malaysia
| | - A Viji
- Department of Physics, Kongunadu College of Engineering and Technology, Thottiyam, Tamil Nadu, 621215, India
| |
Collapse
|
3
|
G B, Banat F, Abu Haija M. Photoelectrochemical advanced oxidation processes for simultaneous removal of antibiotics and heavy metal ions in wastewater using 2D-on-2D WS 2@CoFe 2O 4 heteronanostructures. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 339:122753. [PMID: 37852314 DOI: 10.1016/j.envpol.2023.122753] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 09/28/2023] [Accepted: 10/13/2023] [Indexed: 10/20/2023]
Abstract
The presence of antibiotics in water poses significant threats to both human health and the environment. Addressing this issue requires the effective treatment of medical wastewater. Photoelectrochemical advanced oxidation processes (PEAOPs) are emerging as promising solutions for wastewater treatment. This process utilizes photocatalysts to convert charge carriers into reactive species such as hydroxyl radicals and superoxide ions, which are essential for degrading pollutants in wastewater. However, limitations in charge carrier separation and transport have hindered the efficiency of photoelectrochemical advanced oxidation processes. To overcome these limitations, we designed WS2@CoFe2O4 heterojunctions, optimizing their energy levels to enhance charge transport and separation. This improvement significantly increased the oxidation of antibiotics such as amoxicillin and azithromycin. Multiple reactions occurred at the WS2@CoFe2O4 heterojunctions during photoelectrochemical advanced oxidation processes, leading to the impressive degradation of up to 99% of antibiotics under visible light irradiation at 0.8 V. Urea and H2O2 acted as oxidation agents within photoelectrochemical advanced oxidation processes, amplifying the generation of hydroxyl radicals and superoxide ions, further enhancing antibiotic oxidation. Moreover, the WS2@CoFe2O4 photoanode efficiently oxidized toxic antibiotics while converting As(III) into the less harmful As(V). Crucially, recyclability tests confirmed the robustness of the WS2@CoFe2O4 photoanode, ensuring its suitability for prolonged use in photoelectrochemical advanced oxidation processes. Integrating WS2@CoFe2O4 photoanodes into water purification systems can enhance efficiency, reduce energy consumption, and improve economic viability. This technology's scalability and its ability to protect ecosystems while conserving water resources make it a promising solution for addressing the critical issue of antibiotic pollution in water environments.
Collapse
Affiliation(s)
- Bharath G
- Department of Chemical Engineering, Khalifa University, P.O. Box 127788, Abu Dhabi, United Arab Emirates.
| | - Fawzi Banat
- Department of Chemical Engineering, Khalifa University, P.O. Box 127788, Abu Dhabi, United Arab Emirates
| | - Mohammad Abu Haija
- Department of Chemistry, Khalifa University, P.O. Box 127788, Abu Dhabi, United Arab Emirates; Advanced Materials Chemistry Center (AMCC), Khalifa University, P.O. Box 127788, Abu Dhabi, United Arab Emirates.
| |
Collapse
|
4
|
Sivaranjani T, Rajakarthihan S, Bharath G, Haija MA, Banat F. An advanced photo-oxidation process for pharmaceuticals using plasmon-assisted Ag-CoFe 2O 4 photocatalysts. CHEMOSPHERE 2023; 341:139984. [PMID: 37657696 DOI: 10.1016/j.chemosphere.2023.139984] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 07/25/2023] [Accepted: 08/25/2023] [Indexed: 09/03/2023]
Abstract
The discharge of amoxicillin (AMX) from pharmaceutical intermediates has adverse effects on aquatic ecosystems. The elimination of AMX requires advanced oxidation processes (AOPs) that utilize high-performance photocatalysts. Furthermore, the design of highly visible light photocatalysts for AOPs demands both cost-effectiveness and efficiency. In this work, a plasmon-assisted visible light photocatalyst of 2D Ag-CoFe2O4 nanohybrids was successfully synthesized and characterized with several analytical tools to degrade AMX in aqueous solutions through advanced AOPs. The results showed that the Ag-CoFe2O4 nanohybrids had excellent photocatalytic activity and stability, which could efficiently reduce the AMX concentration by 99% within 70 min under visible light irradiation. In particular, CoFe2O4 and Ag have an interfacial contact that prevents electron-hole pair recombination more effectively than pure CoFe2O4, which results in electrons in its conduction band (CB) migrating to metallic Ag sites. Thus, charge transfers between the two materials are more efficient, leading to higher photocatalytic oxidation of AMX. Furthermore, the surface plasmon of Ag nanoparticles are excited by their plasmonic resonance, which increases the absorption of visible light. The plasmon-assisted visible light photocatalyst could replace expensive and energy-intensive advanced oxidation processes (AOPs). AOPs pathways associated with AMX have been discussed in detail. The HPLC chromatogram clearly showed AMX was oxidized by four-membered B-lactam ring opening and hydroxylation with •OH. 2D Ag-CoFe2O4 heterostructure was found to be efficient, selective, and cost-effective for the degradation of several pharmaceutical compounds. Additionally, it was found to be eco-friendly and sustainable, making it a viable alternative to AOPs.
Collapse
Affiliation(s)
- T Sivaranjani
- Department of Physics, Thiagarajar College (Affiliated to Madurai Kamaraj University), Madurai, Tamil Nadu, 625009, India
| | - S Rajakarthihan
- Department of Physics, Thiagarajar College (Affiliated to Madurai Kamaraj University), Madurai, Tamil Nadu, 625009, India.
| | - G Bharath
- Department of Chemical Engineering, Khalifa University, P.O. Box 127788, Abu Dhabi, United Arab Emirates.
| | - Mohammad Abu Haija
- Department of Chemistry, Khalifa University, P.O. Box 127788, Abu Dhabi, United Arab Emirates; Advanced Materials Chemistry Center (AMCC), Khalifa University, P.O. Box 127788, Abu Dhabi, United Arab Emirates
| | - Fawzi Banat
- Department of Chemical Engineering, Khalifa University, P.O. Box 127788, Abu Dhabi, United Arab Emirates
| |
Collapse
|
5
|
Li Y, Huang T, Liu X, Chen Z, Yang H, Wang X. Sorption-catalytic reduction/extraction of hexavalent Cr(VI) and U(VI) by porous frameworks materials. Sep Purif Technol 2023; 314:123615. [DOI: doi.org/10.1016/j.seppur.2023.123615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/25/2023]
|
6
|
Kang Z, Gao H, Ma X, Jia X, Wen D. Fe-Ni/MWCNTs Nano-Composites for Hexavalent Chromium Reduction in Aqueous Environment. Molecules 2023; 28:molecules28114412. [PMID: 37298888 DOI: 10.3390/molecules28114412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 05/26/2023] [Accepted: 05/27/2023] [Indexed: 06/12/2023] Open
Abstract
A novel Cr (VI) removal material was designed and produced comprising multi-walled carbon nanotubes (MWCNTs) as a support with a high specific surface area and the loaded Fe-Ni bimetallic particles as catalytic reducing agents. Such a design permits the composite particle to perform the adsorption, reduction, and immobilisation of Cr (VI) quickly and efficiently. Due to MWCNTs' physical adsorption, Cr (VI) in solution aggregates in the vicinity of the composite, and Fe rapidly reduces Cr (VI) to Cr (III) catalysed by Ni. The results demonstrated that the Fe-Ni/MWCNTs exhibits an adsorption capacity of 207 mg/g at pH = 6.4 for Cr (VI) and 256 mg/g at pH 4.8, which is about twice those reported for other materials under similar conditions. The formed Cr (III) is solidified to the surface by MWCNTs and remains stable for several months without secondary contamination. The reusability of the composites was proven by retaining at least 90% of the adsorption capacity for five instances of reutilization. Considering the facile synthesis process, low cost of raw material, and reusability of the formed Fe-Ni/MWCNTs, this work shows great potential for industrialisation.
Collapse
Affiliation(s)
- Zeyu Kang
- School of Chemical and Process Engineering, University of Leeds, Leeds LS2 9JT, UK
| | - Hui Gao
- School of Aeronautic Science and Engineering, Beihang University, Beijing 100191, China
| | - Xiaolong Ma
- School of Chemical and Process Engineering, University of Leeds, Leeds LS2 9JT, UK
| | - Xiaodong Jia
- School of Chemical and Process Engineering, University of Leeds, Leeds LS2 9JT, UK
| | - Dongsheng Wen
- School of Chemical and Process Engineering, University of Leeds, Leeds LS2 9JT, UK
- School of Engineering and Design, Technische Universität München, 85747 Garching, Germany
| |
Collapse
|
7
|
Li Y, Huang T, Liu X, Chen Z, Yang H, Wang X. Sorption-catalytic reduction/extraction of hexavalent Cr(VI) and U(VI) by porous frameworks materials. Sep Purif Technol 2023. [DOI: 10.1016/j.seppur.2023.123615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2023]
|
8
|
Turning waste into valuables: In situ deposition of polypyrrole on the obsolete mask for Cr(VI) removal and desalination. Sep Purif Technol 2023; 306:122643. [PMID: 36406342 PMCID: PMC9661547 DOI: 10.1016/j.seppur.2022.122643] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 10/27/2022] [Accepted: 11/09/2022] [Indexed: 11/16/2022]
Abstract
The global mask consumption has been exacerbated because of the coronavirus disease 2019 (COVID-19) pandemic. Simultaneously, the traditional mask disposal methods (incineration and landfill) have caused serious environmental pollution and waste of resources. Herein, a simple and green mass-production method has been proposed to recycle carbon protective mask (CPM) into the carbon protective mask/polydopamine/polypyrrole (CPM/PDA/PPy) composite by in situ polymerization of PPy. The CPM/PDA/PPy composite was used for the removal of Cr(VI) and salt ions to produce clean water. The synergistic effect of PPy and the CPM improved the removal capability of Cr(VI). The CPM/PDA/PPy composite provided high adsorption capacity (358.68 mg g-1) and economic value (811.42 mg $-1). Consequently, the CPM/PDA/PPy (cathode) was combined with MnO2 (anode) for desalination in CDI cells, demonstrated excellent desalination capacity (26.65 mg g-1) and ultrafast salt adsorption rate (6.96 mg g-1 min-1), which was higher than conventional CDI cells. Our work proposes a new low-carbon strategy to recycle discarded masks and demonstrates their utilization in Cr(VI) removal and seawater desalination.
Collapse
|
9
|
Ren H, Li H, Fan H, Qi G, Liu Y. Facile synthesis of CoFe2O4-graphene oxide nanocomposite by high-gravity reactor for removal of Pb(II). Sep Purif Technol 2023. [DOI: 10.1016/j.seppur.2022.122472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
10
|
Rajendran M, Barathi S, Sajjad M, Albasher G, Lee J. Adsorption of As(III) and As(V) by Fe/C composite nanoparticles synthesized via a one-pot hydrothermal approach without the addition of carbon sources. ENVIRONMENTAL RESEARCH 2022; 214:113899. [PMID: 35870503 DOI: 10.1016/j.envres.2022.113899] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 07/04/2022] [Accepted: 07/10/2022] [Indexed: 06/15/2023]
Abstract
Arsenic remediation from contaminated water has become a serious issue worldwide. Carbon-encapsulated Fe nanoparticle composites (Fe/C CNPs) were created utilizing a one-pot hydrothermal process with ferrocene and no carbon sources. The Fe/C CNPs produced were characterized using a variety of techniques. As(III) and As(IV) (V) were modeled using a pseudo-second-order kinetic model. The Langmuir model described As(III) adsorption on Fe/C CNPs with an extreme adsorption ability of 5.85 mg g-1, indicating monolayer adsorption. On the other hand, (V) adsorption was well matched with the Freundlich model, with a high adsorption volume of 5.05 mg g-1, demonstrating multilayer adsorption onto the surface of Fe/C CNPs. These findings imply that the Fe/C CNPs generated can be utilized to remediate As-contaminated water.
Collapse
Affiliation(s)
- Manikandan Rajendran
- Department of Biotechnology, Padmavani Arts and Science College for Women, Salem, Tamil Nadu, India
| | - Selvaraj Barathi
- School of Chemical Engineering, Yeungnam University, Gyeongsan, South Korea.
| | | | - Gadah Albasher
- Department of Zoology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Jintae Lee
- School of Chemical Engineering, Yeungnam University, Gyeongsan, South Korea.
| |
Collapse
|