1
|
Faruqui N, Orell S, Dondi C, Leni Z, Kalbermatter DM, Gefors L, Rissler J, Vasilatou K, Mudway IS, Kåredal M, Shaw M, Larsson-Callerfelt AK. Differential Cytotoxicity and Inflammatory Responses to Particulate Matter Components in Airway Structural Cells. Int J Mol Sci 2025; 26:830. [PMID: 39859544 PMCID: PMC11765832 DOI: 10.3390/ijms26020830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Revised: 01/09/2025] [Accepted: 01/12/2025] [Indexed: 01/27/2025] Open
Abstract
Particulate matter (PM) is a major component of ambient air pollution. PM exposure is linked to numerous adverse health effects, including chronic lung diseases. Air quality guidelines designed to regulate levels of ambient PM are currently based on the mass concentration of different particle sizes, independent of their origin and chemical composition. The objective of this study was to assess the relative hazardous effects of carbonaceous particles (soot), ammonium nitrate, ammonium sulfate, and copper oxide (CuO), which are standard components of ambient air, reflecting contributions from primary combustion, secondary inorganic constituents, and non-exhaust emissions (NEE) from vehicular traffic. Human epithelial cells representing bronchial (BEAS-2B) and alveolar locations (H441 and A549) in the airways, human lung fibroblasts (HFL-1), and rat precision-cut lung slices (PCLS) were exposed in submerged cultures to different concentrations of particles for 5-72 h. Following exposure, cell viability, metabolic activity, reactive oxygen species (ROS) formation, and inflammatory responses were analyzed. CuO and, to a lesser extent, soot reduced cell viability in a dose-dependent manner, increased ROS formation, and induced inflammatory responses. Ammonium nitrate and ammonium sulfate did not elicit any significant cytotoxic responses but induced immunomodulatory alterations at very high concentrations. Our findings demonstrate that secondary inorganic components of PM have a lower hazard cytotoxicity compared with combustion-derived and indicative NEE components, and alveolar epithelial cells are more sensitive to PM exposure. This information should help to inform which sources of PM to target and feed into improved, targeted air quality guidelines.
Collapse
Affiliation(s)
- Nilofar Faruqui
- Department of Chemical & Biological Services, National Physical Laboratory, Teddington TW11 0LW, UK
| | - Sofie Orell
- Lung Biology, Department of Experimental Medical Sciences, Lund University, 221 84 Lund, Sweden
| | - Camilla Dondi
- Department of Chemical & Biological Services, National Physical Laboratory, Teddington TW11 0LW, UK
| | - Zaira Leni
- Institute of Anatomy, University of Bern, 3012 Bern, Switzerland
| | | | - Lina Gefors
- Lund University Bioimaging Centre (LBIC), Lund University, 221 84 Lund, Sweden
| | - Jenny Rissler
- Ergonomics and Aerosol Technology, Department of Design Sciences, Faculty of Engineering (LTH), Lund University, 223 62 Lund, Sweden
| | | | - Ian S. Mudway
- MRC Centre for Environment and Health, Imperial College London, London W2 1PG, UK
- National Institute of Health Protection Research Unit in Environmental Exposures and Health, London W2 1NY, UK
| | - Monica Kåredal
- Division of Occupational and Environmental Medicine, Department of Laboratory Medicine, Lund University, 223 63 Lund, Sweden
- Department of Occupational and Environmental Medicine, Region Skåne, 223 63 Lund, Sweden
| | - Michael Shaw
- Department of Chemical & Biological Services, National Physical Laboratory, Teddington TW11 0LW, UK
- Department of Computer Science, University College London, London WC1E 6BT, UK
| | | |
Collapse
|
2
|
Krisanova N, Pozdnyakova N, Pastukhov A, Dudarenko M, Tarasenko A, Borysov A, Driuk M, Tolochko A, Bezkrovnyi O, Paliienko K, Sivko R, Gnatyuk O, Dovbeshko G, Borisova T. Synergistic neurological threat from Сu and wood smoke particulate matter. Food Chem Toxicol 2024; 193:115009. [PMID: 39304082 DOI: 10.1016/j.fct.2024.115009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 09/08/2024] [Accepted: 09/16/2024] [Indexed: 09/22/2024]
Abstract
Trace metal Cu and carbonaceous airborn particulate matter (PM) are dangerous neuropollutants. Here, the ability of Cu2+ to modulate the neurotoxicity caused by water-suspended wood smoke PM preparations (SPs) and vice versa was examined using presynaptic rat cortex nerve terminals. Interaction of Cu2+ and SPs, changes of particle size and surface properties were shown in the presence of Cu2+ using microscopy, DLS, and IR spectroscopy. In nerve terminals, Cu2+ and SPs per se elevated the ambient levels of excitatory and inhibitory neurotransmitters L-[14C]glutamate and [3H]GABA, respectively. During combined application, Cu2+ significantly enhanced a SPs-induced increase in the ambient levels of both neurotransmitters, thereby demonstrating a cumulative synergistic effect and significant interference in the neurotoxic threat associated with Cu2+and SPs. In fluorimetric measurements, Cu2+ and SPs also demonstrated cumulative synergistic effects on the membrane potential, mitochondrial potential, synaptic vesicle acidification and ROS generation. Therefore, synergistic effects of Cu2+ and SPs on the most crucial presynaptic characteristics and neurohazard of multiple pollutants through excitatory/inhibitory imbalance, disruption of the membrane and mitochondrial potential, vesicle acidification and ROS generation were revealed. Increased expansion and burden of neuropathology may result from underestimation of synergistic interference of the neurotoxic effects of Cu2+ and carbonaceous smoke PM.
Collapse
Affiliation(s)
- Nataliya Krisanova
- Department of Neurochemistry, Palladin Institute of Biochemistry, National Academy of Sciences of Ukraine, 9 Leontovicha str, Kyiv, 01054, Ukraine; Optical Spectroscopy Division, Institute of Low Temperature and Structure Research Polish Academy of Sciences, Okólna 2, Wrocław, 50-422, Poland
| | - Natalia Pozdnyakova
- Department of Neurochemistry, Palladin Institute of Biochemistry, National Academy of Sciences of Ukraine, 9 Leontovicha str, Kyiv, 01054, Ukraine
| | - Artem Pastukhov
- Department of Neurochemistry, Palladin Institute of Biochemistry, National Academy of Sciences of Ukraine, 9 Leontovicha str, Kyiv, 01054, Ukraine
| | - Marina Dudarenko
- Department of Neurochemistry, Palladin Institute of Biochemistry, National Academy of Sciences of Ukraine, 9 Leontovicha str, Kyiv, 01054, Ukraine
| | - Alla Tarasenko
- Department of Neurochemistry, Palladin Institute of Biochemistry, National Academy of Sciences of Ukraine, 9 Leontovicha str, Kyiv, 01054, Ukraine
| | - Arsenii Borysov
- Department of Neurochemistry, Palladin Institute of Biochemistry, National Academy of Sciences of Ukraine, 9 Leontovicha str, Kyiv, 01054, Ukraine
| | - Mykola Driuk
- Department of Neurochemistry, Palladin Institute of Biochemistry, National Academy of Sciences of Ukraine, 9 Leontovicha str, Kyiv, 01054, Ukraine
| | - Anatoliy Tolochko
- Department of Physics of Biological Systems, Institute of Physics, National Academy of Sciences of Ukraine, 46 Nauky Ave, Kyiv, 03680, Ukraine
| | - Oleksii Bezkrovnyi
- Optical Spectroscopy Division, Institute of Low Temperature and Structure Research Polish Academy of Sciences, Okólna 2, Wrocław, 50-422, Poland
| | - Konstantin Paliienko
- Department of Neurochemistry, Palladin Institute of Biochemistry, National Academy of Sciences of Ukraine, 9 Leontovicha str, Kyiv, 01054, Ukraine
| | - Roman Sivko
- Department of Neurochemistry, Palladin Institute of Biochemistry, National Academy of Sciences of Ukraine, 9 Leontovicha str, Kyiv, 01054, Ukraine
| | - Olena Gnatyuk
- Department of Physics of Biological Systems, Institute of Physics, National Academy of Sciences of Ukraine, 46 Nauky Ave, Kyiv, 03680, Ukraine; Optical Spectroscopy Division, Institute of Low Temperature and Structure Research Polish Academy of Sciences, Okólna 2, Wrocław, 50-422, Poland
| | - Galyna Dovbeshko
- Department of Physics of Biological Systems, Institute of Physics, National Academy of Sciences of Ukraine, 46 Nauky Ave, Kyiv, 03680, Ukraine; Optical Spectroscopy Division, Institute of Low Temperature and Structure Research Polish Academy of Sciences, Okólna 2, Wrocław, 50-422, Poland
| | - Tatiana Borisova
- Department of Neurochemistry, Palladin Institute of Biochemistry, National Academy of Sciences of Ukraine, 9 Leontovicha str, Kyiv, 01054, Ukraine; Optical Spectroscopy Division, Institute of Low Temperature and Structure Research Polish Academy of Sciences, Okólna 2, Wrocław, 50-422, Poland.
| |
Collapse
|
3
|
Cordeiro JLC, Menezes RSG, da Silva MCM, Dos Santos MB, Cruz FT, Andrade HMC, Mascarenhas AJS, Fiuza-Junior RA. High removal of volatile organic compounds on hierarchical carbons prepared from agro-industrial waste of banana fruit production for air decontamination. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:62730-62744. [PMID: 39460863 DOI: 10.1007/s11356-024-35394-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Accepted: 10/20/2024] [Indexed: 10/28/2024]
Abstract
Activated carbons were prepared from residues from agro-industrial banana production (banana pseudostem) and evaluated in the capture of five different volatile organic compounds (VOCs): dichloromethane, chloroform, ethyl acetate, hexane, and cyclohexane. The biomass was first submitted to a hydrothermal treatment in the presence of KOH or ZnCl2 as activating agents, followed by a dry pyrolysis. This new advance in methodology contributes to producing activated carbons with hierarchical porosity and high surface areas (701-1312 m2 g-1), promoting increased interest in managing waste from banana fruit agricultural production. VOC capture studies were performed by thermal analysis, and capture capacities were similar to or higher than those presented in the literature. Higher adsorption capacities were related to the amount of available micropores, and the capture capacity was enhanced by the contribution of small mesopores. As the highest adsorbed amounts of dichloromethane (933 mg g-1 at 25 °C) were obtained for the material activated with ZnCl2 (1:3), further studies were carried out for this system. The experimental data was fitted using a pseudo-first-order kinetic model. A study was carried out in different atmospheres (He, N2, air), showing that co-adsorption is occurring. Under simulated environmental conditions, the capture capacity decreased slightly at equilibrium, and the new adsorbent was used for up to ten cycles without significantly losing its efficiency, indicating good application in the field.
Collapse
Affiliation(s)
- José Luiz Cunha Cordeiro
- Laboratório de Catálise e Materiais (LABCAT), Instituto de Química, Departamento de Química Geral e Inorgânica, Universidade Federal da Bahia, Trav. Barão de Jeremoabo, 147, Campus de Ondina, Salvador, Bahia, 40170-280, Brazil
- Programa de Pós-Graduação em Energia e Ambiente (PGENAM), Centro Interdisciplinar de Energia e Ambiente (CIENAM), Universidade Federal da Bahia, R. Barão de Jeremoabo, S/N, Campus de Ondina, Salvador, Bahia, 40170-115, Brazil
| | - Rodrigo Santos Gonzaga Menezes
- Laboratório de Catálise e Materiais (LABCAT), Instituto de Química, Departamento de Química Geral e Inorgânica, Universidade Federal da Bahia, Trav. Barão de Jeremoabo, 147, Campus de Ondina, Salvador, Bahia, 40170-280, Brazil
| | - Matheus Chaves Moreira da Silva
- Laboratório de Catálise e Materiais (LABCAT), Instituto de Química, Departamento de Química Geral e Inorgânica, Universidade Federal da Bahia, Trav. Barão de Jeremoabo, 147, Campus de Ondina, Salvador, Bahia, 40170-280, Brazil
| | - Mauricio Brandão Dos Santos
- Laboratório de Catálise e Materiais (LABCAT), Instituto de Química, Departamento de Química Geral e Inorgânica, Universidade Federal da Bahia, Trav. Barão de Jeremoabo, 147, Campus de Ondina, Salvador, Bahia, 40170-280, Brazil
- Programa de Pós-Graduação em Energia e Ambiente (PGENAM), Centro Interdisciplinar de Energia e Ambiente (CIENAM), Universidade Federal da Bahia, R. Barão de Jeremoabo, S/N, Campus de Ondina, Salvador, Bahia, 40170-115, Brazil
| | - Fernanda Teixeira Cruz
- Laboratório de Catálise e Materiais (LABCAT), Instituto de Química, Departamento de Química Geral e Inorgânica, Universidade Federal da Bahia, Trav. Barão de Jeremoabo, 147, Campus de Ondina, Salvador, Bahia, 40170-280, Brazil
- Programa de Pós-Graduação em Energia e Ambiente (PGENAM), Centro Interdisciplinar de Energia e Ambiente (CIENAM), Universidade Federal da Bahia, R. Barão de Jeremoabo, S/N, Campus de Ondina, Salvador, Bahia, 40170-115, Brazil
| | - Heloysa Martins Carvalho Andrade
- Laboratório de Catálise e Materiais (LABCAT), Instituto de Química, Departamento de Química Geral e Inorgânica, Universidade Federal da Bahia, Trav. Barão de Jeremoabo, 147, Campus de Ondina, Salvador, Bahia, 40170-280, Brazil
- Programa de Pós-Graduação em Energia e Ambiente (PGENAM), Centro Interdisciplinar de Energia e Ambiente (CIENAM), Universidade Federal da Bahia, R. Barão de Jeremoabo, S/N, Campus de Ondina, Salvador, Bahia, 40170-115, Brazil
| | - Artur José Santos Mascarenhas
- Laboratório de Catálise e Materiais (LABCAT), Instituto de Química, Departamento de Química Geral e Inorgânica, Universidade Federal da Bahia, Trav. Barão de Jeremoabo, 147, Campus de Ondina, Salvador, Bahia, 40170-280, Brazil
- Programa de Pós-Graduação em Energia e Ambiente (PGENAM), Centro Interdisciplinar de Energia e Ambiente (CIENAM), Universidade Federal da Bahia, R. Barão de Jeremoabo, S/N, Campus de Ondina, Salvador, Bahia, 40170-115, Brazil
| | - Raildo Alves Fiuza-Junior
- Laboratório de Catálise e Materiais (LABCAT), Instituto de Química, Departamento de Química Geral e Inorgânica, Universidade Federal da Bahia, Trav. Barão de Jeremoabo, 147, Campus de Ondina, Salvador, Bahia, 40170-280, Brazil.
- Programa de Pós-Graduação em Energia e Ambiente (PGENAM), Centro Interdisciplinar de Energia e Ambiente (CIENAM), Universidade Federal da Bahia, R. Barão de Jeremoabo, S/N, Campus de Ondina, Salvador, Bahia, 40170-115, Brazil.
| |
Collapse
|
4
|
Vijeata A, Chaudhary GR, Chaudhary S, Ibrahim AA, Umar A. Recent advancements and prospects in carbon-based nanomaterials derived from biomass for environmental remediation applications. CHEMOSPHERE 2024; 357:141935. [PMID: 38636909 DOI: 10.1016/j.chemosphere.2024.141935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 03/26/2024] [Accepted: 04/05/2024] [Indexed: 04/20/2024]
Abstract
The conversion of waste biomass into a value-added carbonaceous nanomaterial highlights the appealing power of biomass valorization. The advantages of using sustainable and cheap biomass precursors exhibit the tremendous opportunity for boosting energy production and their application in environmental remediation processes. This review emphasis the development and production of carbon-based nanomaterials derived from biomass, which possess favourable characteristics such as biocompatibility and photoluminescence. The advantages and limitations of various nanomaterials synthesised from different precursors were also discussed with insights into their physicochemical properties. The surface morphology of the porous nanomaterials is also explored along with their characteristic properties like regenerative nature, non-toxicity, ecofriendly nature, unique surface area, etc. The incorporation of various functional groups confers superiority of these materials, resulting in unique and advanced functional properties. Further, the use of these biomass derived nanomaterials was also explored in different applications like adsorption, photocatalysis and sensing of hazardous pollutants, etc. The challenges and outcomes obtained from different carbon-based nanomaterials are briefly outlined and discussed in this review.
Collapse
Affiliation(s)
- Anjali Vijeata
- Department of Chemistry and Centre of Advanced Studies in Chemistry, Panjab University, Chandigarh 160014, India
| | - Ganga Ram Chaudhary
- Department of Chemistry and Centre of Advanced Studies in Chemistry, Panjab University, Chandigarh 160014, India
| | - Savita Chaudhary
- Department of Chemistry and Centre of Advanced Studies in Chemistry, Panjab University, Chandigarh 160014, India.
| | - Ahmed A Ibrahim
- Department of Chemistry, Faculty of Science and Arts, and Promising Centre for Sensors and Electronic Devices (PCSED), Najran University, Najran-11001, Kingdom of Saudi Arabia
| | - Ahmad Umar
- Department of Chemistry, Faculty of Science and Arts, and Promising Centre for Sensors and Electronic Devices (PCSED), Najran University, Najran-11001, Kingdom of Saudi Arabia; Department of Materials Science and Engineering, The Ohio State University, Columbus, 43210, OH, USA.
| |
Collapse
|
5
|
Zhang Y, Wu N, Cao W, Guo R, Zhang S, Qi Y, Qu R, Wang Z. Photodegradation of 2-chlorodibenzo-p-dioxin (2-CDD) on the surface of municipal solid waste incineration fly ash: Kinetics and product analysis. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 346:123621. [PMID: 38402942 DOI: 10.1016/j.envpol.2024.123621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 02/17/2024] [Accepted: 02/19/2024] [Indexed: 02/27/2024]
Abstract
Considering that waste incineration fly ash is the main carrier of dioxins and can migrate over long distances in the atmosphere, it is of great significance to study the photochemical transformation behavior of dioxins on the surface of fly ash. In this work, 2-chlorodibenzo-p-dioxin (2-CDD) was selected to conduct a systematic photochemical study. The influence of various factors on the photodegradation of 2-CDD were first explored, and the results showed that small particle size of fly ash, low concentration of 2-CDD and appropriate level of humidity were more conducive to photodegradation, with the highest degradation percentage reaching 76%-84%. The components of fly ash (Zn (Ⅱ), Al (Ⅲ), Cu (Ⅱ) and SiO2) also had a certain promoting effect on the degradation of 2-CDD, which increases the degradation efficiency by 10%-20%, because they could act as effective photocatalysts to produce free radicals for reaction. With a higher total light exposure intensity, natural light environments led to a more complete degradation of 2-CDD than laboratory Xe lamp irradiation (90% degradation Vs. 79% degradation). Based on chemical probe and radical quenching experiment, hydroxyl radical also contributed to 2-CDD photodegradation on fly ash. A total of 16 intermediate products were detected by mass spectrometry analysis, and four initial reaction pathways of 2-CDD were speculated in the process, including dechlorination, ether bond cleavage, hydroxyl substitution, and hydroxyl addition. According to the results of density functional theory calculation, the reaction channels of ether bond cleavage and •OH attack were determined. The toxicity assessment software tool (TEST) was used to assess the toxicity and bioconcentration coefficient of reaction products, and it was found that the overall toxicity of the photodegradation products was reduced. This study would provide new insights into the environmental fate of dioxins during long-range atmospheric migration process.
Collapse
Affiliation(s)
- Ying Zhang
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Jiangsu, Nanjing, 210023, China
| | - Nannan Wu
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Jiangsu, Nanjing, 210023, China
| | - Wenqian Cao
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Jiangsu, Nanjing, 210023, China
| | - Ruixue Guo
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Jiangsu, Nanjing, 210023, China
| | - Shengnan Zhang
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Jiangsu, Nanjing, 210023, China
| | - Yumeng Qi
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Jiangsu, Nanjing, 210023, China
| | - Ruijuan Qu
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Jiangsu, Nanjing, 210023, China
| | - Zunyao Wang
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Jiangsu, Nanjing, 210023, China.
| |
Collapse
|
6
|
Pozdnyakova N, Krisanova N, Pastukhov A, Dudarenko M, Tarasenko A, Borysov A, Kalynovska L, Paliienko K, Borisova T. Multipollutant reciprocal neurological hazard from smoke particulate matter and heavy metals cadmium and lead in brain nerve terminals. Food Chem Toxicol 2024; 185:114449. [PMID: 38215962 DOI: 10.1016/j.fct.2024.114449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 01/08/2024] [Accepted: 01/09/2024] [Indexed: 01/14/2024]
Abstract
Heavy metals, Cd2+ and Pb2+, and carbonaceous air pollution particulate matter are hazardous neurotoxicants. Here, a capability of water-suspended smoke particulate matter preparations obtained from poplar wood (WPs) and polypropylene fibers (medical facemasks) (MPs) to influence Cd2+/Pb2+-induced neurotoxicity, and vice versa, was monitored using biological system, i.e. isolated presynaptic rat cortex nerve terminals. Combined application of Pb2+ and WPs/MPs to nerve terminals in an acute manner revealed that smoke preparations did not change a Pb2+-induced increase in the extracellular levels of excitatory neurotransmitter L-[14C]glutamate and inhibitory one [3H]GABA, thereby demonstrating additive result and no interference of neurotoxic effects of Pb2+ and particulate matter. Whereas, both smoke preparations decreased a Cd2+-induced increase in the extracellular level of L-[14C]glutamate and [3H]GABA in nerve terminals. In fluorimetric measurements, the metals and smoke preparations demonstrated additive effects on the membrane potential of nerve terminals causing membrane depolarisation. WPs/MPs-induced reduction of spontaneous ROS generation was mitigated by Cd2+ and Pb2+. Therefore, a potential variety of multipollutant heavy metal-/airborne particulate-induced effects on key presynaptic processes was revealed. Multipollutant reciprocal neurological hazard through disturbance of the excitation-inhibition balance, membrane potential and ROS generation was evidenced. This multipollutant approach and data contribute to up-to-date environmental quality/health risk estimation.
Collapse
Affiliation(s)
- Natalia Pozdnyakova
- The Department of Neurochemistry, The Palladin Institute of Biochemistry, The National Academy of Sciences of Ukraine, 9 Leontovicha st, Kyiv, 01054, Ukraine
| | - Nataliya Krisanova
- The Department of Neurochemistry, The Palladin Institute of Biochemistry, The National Academy of Sciences of Ukraine, 9 Leontovicha st, Kyiv, 01054, Ukraine
| | - Artem Pastukhov
- The Department of Neurochemistry, The Palladin Institute of Biochemistry, The National Academy of Sciences of Ukraine, 9 Leontovicha st, Kyiv, 01054, Ukraine.
| | - Marina Dudarenko
- The Department of Neurochemistry, The Palladin Institute of Biochemistry, The National Academy of Sciences of Ukraine, 9 Leontovicha st, Kyiv, 01054, Ukraine
| | - Alla Tarasenko
- The Department of Neurochemistry, The Palladin Institute of Biochemistry, The National Academy of Sciences of Ukraine, 9 Leontovicha st, Kyiv, 01054, Ukraine
| | - Arsenii Borysov
- The Department of Neurochemistry, The Palladin Institute of Biochemistry, The National Academy of Sciences of Ukraine, 9 Leontovicha st, Kyiv, 01054, Ukraine
| | - Liliia Kalynovska
- The Department of Neurochemistry, The Palladin Institute of Biochemistry, The National Academy of Sciences of Ukraine, 9 Leontovicha st, Kyiv, 01054, Ukraine
| | - Konstantin Paliienko
- The Department of Neurochemistry, The Palladin Institute of Biochemistry, The National Academy of Sciences of Ukraine, 9 Leontovicha st, Kyiv, 01054, Ukraine
| | - Tatiana Borisova
- The Department of Neurochemistry, The Palladin Institute of Biochemistry, The National Academy of Sciences of Ukraine, 9 Leontovicha st, Kyiv, 01054, Ukraine
| |
Collapse
|
7
|
Krisanova N, Pastukhov A, Dekaliuk M, Dudarenko M, Pozdnyakova N, Driuk M, Borisova T. Mercury-induced excitotoxicity in presynaptic brain nerve terminals: modulatory effects of carbonaceous airborne particulate simulants. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:3512-3525. [PMID: 38085481 DOI: 10.1007/s11356-023-31359-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 11/30/2023] [Indexed: 01/19/2024]
Abstract
Multipollutant approach is a breakthrough in up-to-date environmental quality and health risk estimation. Both mercury and carbonaceous air particulate are hazardous neurotoxicants. Here, the ability of carbonaceous air particulate simulants, i.e. carbon dots obtained by heating of organics, and nanodiamonds, to influence Hg2+-induced neurotoxicity was monitored using biological system, i.e. presynaptic rat cortex nerve terminals. Using HgCl2 and classical reducing/chelating agents, an adequate synaptic parameter, i.e. the extracellular level of key excitatory neurotransmitter L-[14C]glutamate, was selected for further analysis. HgCl2 starting from 5 µM caused an acute and concentration-dependent increase in the extracellular L-[14C]glutamate level in nerve terminals. Combined application of Hg2+ and carbon dots from heating of citric acid/urea showed that this simulant was able to mitigate in an acute manner excitotoxic Hg2+-induced increase in the extracellular L-[14C]glutamate level in nerve terminals by 37%. These carbon dots and Hg2+ acted as a complex in nerve terminals that was confirmed with fluorimetric data on Hg2+-induced changes in their spectroscopic features. Nanodiamonds and carbon dots from β-alanine were not able to mitigate a Hg2+-induced increase in the extracellular L-[14C]glutamate level in nerve terminals. Developed approach can be applicable for monitoring capability of different particles/compounds to have Hg2+-chelating signs in the biological systems. Therefore, among testing simulants, the only carbon dots from citric acid/urea were able to mitigate acute Hg2+-induced neurotoxicity in nerve terminals, thereby showing a variety of effects of carbonaceous airborne particulate in situ and its potential to interfere and modulate Hg2+-associated health hazard.
Collapse
Affiliation(s)
- Nataliya Krisanova
- The Department of Neurochemistry, The Palladin Institute of Biochemistry, The National Academy of Sciences of Ukraine, 9 Leontovicha Street, Kiev, 01054, Ukraine
| | - Artem Pastukhov
- The Department of Neurochemistry, The Palladin Institute of Biochemistry, The National Academy of Sciences of Ukraine, 9 Leontovicha Street, Kiev, 01054, Ukraine
| | - Mariia Dekaliuk
- The Department of Neurochemistry, The Palladin Institute of Biochemistry, The National Academy of Sciences of Ukraine, 9 Leontovicha Street, Kiev, 01054, Ukraine
| | - Marina Dudarenko
- The Department of Neurochemistry, The Palladin Institute of Biochemistry, The National Academy of Sciences of Ukraine, 9 Leontovicha Street, Kiev, 01054, Ukraine
| | - Natalia Pozdnyakova
- The Department of Neurochemistry, The Palladin Institute of Biochemistry, The National Academy of Sciences of Ukraine, 9 Leontovicha Street, Kiev, 01054, Ukraine
| | - Mikola Driuk
- The Department of Neurochemistry, The Palladin Institute of Biochemistry, The National Academy of Sciences of Ukraine, 9 Leontovicha Street, Kiev, 01054, Ukraine
| | - Tatiana Borisova
- The Department of Neurochemistry, The Palladin Institute of Biochemistry, The National Academy of Sciences of Ukraine, 9 Leontovicha Street, Kiev, 01054, Ukraine.
| |
Collapse
|