1
|
Santos JF, del Rocío Silva-Calpa L, de Souza FG, Pal K. Central Countries' and Brazil's Contributions to Nanotechnology. CURRENT NANOMATERIALS 2024; 9:109-147. [DOI: 10.2174/2405461508666230525124138] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 02/09/2023] [Accepted: 03/14/2023] [Indexed: 01/05/2025]
Abstract
Abstract:
Nanotechnology is a cornerstone of the scientific advances witnessed over the past few
years. Nanotechnology applications are extensively broad, and an overview of the main trends
worldwide can give an insight into the most researched areas and gaps to be covered. This document
presents an overview of the trend topics of the three leading countries studying in this area, as
well as Brazil for comparison. The data mining was made from the Scopus database and analyzed
using the VOSviewer and Voyant Tools software. More than 44.000 indexed articles published
from 2010 to 2020 revealed that the countries responsible for the highest number of published articles
are The United States, China, and India, while Brazil is in the fifteenth position. Thematic
global networks revealed that the standing-out research topics are health science, energy,
wastewater treatment, and electronics. In a temporal observation, the primary topics of research are:
India (2020), which was devoted to facing SARS-COV 2; Brazil (2019), which is developing promising
strategies to combat cancer; China (2018), whit research on nanomedicine and triboelectric
nanogenerators; the United States (2017) and the Global tendencies (2018) are also related to the
development of triboelectric nanogenerators. The collected data are available on GitHub. This study
demonstrates the innovative use of data-mining technologies to gain a comprehensive understanding
of nanotechnology's contributions and trends and highlights the diverse priorities of nations in
this cutting-edge field.
Collapse
Affiliation(s)
- Jonas Farias Santos
- Programa de Engenharia da Nanotecnologia, COPPE, Centro de Tecnologia-Cidade Universitária, Universidade
Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Leydi del Rocío Silva-Calpa
- Programa de Engenharia da Nanotecnologia, COPPE, Centro de Tecnologia-Cidade Universitária, Universidade
Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Fernando Gomes de Souza
- Programa de Engenharia da Nanotecnologia, COPPE, Centro de Tecnologia-Cidade Universitária, Universidade
Federal do Rio de Janeiro, Rio de Janeiro, Brazil
- Instituto de Macromoléculas Professora Eloisa Mano, Centro de
Tecnologia-Cidade Universitária, Universidade Federal de Rio de Janeiro, Rio de Janeiro, Brazil
| | - Kaushik Pal
- University Center
for Research and Development (UCRD), Department of Physics, Chandigarh University, Ludhiana - Chandigarh State
Hwy, Mohali, Gharuan, 140413 Punjab, India
| |
Collapse
|
2
|
Nocca G, Arcovito A, Elkasabgy NA, Basha M, Giacon N, Mazzinelli E, Abdel-Maksoud MS, Kamel R. Cellulosic Textiles-An Appealing Trend for Different Pharmaceutical Applications. Pharmaceutics 2023; 15:2738. [PMID: 38140079 PMCID: PMC10747844 DOI: 10.3390/pharmaceutics15122738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 11/28/2023] [Accepted: 12/04/2023] [Indexed: 12/24/2023] Open
Abstract
Cellulose, the most abundant biopolymer in nature, is derived from various sources. The production of pharmaceutical textiles based on cellulose represents a growing sector. In medicated textiles, textile and pharmaceutical sciences are integrated to develop new healthcare approaches aiming to improve patient compliance. Through the possibility of cellulose functionalization, pharmaceutical textiles can broaden the applications of cellulose in the biomedical field. This narrative review aims to illustrate both the methods of extraction and preparation of cellulose fibers, with a particular focus on nanocellulose, and diverse pharmaceutical applications like tissue restoration and antimicrobial, antiviral, and wound healing applications. Additionally, the merging between fabricated cellulosic textiles with drugs, metal nanoparticles, and plant-derived and synthetic materials are also illustrated. Moreover, new emerging technologies and the use of smart medicated textiles (3D and 4D cellulosic textiles) are not far from those within the review scope. In each section, the review outlines some of the limitations in the use of cellulose textiles, indicating scientific research that provides significant contributions to overcome them. This review also points out the faced challenges and possible solutions in a trial to present an overview on all issues related to the use of cellulose for the production of pharmaceutical textiles.
Collapse
Affiliation(s)
- Giuseppina Nocca
- Dipartimento di Scienze Biotecnologiche di Base, Cliniche Intensivologiche e Perioperatorie, Università Cattolica del Sacro Cuore, Largo Francesco Vito 1, 00168 Rome, Italy; (G.N.); (A.A.); (E.M.)
- Fondazione Policlinico Universitario “A. Gemelli”, IRCCS, Largo Agostino Gemelli 8, 00168 Rome, Italy
| | - Alessandro Arcovito
- Dipartimento di Scienze Biotecnologiche di Base, Cliniche Intensivologiche e Perioperatorie, Università Cattolica del Sacro Cuore, Largo Francesco Vito 1, 00168 Rome, Italy; (G.N.); (A.A.); (E.M.)
- Fondazione Policlinico Universitario “A. Gemelli”, IRCCS, Largo Agostino Gemelli 8, 00168 Rome, Italy
| | - Nermeen A. Elkasabgy
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University, Kasr El-Aini Street, Cairo 11562, Egypt
| | - Mona Basha
- Pharmaceutical Technology Department, National Research Centre, Cairo 12622, Egypt (R.K.)
| | - Noah Giacon
- Dipartimento di Scienze Biotecnologiche di Base, Cliniche Intensivologiche e Perioperatorie, Università Cattolica del Sacro Cuore, Largo Francesco Vito 1, 00168 Rome, Italy; (G.N.); (A.A.); (E.M.)
| | - Elena Mazzinelli
- Dipartimento di Scienze Biotecnologiche di Base, Cliniche Intensivologiche e Perioperatorie, Università Cattolica del Sacro Cuore, Largo Francesco Vito 1, 00168 Rome, Italy; (G.N.); (A.A.); (E.M.)
| | | | - Rabab Kamel
- Pharmaceutical Technology Department, National Research Centre, Cairo 12622, Egypt (R.K.)
| |
Collapse
|
3
|
Kuo HWD, Zure D, Lin CR. Occurrences of similar viral diversity in campus wastewater and reclaimed water of a university dormitory. CHEMOSPHERE 2023; 330:138713. [PMID: 37088208 DOI: 10.1016/j.chemosphere.2023.138713] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 04/10/2023] [Accepted: 04/15/2023] [Indexed: 05/03/2023]
Abstract
Water reuse from wastewater sources still remain some critical safety concerns associated with treacherous contaminants like pathogenic viruses. In this study, viral diversities in campus wastewater (CWW) and its reclaimed water (RCW) recycled for toilet flushing and garden irrigation of a university dormitory were assessed using metagenomic sequencing for acquisition of more background data. Results suggested majority (>80%) of gene sequences within assembled contigs predicted by open reading frame (ORF) finder were no-hit yet believed to be novel/unrevealed viral genomic information whereas hits matched bacteriophages (i.e., mainly Myoviridae, Podoviridae, and Siphoviridae families) were predominant in both CWW and RCW samples. Moreover, few pathogenic viruses (<1%) related to infections of human skin (e.g., Molluscum contagiosum virus, MCV), digestion system (e.g., hepatitis C virus, HCV), and gastrointestinal tract (e.g., human norovirus, HuNoV) were also noticed raising safety concerns about application of reclaimed waters. Low-affinity interactions of particular viral exterior proteins (e.g., envelope glycoproteins or spike proteins) for disinfectant ligand (e.g., chlorite) elucidated treatment limitations of current sewage processing systems even with membrane bioreactor and disinfectant contactor. Revolutionary disinfection approaches together with routine monitoring and new regulations are prerequisite to secure pathogen-correlated water quality for safer reuse of reclaimed waters.
Collapse
Affiliation(s)
- Hsion-Wen David Kuo
- Department of Environmental Science and Engineering, Tunghai University, Taiwan.
| | - Diaiti Zure
- Department of Environmental Science and Engineering, Tunghai University, Taiwan
| | - Chih-Rong Lin
- Department of Environmental Science and Engineering, Tunghai University, Taiwan
| |
Collapse
|
4
|
Aziz T, Haq F, Farid A, Kiran M, Faisal S, Ullah A, Ullah N, Bokhari A, Mubashir M, Chuah LF, Show PL. Challenges associated with cellulose composite material: Facet engineering and prospective. ENVIRONMENTAL RESEARCH 2023; 223:115429. [PMID: 36746207 DOI: 10.1016/j.envres.2023.115429] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 01/04/2023] [Accepted: 02/03/2023] [Indexed: 06/18/2023]
Abstract
Cellulose is the most abundant polysaccharide on earth. It has a large number of desirable properties. Its low toxicity makes it more useful for a variety of applications. Nowadays, its composites are used in most engineering fields. Composite consists of a polymer matrix and use as a reinforcing material. By reducing the cost of traditional fibers, it has an increasing demand for environment-friendly purposes. The use of these types of composites is inherent in moisture absorption with hindered natural fibers. This determines the reduction of polymer composite material. By appropriate chemical surface treatment of cellulose composite materials, the effect could be diminished. The most modern and advanced techniques and methods for the preparation of cellulose and polymer composites are discussed here. Cellulosic composites show a reinforcing effect on the polymer matrix as pointed out by mechanical characterization. Researchers tried their hard work to study different ways of converting various agricultural by-products into useful eco-friendly polymer composites for sustainable production. Cellulose plays building blocks, that are critical for polymer products and their engineering applications. The most common method used to prepare composites is in-situ polymerization. This help to increase the yields of cellulosic composites with a significant enhancement in thermal stability and mechanical properties. Recently, cellulose composites used as enhancing the incorporation of inorganic materials in multi-functional properties. Furthermore, we have summarized in this review the potential applications of cellulose composites in different fields like packaging, aerogels, hydrogels, and fibers.
Collapse
Affiliation(s)
- Tariq Aziz
- Westlake University, School of Engineering, Hangzhou, China
| | - Fazal Haq
- Institute of Chemical Sciences, Gomal University, D. I. Khan, 29050, Pakistan.
| | - Arshad Farid
- Gomal Center of Biochemistry and Biotechnology, Gomal University, D. I. Khan, 29050, Pakistan
| | - Mehwish Kiran
- Department of Horticulture, Faculty of Agriculture, Gomal University, D. I. Khan, 29050, Pakistan
| | - Shah Faisal
- Chemistry Department, University of Science and Technology Bannu, Pakistan
| | - Asmat Ullah
- Zhejiang Provincial Key Laboratory of Cancer, Life Science Institute, Zhejiang University, Hangzhou, 310058, China
| | - Naveed Ullah
- Institute of Chemical Sciences, Gomal University, D. I. Khan, 29050, Pakistan
| | - Awais Bokhari
- Department of Chemical Engineering, COMSATS University Islamabad, Lahore Campus, 54000, Pakistan
| | - Muhammad Mubashir
- Physical Science and Engineering Division, Advanced Membranes and Porous Materials Center, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia.
| | - Lai Fatt Chuah
- Faculty of Maritime Studies, Universiti Malaysia Terengganu, Terengganu, Malaysia.
| | - Pau Loke Show
- Zhejiang Provincial Key Laboratory for Subtropical Water Environment and Marine Biological Resources Protection, Wenzhou University, Wenzhou, 325035, China; Department of Chemical Engineering, Khalifa University, Shakhbout Bin Sultan St - Zone 1, Abu Dhabi, United Arab Emirates; Department of Chemical and Environmental Engineering, Faculty of Science and Engineering, University of Nottingham Malaysia, 43500, Semenyih, Selangor, Malaysia; Department of Sustainable Engineering, Saveetha School of Engineering, SIMATS, Chennai, 602105, India.
| |
Collapse
|
5
|
Zahmatkesh S, Kiannejad Amiri M, Ghorbanzade Zaferani SP, Sarmasti Emami MR, Hajiaghaei-Keshteli M, Albaqami MD, Tighezza AM, Shafahi M, Han N. Machine learning modeling of polycarbonate ultrafiltration membranes at different temperatures, Al 2O 3 nanoparticle volumes, and water ratios. CHEMOSPHERE 2023; 313:137424. [PMID: 36495985 DOI: 10.1016/j.chemosphere.2022.137424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Revised: 11/02/2022] [Accepted: 11/26/2022] [Indexed: 06/17/2023]
Abstract
The efficacy of novel polycarbonate ultrafiltration, aluminum oxide nanoparticle (Al2O3-NPs) volume fraction, temperature, and water/ethylene glycol (EG) ratio were evaluated to determine the thermophysical properties of the membrane. 5%-10% of Al2O3-NPs have been added to the PC. A machine learning approach was used to compare the volume fraction of Al2O3-NPs, the temperature, and the water-to-ethylene glycol (EG) ratio. To determine the impact of Al2O3-NPs loading on the Response Surface Method (RSM), DOE, ANOVA, ANN, MLP, and NSGA-II, the number of aluminum oxide nanoparticles (Al2O3-NPs), temperature, and water/ethylene glycol (EG) on membranes in PC ultrafiltration are evaluated. Based on the Relative Thermal Conductivity Model (RSM), the regression coefficient of Al2O3 in water and EG was 0.9244 and 0.9170 with adjusted regression coefficients. A higher concentration of EG enhances the thermal conductivity of the membrane when the effective parameters are considered. The effect of temperature on the relative viscosity of the membrane led to the conclusion that Al2O3 water/EG can cool at high temperatures while providing no viscosity change. When Al2O3 is dissolved in water and EG, more EG is necessary to optimize the mode of reactivity. Using the MLP model, the calculated R-value is 0.9468, the MSE is 0.001752989 (mean square error), and the MAE is 0.01768558 (mean absolute error). RSM predicted the average thermal conductivity behavior of nanofluid better. The ANN model, however, has proven to be more effective than the RSM in simulating the relative viscosity of nanofluids. The NSGA-II optimized results showed that the minimum relative viscosity and maximum coefficient of thermal conductivity occurred at the lowest water ratio and maximum temperature.
Collapse
Affiliation(s)
- Sasan Zahmatkesh
- Tecnologico de Monterrey, Escuela de Ingenieríay Ciencias, Puebla, Mexico
| | - Mahmoud Kiannejad Amiri
- Department of Chemical Engineering, University of Science and Technology of Mazandaran, Behshahr, Iran
| | | | | | | | - Munirah D Albaqami
- Department of Chemistry, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Ammar Mohamed Tighezza
- Department of Chemistry, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Maryam Shafahi
- Department of Mechanical Engineering, California State Polytechnic University, Pomona, USA
| | - Ning Han
- Department of Materials Engineering, KU Leuven, Kasteelpark Arenberg 44, Leuven, 3001, Belgium
| |
Collapse
|
6
|
Zahmatkesh S, Rezakhani Y, Chofreh AG, Karimian M, Wang C, Ghodrati I, Hasan M, Sillanpaa M, Panchal H, Khan R. SARS-CoV-2 removal by mix matrix membrane: A novel application of artificial neural network based simulation in MATLAB for evaluating wastewater reuse risks. CHEMOSPHERE 2023; 310:136837. [PMID: 36252897 PMCID: PMC9560862 DOI: 10.1016/j.chemosphere.2022.136837] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 09/20/2022] [Accepted: 10/07/2022] [Indexed: 05/09/2023]
Abstract
The COVID-19 outbreak led to the discovery of SARS-CoV-2 in sewage; thus, wastewater treatment plants (WWTPs) could have the virus in their effluent. However, whether SARS-CoV-2 is eradicated by sewage treatment is virtually unknown. Specifically, the objectives of this study include (i) determining whether a mixed matrixed membrane (MMM) is able to remove SARS-CoV-2 (polycarbonate (PC)-hydrous manganese oxide (HMO) and PC-silver nanoparticles (Ag-NP)), (ii) comparing filtration performance among different secondary treatment processes, and (iii) evaluating whether artificial neural networks (ANNs) can be employed as performance indicators to reduce SARS-CoV-2 in the treatment of sewage. At Shariati Hospital in Mashhad, Iran, secondary treatment effluent during the outbreak of COVID-19 was collected from a WWTP. There were two PC-Ag-NP and PC-HMO processes at the WWTP targeted. RT-qPCR was employed to detect the presence of SARS-CoV-2 in sewage fractions. For the purposes of determining SARS-CoV-2 prevalence rates in the treated effluent, 10 L of effluent specimens were collected in middle-risk and low-risk treatment MMMs. For PC-HMO, the log reduction value (LRV) for SARS-CoV-2 was 1.3-1 log10 for moderate risk and 0.96-1 log10 for low risk, whereas for PC-Ag-NP, the LRV was 0.99-1.3 log10 for moderate risk and 0.94-0.98 log10 for low risk. MMMs demonstrated the most robust absorption performance during the sampling period, with the least significant LRV recorded in PC-Ag-NP and PC-HMO at 0.94 log10 and 0.96 log10, respectively.
Collapse
Affiliation(s)
- Sasan Zahmatkesh
- Department of Chemical Engineering, University of Science and Technology of Mazandaran, P.O. Box 48518-78195, Behshahr, Iran; Tecnologico de Monterrey, Escuela de Ingenieríay Ciencias, Puebla, Mexico.
| | - Yousof Rezakhani
- Department of Civil Engineering, Pardis Branch, Islamic Azad University, Pardis, Iran
| | - Abdoulmohammad Gholamzadeh Chofreh
- Sustainable Process Integration Laboratory, SPIL, NETME Centre, Faculty of Mechanical Engineering, Brno University of Technology, VUT Brno, Technická 2896/2, 616 00, Brno, Czech Republic
| | - Melika Karimian
- Faculty of Civil Engineering, Architecture and Urban Planning, University of Eyvanekey, Iran
| | - Chongqing Wang
- School of Chemical Engineering, Zhengzhou University, Zhengzhou, 450001, China
| | - Iman Ghodrati
- Department of Computer Engineering, Bojnourd Branch, Islamic Azad University, Bojnourd, Iran
| | - Mudassir Hasan
- Department of Chemical Engineering, College of Engineering, King Khalid University, Abha, 61411, Saudi Arabia
| | - Mika Sillanpaa
- Faculty of Science and Technology, School of Applied Physics, University Kebangsaan Malaysia, 43600, Bangi, Selangor, Malaysia; International Research Centre of Nanotechnology for Himalayan Sustainability (IRCNHS), Shoolini University, Solan, 173212, Himachal Pradesh, India; Department of Chemical Engineering, School of Mining, Metallurgy and Chemical Engineering, University of Johannesburg, P. O. Box 17011, Doornfontein, 2028, South Africa
| | - Hitesh Panchal
- Mechanical Engineering Department, Government Engineering College, Patan, Gujarat, India
| | - Ramsha Khan
- Faculty of Civil Engineering, Institute of Technology, Shri Ramswaroop Memorial University, Barabanki, 225003, UP, India
| |
Collapse
|
7
|
Zahmatkesh S, Klemeš JJ, Bokhari A, Wang C, Sillanpaa M, Amesho KTT, Vithanage M. Various advanced wastewater treatment methods to remove microplastics and prevent transmission of SARS-CoV-2 to airborne microplastics. INTERNATIONAL JOURNAL OF ENVIRONMENTAL SCIENCE AND TECHNOLOGY : IJEST 2022; 20:2229-2246. [PMID: 36438928 PMCID: PMC9676805 DOI: 10.1007/s13762-022-04654-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 09/07/2022] [Accepted: 11/07/2022] [Indexed: 05/08/2023]
Abstract
Microplastics (MPs) and SARS-CoV-2 interact due to their widespread presence in our environment and affect the virus' behaviour indoors and outdoors. Therefore, it is necessary to study the interaction between MPs and SARS-CoV-2. The environmental damage caused by MPs is increasing globally. Emerging pollutants may adversely affect organisms, especially sewage, posing a threat to human health, animal health, and the ecological system. A significant concern with MPs in the air is that they are a vital component of MPs in the other environmental compartments, such as water and soil, which may affect human health through ingesting or inhaling. This work introduces the fundamental knowledge of various methods in advanced water treatment, including membrane bioreactors, advanced oxidation processes, adsorption, etc., are highly effective in removing MPs; they can still serve as an entrance route due to their constantly being discharged into aquatic environments. Following that, an analysis of each process for MPs' removal and mitigation or prevention of SARS-CoV-2 contamination is discussed. Next, an airborne microplastic has been reported in urban areas, raising health concerns since aerosols are considered a possible route of SARS-CoV-2 disease transmission and bind to airborne MP surfaces. The MPs can be removed from wastewater through conventional treatment processes with physical processes such as screening, grit chambers, and pre-sedimentation.
Collapse
Affiliation(s)
- S. Zahmatkesh
- Department of Chemical Engineering, University of Science and Technology of Mazandaran, P.O. Box 48518-78195, Behshahr, Iran
- Tecnologico de Monterrey, Escuela de Ingenieríay Ciencias, Puebla, Mexico
| | - J. J. Klemeš
- Sustainable Process Integration Laboratory, SPIL, NETME Centre, Faculty of Mechanical Engineering, Brno University of Technology, VUT Brno, Technická 2896/2, 616 00, Brno, Czech Republic
| | - A. Bokhari
- Sustainable Process Integration Laboratory, SPIL, NETME Centre, Faculty of Mechanical Engineering, Brno University of Technology, VUT Brno, Technická 2896/2, 616 00, Brno, Czech Republic
| | - C. Wang
- School of Chemical Engineering, Zhengzhou University, Zhengzhou, 450001 China
| | - M. Sillanpaa
- Department of Chemical Engineering, College of Engineering, King Khalid University, 61411 Abha, Kingdom of Saudi Arabia
- Research Laboratory of Processes, Energetics, Environment and Electrical Systems, National School of Engineers, Gabes University, 6072 Gabes, Tunisia
- Faculty of Science and Technology, School of Applied Physics, University Kebangsaan Malaysia, 43600 Bangi, Selangor Malaysia
| | - K. T. T. Amesho
- The International University of Management, Centre for Environmental Studies, Main Campus, Dorado Park Ext 1, Windhoek, Namibia
- Center for Emerging Contaminants Research, National Sun Yat-Sen University, Kaohsiung, 804 Taiwan
- Institute of Environmental Engineering, National Sun Yat-Sen University, Kaohsiung, 804 Taiwan
| | - M. Vithanage
- Faculty of Applied Sciences, University of Jayewardenepura, Nugegoda, Sri Lanka
| |
Collapse
|
8
|
Zahmatkesh S, Bokhari A, Karimian M, Zahra MMA, Sillanpää M, Panchal H, Alrubaie AJ, Rezakhani Y. A comprehensive review of various approaches for treatment of tertiary wastewater with emerging contaminants: what do we know? ENVIRONMENTAL MONITORING AND ASSESSMENT 2022; 194:884. [PMID: 36239735 PMCID: PMC9561337 DOI: 10.1007/s10661-022-10503-z] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 09/13/2022] [Indexed: 05/23/2023]
Abstract
In the last few decades, environmental contaminants (ECs) have been introduced into the environment at an alarming rate. There is a risk to human health and aquatic ecosystems from trace levels of emerging contaminants, including hospital wastewater (HPWW), cosmetics, personal care products, endocrine system disruptors, and their transformation products. Despite the fact that these pollutants have been introduced or detected relatively recently, information about their characteristics, actions, and impacts is limited, as are the technologies to eliminate them efficiently. A wastewater recycling system is capable of providing irrigation water for crops and municipal sewage treatment, so removing ECs before wastewater reuse is essential. Water treatment processes containing advanced ions of biotic origin and ECs of biotic origin are highly recommended for contaminants. This study introduces the fundamentals of the treatment of tertiary wastewater, including membranes, filtration, UV (ultraviolet) irradiation, ozonation, chlorination, advanced oxidation processes, activated carbon (AC), and algae. Next, a detailed description of recent developments and innovations in each component of the emerging contaminant removal process is provided.
Collapse
Affiliation(s)
- Sasan Zahmatkesh
- Department of Chemical Engineering, University of Science and Technology of Mazandaran, P.O. Box, Behshahr, 48518-78195 Iran
- Tecnologico de Monterrey, Escuela de Ingenieríay Ciencias, Puebla, Mexico
| | - Awais Bokhari
- Sustainable Process Integration Laboratory, Faculty of Mechanical Engineering, SPIL, NETME Centre, Brno University of Technology, VUT Brno, Technická 2896/2, 616 00, Brno, Czech Republic
- Chemical Engineering Department, COMSATS University Islamabad (CUI), Lahore Campus, Lahore, Punjab, 54000 Pakistan
| | - Melika Karimian
- Faculty of Civil Engineering, Architecture and Urban Planning, University of Eyvanekey, Eyvanki, Iran
| | | | - Mika Sillanpää
- Faculty of Science and Technology, School of Applied Physics, University Kebangsaan Malaysia, 43600 Bangi, Selangor Malaysia
- International Research Centre of Nanotechnology for Himalayan Sustainability (IRCNHS), Shoolini University, Solan, 173212 Himachal Pradesh India
- Department of Chemical Engineering, School of Mining, Metallurgy and Chemical Engineering, University of Johannesburg, P. O. Box 17011, Doornfontein, 2028 South Africa
| | - Hitesh Panchal
- Mechanical Engineering Department, Government Engineering College Patan, Patan, Gujarat India
| | - Ali Jawad Alrubaie
- Department of Medical Instrumentation Techniques Engineering, Al-Mustaqbal University College, 51001 Hilla, Iraq
| | - Yousof Rezakhani
- Department of Civil Engineering, Pardis Branch, Islamic Azad University, Pardis, Iran
| |
Collapse
|
9
|
Review of Method and a New Tool for Decline and Inactive SARS-CoV-2 in Wastewater Treatment. CLEANER CHEMICAL ENGINEERING 2022. [PMCID: PMC9213033 DOI: 10.1016/j.clce.2022.100037] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Following the recent outbreak of the COVID-19 pandemic caused by the SARS-CoV-2 virus, monitoring sewage has become crucial, according to reports that the virus was detected in sewage. Currently, various methods are discussed for understanding the SARS-CoV-2 using wastewater surveillance. This paper first introduces the fundamental knowledge of primary, secondary, and tertiary water treatment on SARS-CoV-2. Next, a thorough overview is presented to summarize the recent developments and breakthroughs in removing SARS-CoV-2 using solar water disinfection (SODIS) and UV (UVA (315–400 nm), UVB (280-315 nm), and UVC (100–280 nm)) process. In addition, Due to the fact that the distilled water can be exposed to sunlight if there is no heating source, it can be disinfected using solar water disinfection (SODIS). SODIS, on the other hand, is a well-known method of reducing pathogens in contaminated water; moreover, UVC can inactivate SARS-CoV-2 when the wavelength is between 100 to 280 nanometers. High temperatures (more than 56°C) and UVC are essential for eliminating SARS-CoV-2; however, the SODIS systems use UVA and work at lower temperatures (less than45°C). Therefore, using SODIS methods for wastewater treatment (or providing drinking water) is not appropriate during a situation like the ongoing pandemic. Finally, a wastewater-based epidemiology (WBE) tracking tool for SARS-CoV-2 can be used to detect its presence in wastewater.
Collapse
|
10
|
Zahmatkesh S, Amesho KTT, Sillanpää M. A critical review on diverse technologies for advanced wastewater treatment during SARS-CoV-2 pandemic: What do we know? JOURNAL OF HAZARDOUS MATERIALS ADVANCES 2022; 7:100121. [PMID: 37520795 PMCID: PMC9250822 DOI: 10.1016/j.hazadv.2022.100121] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 06/25/2022] [Accepted: 06/29/2022] [Indexed: 12/23/2022]
Abstract
Advanced wastewater treatment technologies are effective methods and currently attract growing attention, especially in arid and semi-arid areas, for reusing water, reducing water pollution, and explicitly declining, inactivating, or removing SARS-CoV-2. Overall, removing organic matter and micropollutants prior to wastewater reuse is critical, considering that water reclamation can help provide a crop irrigation system and domestic purified water. Advanced wastewater treatment processes are highly recommended for contaminants such as monovalent ions from an abiotic source and SARS-CoV-2 from an abiotic source. This work introduces the fundamental knowledge of various methods in advanced water treatment, including membranes, filtration, Ultraviolet (UV) irradiation, ozonation, chlorination, advanced oxidation processes, activated carbon (AC), and algae. Following that, an analysis of each process for organic matter removal and mitigation or prevention of SARS-CoV-2 contamination is discussed. Next, a comprehensive overview of recent advances and breakthroughs is provided for each technology. Finally, the advantages and disadvantages of each method are discussed.
Collapse
Key Words
- AOP, advanced oxidation process
- Activated carbon
- Advanced oxidation process
- Algae
- BOD, biological oxygen demand
- COD, chemical oxygen demand
- Chlorination
- DBP, disinfection by-product
- EPS, extracellular polymeric substances
- GAC, granular activated carbon
- Membrane
- Micropollutants
- Ozonation
- PAC, powdered activated carbon
- SARS-CoV-2
- TOC, total organic carbon
- TSS, total suspended solids
- UV irradiation
- UV, ultraviolet
- WWTPs, wastewater treatment plants
- Wastewater
Collapse
Affiliation(s)
- Sasan Zahmatkesh
- Department of Chemical Engineering, University of Science and Technology of Mazandaran, P.O. Box 48518-78195, Behshahr, Iran
| | - Kassian T T Amesho
- Institute of Environmental Engineering, National Sun Yat-Sen University, Kaohsiung 804, Taiwan
- The International University of Management, Centre for Environmental Studies, Main Campus, Dorado Park Ext 1, Windhoek, Namibia
| | - Mika Sillanpää
- Faculty of Science and Technology, School of Applied Physics, University Kebangsaan Malaysia, 43600, Bangi, Selangor, Malaysia
- International Research Centre of Nanotechnology for Himalayan Sustainability (IRCNHS), Shoolini University, Solan, 173212, Himachal Pradesh, India
- Department of Chemical Engineering, School of Mining, Metallurgy and Chemical Engineering, University of Johannesburg, P. O. Box 17011, Doornfontein 2028, South Africa
| |
Collapse
|
11
|
Zahmatkesh S, Sillanpaa M, Rezakhani Y, Wang C. Review of concerned SARS-CoV-2 variants like Alpha (B.1.1.7), Beta (B.1.351), Gamma (P.1), Delta (B.1.617.2), and Omicron (B.1.1.529), as well as novel methods for reducing and inactivating SARS-CoV-2 mutants in wastewater treatment facilities. JOURNAL OF HAZARDOUS MATERIALS ADVANCES 2022; 7:100140. [PMID: 37520798 PMCID: PMC9349052 DOI: 10.1016/j.hazadv.2022.100140] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 07/23/2022] [Accepted: 08/03/2022] [Indexed: 12/23/2022]
Abstract
The coronavirus known as COVID-19, which causes pandemics, is causing a global epidemic at a critical stage today. Furthermore, novel mutations in the SARS-CoV-2 spike protein have been discovered in an entirely new strain, impacting the clinical and epidemiological features of COVID-19. Variants of these viruses can increase the transmission in wastewater, lead to reinfection, and reduce immunity provided by monoclonal antibodies and vaccinations. According to the research, a large quantity of viral RNA was discovered in wastewater, suggesting that wastewater can be a crucial source of epidemiological data and health hazards. The purpose of this paper is to introduce a few basic concepts regarding wastewater surveillance as a starting point for comprehending COVID-19's epidemiological aspects. Next, the observation of Alpha (B.1.1.7), Beta (B.1.351), Gamma (P.1), Delta (B.1.617.2), and Omicron (B.1.1.529) in wastewater is discussed in detail. Secondly, the essential information for the initial, primary, and final treating sewage in SARS-CoV-2 is introduced. Following that, a thorough examination is provided to highlight the newly developed methods for eradicating SARS-CoV-2 using a combination of solar water disinfection (SODIS) and ultraviolet radiation A (UVA (315-400 nm)), ultraviolet radiation B (UVB (280-315 nm)), and ultraviolet radiation C (UVC (100-280 nm)) processes. SARS-CoV-2 eradication requires high temperatures (above 56°C) and UVC. However, SODIS technologies are based on UVA and operate at cooler temperatures (less than 45°C). Hence, it is not appropriate for sewage treatment (or water consumption) to be conducted using SODIS methods in the current pandemic. Finally, SARS-CoV-2 may be discovered in sewage utilizing the wastewater-based epidemiology (WBE) monitoring method.
Collapse
Affiliation(s)
- Sasan Zahmatkesh
- Department of Chemical Engineering, University of Science and Technology of Mazandaran, P.O. Box 48518-78195, Behshahr, Iran
| | - Mika Sillanpaa
- Faculty of Science and Technology, School of Applied Physics, University Kebangsaan Malaysia, 43600, Bangi, Selangor, Malaysia
- International Research Centre of Nanotechnology for Himalayan Sustainability (IRCNHS), Shoolini University, Solan, 173212, Himachal Pradesh, India
- Department of Chemical Engineering, School of Mining, Metallurgy and Chemical Engineering, University of Johannesburg, P. O. Box 17011, Doornfontein 2028, South Africa
| | - Yousof Rezakhani
- Department of Civil Engineer in g, Pardis Branch, Islamic Azad University, Pardis, Iran
| | - Chongqing Wang
- School of Chemical Engineering, Zhengzhou University, Zhengzhou 450001, China
| |
Collapse
|