1
|
Li R, Lu MY, Guo RB, Duan H, Ni BJ, Fu SF. Life cycle assessment of hydrogenotrophic denitrification in membrane aerated biofilm reactors for sustainable wastewater treatment. WATER RESEARCH 2024; 267:122529. [PMID: 39342710 DOI: 10.1016/j.watres.2024.122529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 09/20/2024] [Accepted: 09/25/2024] [Indexed: 10/01/2024]
Abstract
The conventional anaerobic-anoxic-oxic (AAO) process for wastewater treatment is associated with high energy consumption and pollutant emissions due to its reliance on heterotrophic denitrification. In contrast, membrane aerated biofilm reactors (MABR) coupled with hydrogenotrophic denitrification (H2-MABR) offers a more promising alternative. This study conducts a life cycle assessment (LCA) to evaluate the environmental and economic benefits of H2-MABR compared to traditional AAO processes. Results indicate that even with a limited reactor life, the application of MABR in actual wastewater treatment plants can yield over 30 % reduction in environmental and economic impacts. Using CO2 from biogas as a carbon source significantly reduces carbon emissions during the anaerobic stage, while the efficient nitrogen removal minimizes the need for wastewater recirculation and electricity consumption. The H2-driven denitrification process also avoids emissions and secondary pollution risks associated with organic electron donors. Furthermore, coupling H2-MABR with renewable energy source and Power-to-Gas technology further enhances sustainability by ensuring a stable hydrogen supply. Given the significant potential of H2-MABR for improving wastewater treatment, further research and large-scale implementation are highly encouraged.
Collapse
Affiliation(s)
- Rui Li
- Shandong Engineering Research Center for Biogas, Qingdao New Energy Shandong Laboratory, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, PR China; Shandong Energy Institute, Qingdao 266101, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Ming-Yi Lu
- Shandong Engineering Research Center for Biogas, Qingdao New Energy Shandong Laboratory, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, PR China; Shandong Energy Institute, Qingdao 266101, PR China
| | - Rong-Bo Guo
- Shandong Engineering Research Center for Biogas, Qingdao New Energy Shandong Laboratory, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, PR China; Shandong Energy Institute, Qingdao 266101, PR China
| | - Haoran Duan
- School of Civil and Environmental Engineering, University of New South Wales, Sydney, NSW 2052, Australia
| | - Bing-Jie Ni
- School of Civil and Environmental Engineering, University of New South Wales, Sydney, NSW 2052, Australia
| | - Shan-Fei Fu
- Shandong Engineering Research Center for Biogas, Qingdao New Energy Shandong Laboratory, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, PR China; Shandong Energy Institute, Qingdao 266101, PR China.
| |
Collapse
|
2
|
Yin LZ, Luo XQ, Li JL, Liu Z, Duan L, Deng QQ, Chen C, Tang S, Li WJ, Wang P. Deciphering the pathogenic risks of microplastics as emerging particulate organic matter in aquatic ecosystem. JOURNAL OF HAZARDOUS MATERIALS 2024; 474:134728. [PMID: 38805824 DOI: 10.1016/j.jhazmat.2024.134728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 05/07/2024] [Accepted: 05/23/2024] [Indexed: 05/30/2024]
Abstract
Microplastics are accumulating rapidly in aquatic ecosystems, providing habitats for pathogens and vectors for antibiotic resistance genes (ARGs), potentially increasing pathogenic risks. However, few studies have considered microplastics as particulate organic matter (POM) to elucidate their pathogenic risks and underlying mechanisms. Here, we performed microcosm experiments with microplastics and natural POM (leaves, algae, soil), thoroughly investigating their distinct effects on the community compositions, functional profiles, opportunistic pathogens, and ARGs in Particle-Associated (PA) and Free-Living (FL) bacterial communities. We found that both microplastics and leaves have comparable impacts on microbial community structures and functions, enriching opportunistic pathogens and ARGs, which may pose potential environmental risks. These effects are likely driven by their influences on water properties, including dissolved organic carbon, nitrate, DO, and pH. However, microplastics uniquely promoted pathogens as keystone species and further amplified their capacity as hosts for ARGs, potentially posing a higher pathogenic risk than natural POM. Our research also emphasized the importance of considering both PA and FL bacteria when assessing microplastic impacts, as they exhibited different responses. Overall, our study elucidates the role and underlying mechanism of microplastics as an emerging POM in intensifying pathogenic risks of aquatic ecosystems in comparison with conventional natural POM.
Collapse
Affiliation(s)
- Ling-Zi Yin
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Ecology & School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, China; Bioscience and Biomedical Engineering Thrust, Systems Hub, The Hong Kong University of Science and Technology (Guangzhou), Guangzhou, Guangdong, China; Division of Emerging Interdisciplinary Areas, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China
| | - Xiao-Qing Luo
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Ecology & School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, China
| | - Jia-Ling Li
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Ecology & School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, China
| | - Zetao Liu
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Ecology & School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, China
| | - Li Duan
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Ecology & School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, China
| | - Qi-Qi Deng
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Ecology & School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, China
| | - Chen Chen
- State Environmental Protection Key Laboratory of Urban Ecological Environment Simulation and Protection, South China Institute of Environmental Sciences, Ministry of Ecology and Environment of China, Guangzhou 510655, China
| | - Shaojun Tang
- Bioscience and Biomedical Engineering Thrust, Systems Hub, The Hong Kong University of Science and Technology (Guangzhou), Guangzhou, Guangdong, China; Division of Emerging Interdisciplinary Areas, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China
| | - Wen-Jun Li
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Ecology & School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, China.
| | - Pandeng Wang
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Ecology & School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, China.
| |
Collapse
|
3
|
Wu H, Li A, Gao S, Xing Z, Zhao P. The performance, mechanism and greenhouse gas emission potential of nitrogen removal technology for low carbon source wastewater. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 903:166491. [PMID: 37633391 DOI: 10.1016/j.scitotenv.2023.166491] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 07/24/2023] [Accepted: 08/20/2023] [Indexed: 08/28/2023]
Abstract
Excessive nitrogen can lead to eutrophication of water bodies. However, the removal of nitrogen from low carbon source wastewater has always been challenging due to the limited availability of carbon sources as electron donors. Biological nitrogen removal technology can be classified into three categories: heterotrophic biological technology (HBT) that utilizes organic matter as electron donors, autotrophic biological technology (ABT) that relies on inorganic electrons as electron donors, and heterotrophic-autotrophic coupling technology (CBT) that combines multiple electron donors. This work reviews the research progress, microbial mechanism, greenhouse gas emission potential, and challenges of the three technologies. In summary, compared to HBT and ABT, CBT shows greater application potential, although pilot-scale implementation is yet to be achieved. The composition of nitrogen removal microorganisms is different, mainly driven by electron donors. ABT and CBT exhibit the lowest potential for greenhouse gas emissions compared to HBT. N2O, CH4, and CO2 emissions can be controlled by optimizing conditions and adding constructed wetlands. Furthermore, these technologies need further improvement to meet increasingly stringent emission standards and address emerging pollutants. Common measures include bioaugmentation in HBT, the development of novel materials to promote mass transfer efficiency of ABT, and the construction of BES-enhanced multi-electron donor systems to achieve pollutant prevention and removal. This work serves as a valuable reference for the development of clean and sustainable low carbon source wastewater treatment technology, as well as for addressing the challenges posed by global warming.
Collapse
Affiliation(s)
- Heng Wu
- College of Mechanical and Electronic Engineering, Northwest A&F University, Yangling, Shaanxi 712100, PR China.
| | - Anjie Li
- College of Grassland Agriculture, Northwest A&F University, Yangling, Shaanxi 712100, PR China
| | - Sicong Gao
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, PR China
| | - Zhilin Xing
- School of Chemistry and Chemical Engineering, Chongqing University of Technology, Chongqing 400054, PR China.
| | - Piao Zhao
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, Sichuan 611130, PR China.
| |
Collapse
|
4
|
Ji J, Peng L, Gao T, Salama ES, Khan A, Liu P, Yun H, Li X. Microplastics enhanced the toxic effects of sulfamethoxazole on aerobic granular sludge and enriched antibiotic resistance genes. CHEMICAL ENGINEERING JOURNAL 2023; 464:142783. [DOI: 10.1016/j.cej.2023.142783] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/06/2025]
|
5
|
Li H, Sun R, Zhang X, Lin H, Xie Y, Han Y, Pan Y, Wang D, Dong K. Characteristics of denitrification and microbial community in respect to various H 2 pressures and distances to the gas supply end in H 2-based MBfR. Front Microbiol 2022; 13:1023402. [PMID: 36212855 PMCID: PMC9542790 DOI: 10.3389/fmicb.2022.1023402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 09/07/2022] [Indexed: 11/30/2022] Open
Abstract
The hydrogen-based hollow fiber membrane biofilm reactor (H2-based MBfR) has shown to be a promising technology for nitrate (NO3 --N) reduction. Hollow fiber membranes (HFM) operating in a closed mode in an H2-based MBfR often suffer from reverse gas diffusion, taking up space for the effective gas substrate and resulting in a reduction in the HFM diffusion efficiency, which in turn affects denitrification performance. In this work, we developed a laboratory-scale H2-based MBfR, which operated in a closed mode to investigate the dynamics of denitrification performance and biofilm microbial community analysis at different H2 supply pressures. A faster formation of biofilm on the HFM and a shorter start-up period were found for a higher H2 supply pressure. An increase in the H2 pressure under 0.08 MPa could significantly promote denitrification, while a minor increase in denitrification was observed once the H2 pressure was over 0.08 MPa. Sequencing analysis of the biofilm concluded that (i) the dominant phylum-level bacteria in the reactor during the regulated hydrogen pressure phase were Gammaproteobacteria and Alphaproteobacteria; (ii) when the hydrogen pressure was 0.04-0.06 MPa, the dominant bacteria in the MBfR were mainly enriched on the hollow fiber membrane near the upper location (Gas inlet). With a gradual increase in the hydrogen pressure, the enrichment area of the dominant bacteria in MBfR gradually changed from the upper location to the distal end of the inlet. When the hydrogen pressure was 0.10 MPa, the dominant bacteria were mainly enriched on the hollow fiber membrane in the down location of the MBfR.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Dunqiu Wang
- College of Environmental Science and Engineering, Guilin University of Technology, Guilin, China
| | - Kun Dong
- College of Environmental Science and Engineering, Guilin University of Technology, Guilin, China
| |
Collapse
|
6
|
Jiang M, Zhang Y, Zhang J, Dai X, Li H, Zhang X, Wu Z, Zheng J. Model Evaluation of the Microbial Metabolic Processes in a Hydrogen-Based Membrane Biofilm Reactor for Simultaneous Bromate and Nitrate Reduction. MEMBRANES 2022; 12:774. [PMID: 36005689 PMCID: PMC9415787 DOI: 10.3390/membranes12080774] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 08/09/2022] [Accepted: 08/10/2022] [Indexed: 06/15/2023]
Abstract
The H2-based membrane biofilm reactor (H2-MBfR) has been acknowledged as a cost-effective microbial reduction technology for oxyanion removal from drinking water sources, but it remains unknown how the evolution of biofilm characteristics responds to the changing critical operating parameters of the H2-MBfR for simultaneous bromate (BrO3-) and nitrate (NO3-) elimination. Therefore, an expanded multispecies model, applicable to mechanistically interpret the bromate-reducing bacteria (BRB)- and denitrifying bacteria (DNB)-dominated metabolic processes in the biofilm of the H2-MBfR, was developed in this study. The model outputs indicate that (1) increased BrO3- loading facilitated the metabolism of BRB by increasing BRB fraction and BrO3- gradients in the biofilm, but had a marginal influence on NO3- reduction; (2) H2 pressure of 0.04 MPa enabled the minimal loss of H2 and the extension of the active region of BRB and DNB in the biofilm; (3) once the influent NO3- concentration was beyond 10 mg N/L, the fraction and activity of BRB significantly declined; (4) BRB was more tolerant than DNB for the acidic aquatic environment incurred by the CO2 pressure over 0.02 MPa. The results corroborate that the degree of microbial competition for substrates and space in the biofilm was dependent on system operating parameters.
Collapse
Affiliation(s)
- Minmin Jiang
- Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin University of Technology, 319 Yanshan Street, Guilin 541006, China
- College of Life and Environmental Science, Guilin University of Electronic Technology, 1 Jinji Road, Guilin 541004, China
| | - Yuanyuan Zhang
- College of Life and Environmental Science, Guilin University of Electronic Technology, 1 Jinji Road, Guilin 541004, China
| | - Jie Zhang
- College of Life and Environmental Science, Guilin University of Electronic Technology, 1 Jinji Road, Guilin 541004, China
- School of Chemistry and Materials Engineering, Huizhou University, 46 Yanda Road, Huizhou 516007, China
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China
| | - Xingru Dai
- College of Life and Environmental Science, Guilin University of Electronic Technology, 1 Jinji Road, Guilin 541004, China
| | - Haixiang Li
- Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin University of Technology, 319 Yanshan Street, Guilin 541006, China
| | - Xuehong Zhang
- Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin University of Technology, 319 Yanshan Street, Guilin 541006, China
- College of Life and Environmental Science, Guilin University of Electronic Technology, 1 Jinji Road, Guilin 541004, China
| | - Zhichao Wu
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China
| | - Junjian Zheng
- College of Life and Environmental Science, Guilin University of Electronic Technology, 1 Jinji Road, Guilin 541004, China
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China
| |
Collapse
|