1
|
Yakovleva EV, Deneva SV, Shamrikova EV, Gabov DN, Dubrovskiy YA. Polycyclic aromatic compounds in marsh and watershed soils of the Barents Sea coastline. MARINE POLLUTION BULLETIN 2025; 216:117979. [PMID: 40250099 DOI: 10.1016/j.marpolbul.2025.117979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2025] [Revised: 04/03/2025] [Accepted: 04/10/2025] [Indexed: 04/20/2025]
Abstract
We studied the PAH profiles in the soils of the marsh areas along the Barents Sea coast and found that the PAH content in the study area is low and corresponds to background levels. Peat soils contained more PAHs than organomineral soils, which is due to the characteristics of their historical formation. PAHs in soils along the Barents Sea coast are of petrogenic origin. The main sources of PAHs in marsh soils are guano, macrophytobenthos and plastic waste. The soils of the water catchment areas were of more natural pedogenic origin. The composition of PAHs in soils of the low and middle marshes is significantly influenced by sea tides bringing organic matter. The PAH composition of the high marshes and areas at the boundaries of the watersheds in the ecotone strip is determined by the composition of the vegetation and the presence of peat formation. Cluster analysis data show that soil type has a greater influence on PAH composition than proximity to the sea. The accumulation and migration of PAHs in soil profiles of organomineral soils is influenced by the salinity and granulometric composition of the soils and, to a lesser extent, by the organic carbon and nitrogen content. In organogenic soils, the content of organic matter and the degree of decomposition of peat are the main factors influencing the composition of PAHs. Permafrost acts as a barrier to the migration of PAHs to the underlying layers. Significant accumulation of PAHs is observed at the boundary of the seasonally thawed layer (STL).
Collapse
Affiliation(s)
- Evgenia V Yakovleva
- Institute of Biology of Komi Scientific Centre of the Ural Branch of the Russian Academy of Sciences, 167982 Syktyvkar, Kommunisticheskaya str., 28, Russia.
| | - Svetlana V Deneva
- Institute of Biology of Komi Scientific Centre of the Ural Branch of the Russian Academy of Sciences, 167982 Syktyvkar, Kommunisticheskaya str., 28, Russia
| | - Elena V Shamrikova
- Institute of Biology of Komi Scientific Centre of the Ural Branch of the Russian Academy of Sciences, 167982 Syktyvkar, Kommunisticheskaya str., 28, Russia
| | - Dmitriy N Gabov
- Institute of Biology of Komi Scientific Centre of the Ural Branch of the Russian Academy of Sciences, 167982 Syktyvkar, Kommunisticheskaya str., 28, Russia
| | - Yuriy A Dubrovskiy
- Institute of Biology of Komi Scientific Centre of the Ural Branch of the Russian Academy of Sciences, 167982 Syktyvkar, Kommunisticheskaya str., 28, Russia
| |
Collapse
|
2
|
Wang S, Li C, Zhang L, Chen Q, Wang S. Assessing the ecological impacts of polycyclic aromatic hydrocarbons petroleum pollutants using a network toxicity model. ENVIRONMENTAL RESEARCH 2024; 245:117901. [PMID: 38092235 DOI: 10.1016/j.envres.2023.117901] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 12/03/2023] [Accepted: 12/07/2023] [Indexed: 01/06/2024]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) are significant petroleum pollutants that have long-term impacts on human health and ecosystems. However, assessing their toxicity presents challenges due to factors such as cost, time, and the need for comprehensive multi-component analysis methods. In this study, we utilized network toxicity models, enrichment analysis, and molecular docking to analyze the toxicity mechanisms of PAHs at different levels: compounds, target genes, pathways, and species. Additionally, we used the maximum acceptable concentration (MAC) value and risk quotient (RQ) as an indicator for the potential ecological risk assessment of PAHs. The results showed that higher molecular weight PAHs had increased lipophilicity and higher toxicity. Benzo[a]pyrene and Fluoranthene were identified as core compounds, which increased the risk of cancer by affecting core target genes such as CCND1 in the human body, thereby influencing signal transduction and the immune system. In terms of biological species, PAHs had a greater toxic impact on aquatic organisms compared to terrestrial organisms. High molecular weight PAHs had lower effective concentrations on biological species, and the ecological risk was higher in the Yellow River Delta region. This research highlights the potential application of network toxicity models in understanding the toxicity mechanisms and species toxicity of PAHs and provides valuable insights for monitoring, prevention, and ecological risk assessment of these pollutants.
Collapse
Affiliation(s)
- Shiqi Wang
- School of Energy, Faculty of Engineering, China University of Geosciences, Beijing, 100083, PR China.
| | - Congcong Li
- College of Civil Engineering and Architecture, Binzhou University, Binzhou City, Shandong Province, 256600, PR China.
| | - Lisheng Zhang
- Shengli Geological Mud Logging Company of Sinopic Matrix Co., Ltd., Dongying, Shandong Province, 257000, PR China
| | - Qian Chen
- Shengli Geological Mud Logging Company of Sinopic Matrix Co., Ltd., Dongying, Shandong Province, 257000, PR China
| | - Shuoliang Wang
- School of Energy, Faculty of Engineering, China University of Geosciences, Beijing, 100083, PR China.
| |
Collapse
|
3
|
Sun N, Wang T, Qi B, Yu S, Yao Z, Zhu G, Fu Q, Li C. Inhibiting release of phenanthrene from rice-crab coculture sediments to overlying water with rice stalk biochar: Performance and mechanisms. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 908:168385. [PMID: 37952670 DOI: 10.1016/j.scitotenv.2023.168385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 11/04/2023] [Accepted: 11/05/2023] [Indexed: 11/14/2023]
Abstract
Rice crab coculture is a new ecological agriculture model combining rice cultivation and crab farming. Current research related to rice crab coculture only focuses on production theory and technical system establishment, while ignoring the potential ecological risk of Polycyclic aromatic hydrocarbon(PAHs) in rice crab coculture sediment. In this study, rice straw was used to make rice straw biochar to explore the performance and mechanism of inhibiting release of phenanthrene(PHE) from rice-crab coculture sediments to overlying water with rice stalk biochar. The kinetic and isotherm adsorption data were best represented by the Langmuir model and pseudo-second-order model with a maximum adsorption capacity of 53.35 mg/g at 12 h contact time. The results showed that PHE was released from the rice-crab substrate to the overlying water in dissolved and particle forms as a result of bioturbation, and the PHE concentrations in dissolved and particle forms were 20.9 μg/L and 14.22 μg/L, respectively. This leads to secondary ecological risks in rice-crab co-culture systems. This is related to dissolved organic carbon(DOC) carrying the dissolved PHE and total suspended solids(TSS) carrying the particle PHE in the overlying water. Due to its large specific surface area, rice straw biochar is rich in functional groups, providing multiple hydrophobic adsorption sites. After adding rice straw biochar at 0.5 % w/w (dry weight) dose, the removal efficiency of dissolved and particulate PHE in the overlying water were 78.99 % and 42.11 %, respectively. Rice straw biochar is more competitively adsorbed PHE in the overlying water than TSS and DOC. The removal efficiency of PHE from the sediment was 52.75 %. This study confirmed that rice stalk biochar could effectively inhibit PHE migration and release in paddy sediment. It provides an environment- friendly in situ remediation method for the management of PAHs pollution from crab crops in rice fields.
Collapse
Affiliation(s)
- Nan Sun
- School of Water Conservancy and Civil Engineering, Northeast Agricultural University, Harbin 150030, China; Research Center for Ecological Agriculture and Soil-Water Environment Restoration, Northeast Agricultural University, Harbin, Heilongjiang 150030, China; Heilongjiang Academy of Environmental Sciences Postdoctoral Joint Scientific Research Station, Harbin 150030, China
| | - Tianyi Wang
- School of Water Conservancy and Civil Engineering, Northeast Agricultural University, Harbin 150030, China; Research Center for Ecological Agriculture and Soil-Water Environment Restoration, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Bowei Qi
- School of Water Conservancy and Civil Engineering, Northeast Agricultural University, Harbin 150030, China; Research Center for Ecological Agriculture and Soil-Water Environment Restoration, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Shijie Yu
- School of Water Conservancy and Civil Engineering, Northeast Agricultural University, Harbin 150030, China; Research Center for Ecological Agriculture and Soil-Water Environment Restoration, Northeast Agricultural University, Harbin, Heilongjiang 150030, China; Smart Home Business Group, Midea Group, Wuxi 214000, China
| | - Zhongbao Yao
- School of Water Conservancy and Civil Engineering, Northeast Agricultural University, Harbin 150030, China; Research Center for Ecological Agriculture and Soil-Water Environment Restoration, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Guanglei Zhu
- School of Water Conservancy and Civil Engineering, Northeast Agricultural University, Harbin 150030, China; Research Center for Ecological Agriculture and Soil-Water Environment Restoration, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Qiang Fu
- School of Water Conservancy and Civil Engineering, Northeast Agricultural University, Harbin 150030, China.
| | - Chenyang Li
- School of Water Conservancy and Civil Engineering, Northeast Agricultural University, Harbin 150030, China; Research Center for Ecological Agriculture and Soil-Water Environment Restoration, Northeast Agricultural University, Harbin, Heilongjiang 150030, China.
| |
Collapse
|
4
|
Qi A, Wang P, Lv J, Zhao T, Huang Q, Wang Y, Zhang X, Wang M, Xiao Y, Yang L, Ji Y, Wang W. Distributions of PAHs, NPAHs, OPAHs, BrPAHs, and ClPAHs in air, bulk deposition, soil, and water in the Shandong Peninsula, China: Urban-rural gradient, interface exchange, and long-range transport. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 265:115494. [PMID: 37742577 DOI: 10.1016/j.ecoenv.2023.115494] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 08/27/2023] [Accepted: 09/16/2023] [Indexed: 09/26/2023]
Abstract
A systematic study of the movement of PAHs (Polycyclic aromatic hydrocarbons) and their derivatives through air, soil, and water is key to understanding the exchange and transport mechanisms of these pollutants in the environment and for ultimately improving environmental quality. PAHs and their derivatives, such as nitrated PAHs (NPAHs), oxygenated PAHs (OPAHs), brominated PAHs (BrPAHs) and chlorinated PAHs (ClPAHs), were analyzed in air, bulk deposition, soil, and water samples collected from urban, rural, field, and background sites on the eastern coast of China. The goal was to investigate and discuss their spatiotemporal variations, exchange fluxes, and transport potential. The concentrations of PAHs and their derivatives in the air and bulk deposition displayed distinct seasonal patterns, with higher concentrations observed during the winter and spring and lower concentrations during the summer and autumn. NPAHs exhibited the opposite trend. Significant urban-rural gradients were observed for most of the PAHs and their derivatives. According to the air-soil fugacity calculations, 2-3 ring PAHs, BrPAHs, and ClPAHs were found to volatilize from the soil into the air, while 4-7 ring PAHs, OPAHs, and NPAHs deposited from the air into the soil. The air-water fugacity of the PAHs and their derivatives indicated that surface water was an important source for the ambient atmosphere in Qingdao. The characteristic travel distances (CTDs) and persistence (Pov) for atmospheric transport were much lower than that for the water samples, which may be due to the longer half-lives of PAHs and their derivatives in water. NPAHs and ClPAHs with long transport distances and strong persistence in water could lead to a significant impact on marine pollution.
Collapse
Affiliation(s)
- Anan Qi
- Environment Research Institute, Shandong University, Qingdao 266237, China
| | - Pengcheng Wang
- Environment Research Institute, Shandong University, Qingdao 266237, China
| | - Jianhua Lv
- Qingdao Research Academy of Environmental Sciences, Qingdao 266003, China
| | - Tong Zhao
- Environment Research Institute, Shandong University, Qingdao 266237, China; Qingdao Research Academy of Environmental Sciences, Qingdao 266003, China
| | - Qi Huang
- Environment Research Institute, Shandong University, Qingdao 266237, China
| | - Yiming Wang
- Environment Research Institute, Shandong University, Qingdao 266237, China
| | - Xiongfei Zhang
- Environment Research Institute, Shandong University, Qingdao 266237, China
| | - Miao Wang
- College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Yang Xiao
- College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Lingxiao Yang
- Environment Research Institute, Shandong University, Qingdao 266237, China; Jiangsu Collaborative Innovation Center for Climate Change, Nanjing, Jiangsu, 210023, China.
| | - Yaqin Ji
- College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China.
| | - Wenxing Wang
- Environment Research Institute, Shandong University, Qingdao 266237, China
| |
Collapse
|
5
|
Quantification of Higher Molecular Weight Polycyclic Aromatic Hydrocarbons in Water Samples by Modified Magnetic Nanoparticle and Gas Chromatography–Mass Spectrometry. CHEMISTRY AFRICA 2022. [DOI: 10.1007/s42250-022-00487-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
6
|
Ambient background estimation of PAHs in urban soils: A case study in Macau, China. Ecol Modell 2022. [DOI: 10.1016/j.ecolmodel.2022.110108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|