1
|
Akhavanfard D, Sabzghabaei GR, Banaee M, Paolo P, Esposito G, Faggio C. Elevated trace element concentrations in Arabian scallops, Natal rock oysters, and Intermediate clams in the Persian Gulf. J Trace Elem Med Biol 2025; 89:127659. [PMID: 40286388 DOI: 10.1016/j.jtemb.2025.127659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2025] [Revised: 04/09/2025] [Accepted: 04/22/2025] [Indexed: 04/29/2025]
Abstract
BACKGROUNDS This study aimed to quantify trace element concentrations in Arabian scallops (Mimachlamys sanguinea), Natal rock oysters (Saccostrea cucullata), and Intermediate clams (Tivela damaoides). These elements accumulate over time from water, food, and sediment, potentially leading to toxicity. MATERIALS AND METHODS Specimens were collected from coastal waters around Larak Island, processed, and analyzed for trace elements including copper (Cu), iron (Fe), cadmium (Cd), lead (Pb), arsenic (As), mercury (Hg), zinc (Zn), vanadium (V), magnesium (Mg), manganese (Mn), selenium (Se), nickel (Ni), and cobalt (Co). The samples were ashed, digested, and then analyzed using inductively coupled plasma mass spectrometry (ICP-MS). RESULTS The findings revealed that Fe levels were highest in T. damaoides, significantly exceeding those in M. sanguinea (p < 0.05). Cd concentrations were significantly higher in M. sanguinea compared to S. cucullata and T. damaoides (p < 0.05). Zn, Mn, Ni, Pb, V, Co, Hg, Cu, As, and Se showed no significant interspecies differences (p > 0.05). However, significant variations were noted for Mg with T. damaoides showing the highest levels markedly more significant than those observed in M. sanguinea (p < 0.05). Comparison with WHO/FAO standards showed that Pb levels in the soft tissues of all three bivalve species exceeded permissible limits, though other metals were within safe consumption levels. CONCLUSION This study revealed that lead concentrations in the soft tissues of bivalves exceeded WHO/FAO safety limits, indicating a potential health risk. These findings emphasize the necessity of monitoring trace element contamination in bivalves to ensure seafood safety and protect public health.
Collapse
Affiliation(s)
- Donia Akhavanfard
- Department of Environmental Sciences, Faculty of Natural Resources, Behbahan Khatam Alanbia University of Technology, Iran.
| | - Gholam Reza Sabzghabaei
- Department of Environmental Sciences, Faculty of Natural Resources, Behbahan Khatam Alanbia University of Technology, Iran.
| | - Mahdi Banaee
- Department of Aquaculture, Faculty of Natural Resources, Behbahan Khatam Alanbia University of Technology, Iran.
| | - Pastorino Paolo
- Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle d'Aosta, Via Bologna, 148, Torino 10154, Italy.
| | - Giuseppe Esposito
- Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle d'Aosta, Via Bologna, 148, Torino 10154, Italy.
| | - Caterina Faggio
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Italy; Dipartimento di Biotecnologie Marine Ecosostenibili, Stazione Zoologica Anton Dohrn, Italy.
| |
Collapse
|
2
|
Jha AN. Eco-genotoxicology: A personal reflection. MUTATION RESEARCH. REVIEWS IN MUTATION RESEARCH 2025:108535. [PMID: 40210508 DOI: 10.1016/j.mrrev.2025.108535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 03/01/2025] [Indexed: 04/12/2025]
Abstract
This reflective commentary provides a personal viewpoint of developments, over the last 3 decades, in the relatively new, multidisciplinary field of 'eco-genotoxicology,' also called 'genetic ecotoxicology'. It aims to outline the scope of the subject area in relation to the historical development of the discipline, critically categorising accomplishments made, taking into account the available information. It also recognises limitations of the existing information and difficulties encountered in this challenging field. Where appropriate, the article makes comparisons to the advances made in human genetic toxicology and radiation biology. The article critically covers the applications of prevailing and emerging tools being used in the field, such as omics, in vitro methodologies, modelling approaches, and artificial intelligence (AI). It also identifies potential areas of development and attempts to credit some of the important personal contributions made in this exciting and challenging subject in relation to human and environmental health.
Collapse
Affiliation(s)
- Awadhesh N Jha
- School of Biological and Marine Sciences, University of Plymouth, Plymouth PL4 8AA, UK.
| |
Collapse
|
3
|
Ferreira MF, Turner A, Payet M, Grisolia C, Malard V, Moore MN, Jha AN. Bioaccumulation and biological effects of hydrogenated cement particles in the marine bivalve, Mytilusgalloprovincialis. CHEMOSPHERE 2024; 359:142243. [PMID: 38759810 DOI: 10.1016/j.chemosphere.2024.142243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 03/15/2024] [Accepted: 05/02/2024] [Indexed: 05/19/2024]
Abstract
The decommissioning and normal functioning of nuclear facilities can result in the production and release of airborne particles in the environment. Aquatic biota are expected to be exposed to these particles considering that nuclear facilities are often located near water bodies. Aerosols, such as cement dust, can interact with radionuclides as well as with heavy metals, and therefore elicit not only radiological impacts but also chemical toxicity. In the present study, we aimed to determine the effects of hydrogenated cement particles (HCPs) as a first step before evaluating any radiotoxicity of tritiated cement particles in the marine mussels, Mytilus galloprovincialis. Responses at different levels of biological organisation were assessed, including clearance rate (CR), tissue specific accumulation, DNA damage and transcriptional expression of key stress related genes. Acute (5 h) and medium-term, chronic (11 d) exposures to 1000 μg L-1 HCPs showed that bioaccumulation, assessed using Cu as a proxy and determined by inductively coupled plasma mass spectrometry, was time and tissue dependent. The highest levels of Cu were found in the digestive gland (DG) after 11 d. HCP exposure caused changes in the expression of oxidative and other stress-related genes, including mt20 in DG and gst and sod in the gill after 5 h exposure, while an overexpression of hsp70 in the gill was observed after 11 d. Genotoxic effects in haemocytes were observed after 11 d of HCP exposure. Multivariate analysis indicated that oxidative stress is the most probable factor contributing to overall physiological dysfunction. Our results provide a baseline to perform further studies employing tritiated cement particles. Specifically, future work should focus on the DG since only this tissue showed significant bioaccumulation when compared to the negative control.
Collapse
Affiliation(s)
- María Florencia Ferreira
- School of Biological and Marine Sciences, University of Plymouth, Plymouth, PL4 8AA, United Kingdom
| | - Andrew Turner
- School of Geography, Earth and Environmental Sciences, University of Plymouth, Plymouth, PL4 8AA, United Kingdom
| | | | | | - Veronique Malard
- Aix Marseille Univ, CEA, CNRS, BIAM, Saint Paul-Lez-Durance, France
| | - Michael N Moore
- School of Biological and Marine Sciences, University of Plymouth, Plymouth, PL4 8AA, United Kingdom; European Centre for Environment & Human Health (ECEHH), University of Exeter Medical School, Knowledge Spa, Royal Cornwall Hospital, Cornwall, TR1 3LJ, United Kingdom; Plymouth Marine Laboratory, Prospect Place, The Hoe, Plymouth, PL1 3DH, United Kingdom
| | - Awadhesh N Jha
- School of Biological and Marine Sciences, University of Plymouth, Plymouth, PL4 8AA, United Kingdom.
| |
Collapse
|
4
|
Slomberg DL, Auffan M, Payet M, Carboni A, Ouaksel A, Brousset L, Angeletti B, Grisolia C, Thiéry A, Rose J. Tritiated stainless steel (nano)particle release following a nuclear dismantling incident scenario: Significant exposure of freshwater ecosystem benthic zone. JOURNAL OF HAZARDOUS MATERIALS 2024; 465:133093. [PMID: 38056254 DOI: 10.1016/j.jhazmat.2023.133093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 11/07/2023] [Accepted: 11/23/2023] [Indexed: 12/08/2023]
Abstract
Nuclear facilities continue to be developed to help meet global energy demands while reducing fossil fuel use. However, an incident during the dismantling of these facilities could accidentally release tritiated particles (e.g. stainless steel) into the environment. Herein, we investigated the environmental dosimetry, fate, and impact of tritiated stainless steel (nano)particles (1 mg.L-1 particles and 1 MBq.L-1 tritium) using indoor freshwater aquatic mesocosms to mimic a pond ecosystem. The tritium (bio)distribution and particle fate and (bio)transformation were monitored in the different environmental compartments over 4 weeks using beta counting and chemical analysis. Impacts on picoplanktonic and picobenthic communities, and the benthic freshwater snail, Anisus vortex, were assessed as indicators of environmental health. Following contamination, some tritium (∼16%) desorbed into the water column while the particles rapidly settled onto the sediment. After 4 weeks, the particles and the majority of the tritium (>80%) had accumulated in the sediment, indicating a high exposure of the benthic ecological niche. Indeed, the benthic grazers presented significant behavioral changes despite low steel uptake (<0.01%). These results provide knowledge on the potential environmental impacts of incidental tritiated (nano)particles, which will allow for improved hazard and risk management.
Collapse
Affiliation(s)
- Danielle L Slomberg
- CNRS, Aix-Marseille Univ., IRD, INRAE, CEREGE, 13545 Aix-en-Provence, France.
| | - Mélanie Auffan
- CNRS, Aix-Marseille Univ., IRD, INRAE, CEREGE, 13545 Aix-en-Provence, France; Civil and Environmental Engineering Department, Duke University, Durham, NC 27707, United States
| | | | - Andrea Carboni
- CNRS, Aix-Marseille Univ., IRD, INRAE, CEREGE, 13545 Aix-en-Provence, France
| | - Amazigh Ouaksel
- CNRS, Aix-Marseille Univ., IRD, INRAE, CEREGE, 13545 Aix-en-Provence, France
| | - Lenka Brousset
- CNRS, IRD, IMBE, Aix-Marseille Univ, Avignon Univ., Marseille, France
| | - Bernard Angeletti
- CNRS, Aix-Marseille Univ., IRD, INRAE, CEREGE, 13545 Aix-en-Provence, France
| | | | - Alain Thiéry
- CNRS, IRD, IMBE, Aix-Marseille Univ, Avignon Univ., Marseille, France
| | - Jérôme Rose
- CNRS, Aix-Marseille Univ., IRD, INRAE, CEREGE, 13545 Aix-en-Provence, France; Civil and Environmental Engineering Department, Duke University, Durham, NC 27707, United States
| |
Collapse
|
5
|
Lai JL, Li ZG, Han MW, Huang Y, Xi HL, Luo XG. Analysis of environmental biological effects and OBT accumulation potential of microalgae in freshwater systems exposed to tritium pollution. WATER RESEARCH 2024; 250:121013. [PMID: 38118252 DOI: 10.1016/j.watres.2023.121013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 12/07/2023] [Accepted: 12/10/2023] [Indexed: 12/22/2023]
Abstract
The ecological risk of tritiated wastewater into the environment has attracted much attention. Assessing the ecological risk of tritium-containing pollution is crucial by studying low-activity tritium exposure's environmental and biological effects on freshwater micro-environment and the enrichment potential of organically bound tritium (OBT) in microalgae and aquatic plants. The impact of tritium-contaminated wastewater on the microenvironment of freshwater systems was analyzed using microcosm experiments to simulate tritium pollution in freshwater systems. Low activity tritium pollution (105 Bq/L) induced differences in microbial abundance, with Proteobacteria, Bacteroidota, and Desulfobacterota occupying important ecological niches in the water system. Low activity tritium (105-107 Bq/L) did not affect the growth of microalgae and aquatic plants, but OBT was significantly enriched in microalgae and two aquatic plants (Pistia stratiotes, Spirodela polyrrhiza), with the enrichment coefficients of 2.08-3.39 and 1.71-2.13, respectively. At the transcriptional level, low-activity tritium (105 Bq/L) has the risk of interfering with gene expression in aquatic plants. Four dominant cyanobacterial strains (Leptolyngbya sp., Synechococcus elongatus, Nostoc sp., and Anabaena sp.) were isolated and demonstrated good environmental adaptability to tritium pollution. Environmental factors can modify the tritium accumulation potential in cyanobacteria and microalgae, theoretically enhancing food chain transfer.
Collapse
Affiliation(s)
- Jin-Long Lai
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, 621010, China; State Key Laboratory of NBC Protection for Civilian, Beijing, 102205, China
| | - Zhan-Guo Li
- State Key Laboratory of NBC Protection for Civilian, Beijing, 102205, China
| | - Meng-Wei Han
- State Key Laboratory of NBC Protection for Civilian, Beijing, 102205, China
| | - Yan Huang
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, 621010, China
| | - Hai-Ling Xi
- State Key Laboratory of NBC Protection for Civilian, Beijing, 102205, China.
| | - Xue-Gang Luo
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, 621010, China.
| |
Collapse
|
6
|
Salami OS, Adeyemi JA, Olawuyi TS, Barbosa F, Adedire CO. Tissue Distributions and Toxic Effects of Hexavalent Chromium in Laboratory-Exposed Periwinkle ( Littorina littorea Linnaeus). Animals (Basel) 2023; 13:3412. [PMID: 37958167 PMCID: PMC10649957 DOI: 10.3390/ani13213412] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 10/31/2023] [Accepted: 11/01/2023] [Indexed: 11/15/2023] Open
Abstract
The increased use of hexavalent chromium (Cr6+) in various industrial applications has contributed to its elevated levels in the environment, especially the aquatic environment. Thus, there is the potential for accumulation of Cr6+ in the tissues of aquatic organisms and consequent toxic effects. The toxic effects of Cr6+ in aquatic organisms have been widely reported; however, little is known about the patterns of tissue accumulation of Cr6+ and its toxicity in aquatic mollusks. Thus, the present study investigated the effects of Cr6+ exposure on the tissue distribution, proximate composition, and histopathology of an aquatic mollusk, periwinkle (Littorina littorea). The animals were exposed to sublethal concentrations of Cr6+ (0.42, 0.84, and 4.2 mg/L) for 30 days, after which the condition index, tissue accumulation, proximate composition, and histopathological effects were determined. The control animals were maintained in a medium that did not contain Cr6+ (0 mg/L). The condition index did not differ significantly among the groups. The levels of Cr6+ in the tissues differed significantly among the different tissue types while there was no significant effect of the exposure concentration, except in the foot tissue. The proximate parameters (protein, carbohydrates, lipid, crude fiber, and moisture contents) differed significantly among the groups. The protein contents of the exposed animals were significantly lower than those of the control animals and the histological architecture of the major organs was altered in the chromium-exposed animals. The findings from this study indicate a low potential of L. littorea to bioaccumulate Cr6+ in its tissues at the low exposure concentrations tested in this study; as such, its consumption may not pose any serious health risks to humans. However, changes in the proximate composition and histological architecture of the exposed L. littorea show that Cr6+ is potentially toxic to periwinkles.
Collapse
Affiliation(s)
- Olufemi S. Salami
- Department of Biology, School of Life Sciences, Federal University of Technology, Akure P.O. Box 704, Nigeria; (O.S.S.); (C.O.A.)
| | - Joseph A. Adeyemi
- Department of Biology, School of Life Sciences, Federal University of Technology, Akure P.O. Box 704, Nigeria; (O.S.S.); (C.O.A.)
- Department of Clinical Analyses, Toxicology and Food Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Avenida do Café s/no, Ribeirão Preto 14040-903, Brazil;
| | - Toluwase S. Olawuyi
- Department of Human Anatomy, School of Basic Medical Sciences, Federal University of Technology, Akure P.O. Box 704, Nigeria;
| | - Fernando Barbosa
- Department of Clinical Analyses, Toxicology and Food Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Avenida do Café s/no, Ribeirão Preto 14040-903, Brazil;
| | - Chris O. Adedire
- Department of Biology, School of Life Sciences, Federal University of Technology, Akure P.O. Box 704, Nigeria; (O.S.S.); (C.O.A.)
| |
Collapse
|