1
|
Yang B, Zhou P, Tian L, Graham N, Li G, Su Z, Yu W. The nanoscale explanation of metal cations differences in enhancing the Fe(III) coagulation performance. WATER RESEARCH 2025; 280:123524. [PMID: 40147297 DOI: 10.1016/j.watres.2025.123524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2025] [Revised: 03/17/2025] [Accepted: 03/19/2025] [Indexed: 03/29/2025]
Abstract
Coagulation is a widely applied and important process for water treatment, and the development of improved coagulation reagents continues to be a practical objective. However, mechanisms guiding the development of composite coagulants remain insufficiently understood. In addressing this deficiency, this study has investigated the enhancement of conventional Fe(III) coagulation by composite coagulants that incorporate an additional metal salt (Me: Ca²⁺, Al³⁺, Ti⁴⁺, Zr⁴⁺), focusing on the mechanistic roles that Me constituents play in Fe-based coagulation. The effectiveness of composite coagulants was assessed through floc size and the removal of organics and phosphates. Results demonstrated that Me constituents enhance coagulation performances to varying extents, with Al³⁺ and Zr⁴⁺ showing the most significant improvements. FT-ICR MS analysis at the molecular scale reveals that additional Me facilitates the removal of humic acid, hydrophobic macromolecules, and highly aromatic organics containing polycarboxyl and secondary carbon structures. EXAFS results indicate that co-hydrolysis of Fe³⁺ with Me disrupts the formation of conventional ferrihydrite at the nanoscale of flocs and promotes the development of Fe-phosphate clusters. Me effectively reduces the corner- and edge-sharing coordination between FeO₆ octahedra within clusters, resulting in a more dispersed arrangement of FeO₆ polymers with available binding sites for the PO4 tetrahedron. The shortened Fe-P bond indicates that Me promotes a more compact link between FeO₆ octahedra and PO₄ tetrahedra. By revealing how cations in composite coagulants change the nanoscale structure of Fe flocs to affect macroscopic coagulation, this study enhances the understanding of metal ion interactions during co-hydrolysis and co-precipitation in natural systems.
Collapse
Affiliation(s)
- Bingqian Yang
- State Key Laboratory of Environmental Aquatic Chemistry, Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, PR China; College of Resources and Environment, University of Chinese Academy of Sciences (UCAS), Beijing 100049, PR China
| | - Peng Zhou
- State Key Laboratory of Environmental Aquatic Chemistry, Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, PR China; College of Resources and Environment, University of Chinese Academy of Sciences (UCAS), Beijing 100049, PR China
| | - Long Tian
- State Key Laboratory of Environmental Aquatic Chemistry, Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, PR China; College of Resources and Environment, University of Chinese Academy of Sciences (UCAS), Beijing 100049, PR China
| | - Nigel Graham
- Department of Civil and Environmental Engineering, Imperial College London, South Kensington Campus, London SW7 2AZ, United Kingdom
| | - Guibai Li
- State Key Laboratory of Urban Water Resource and Environment (SKLUWRE), Harbin Institute of Technology, 73 Huanghe Road, Nangang District, Harbin 150090, PR China
| | - Zhaoyang Su
- State Key Laboratory of Environmental Aquatic Chemistry, Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, PR China.
| | - Wenzheng Yu
- State Key Laboratory of Environmental Aquatic Chemistry, Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, PR China.
| |
Collapse
|
2
|
Sajid A, Naseer S, Ren M, Cui J, Wu J, Wei Z. Effects of exogenous amino acids on yttrium uptake and accumulation in tomato ( Solanum lycopersicum). INTERNATIONAL JOURNAL OF PHYTOREMEDIATION 2025:1-9. [PMID: 40035466 DOI: 10.1080/15226514.2025.2472746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/05/2025]
Abstract
This study investigated the impacts of exogenous amino acid supplementation on the uptake, translocation, and accumulation of yttrium (Y) in tomato plants (Solanum lycopersicum). To understand how amino acids enhance nutrient uptake and plant growth by using Hoagland nutrient solution. The results indicated that the combination of Y with glutamic acid (Y + Glu) significantly increased Y concentration in the leaves to 28.5 ± 1.42 µg g-1, while the combination with histidine (Y + His) resulted in a markedly lower concentration of 2.7 ± 0.06 µg g-1. Notably, glutamic acid proved to be particularly effective in enhancing Y accumulation in xylem sap. The control plants exhibited a higher xylem sap flow rate of 0.27 ± 0.008 g h-1, which was significantly greater than those treated with amino acids (p < 0.05). Histidine levels were elevated in the Y + His treatment, reaching 194.78 ± 13.79 μmol L-1, while tryptophan and aspartic acid showed their highest concentrations in their respective treatments at 109.92 ± 14.43 μmol L-1 and 212.95 ± 13.65 μmol L-1. These findings demonstrated that amino acid supplementation substantially enhanced the phytoextraction of Y in tomato plants, through the application of glutamic acid. Further exploration into the molecular mechanisms governing Y complexation and transport within plants through phytoremediation is needed.
Collapse
Affiliation(s)
- Ali Sajid
- School of Environment, Nanjing Normal University, Nanjing, China
| | - Sidra Naseer
- School of Environment, Nanjing Normal University, Nanjing, China
| | - Meiyu Ren
- School of Environment, Nanjing Normal University, Nanjing, China
| | - Jing Cui
- School of Environment, Nanjing Normal University, Nanjing, China
| | - Junliang Wu
- College of Resource and Environment, Nanjing Agricultural University, Nanjing, China
| | - Zhenggui Wei
- School of Environment, Nanjing Normal University, Nanjing, China
| |
Collapse
|
3
|
Kumar P, Thakur N, Kumar K, Kumar S, Dutt A, Thakur VK, Gutiérrez-Rodelo C, Thakur P, Navarrete A, Thakur N. Catalyzing innovation: Exploring iron oxide nanoparticles - Origins, advancements, and future application horizons. Coord Chem Rev 2024; 507:215750. [DOI: 10.1016/j.ccr.2024.215750] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
4
|
Ahmed AM, Mekonnen ML, Mekonnen KN. Polymer-based nanocomposite adsorbents for resource recovery from wastewater. RSC Adv 2023; 13:31687-31703. [PMID: 37908667 PMCID: PMC10613956 DOI: 10.1039/d3ra05453e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Accepted: 10/16/2023] [Indexed: 11/02/2023] Open
Abstract
Developing mitigation mechanisms for eutrophication caused by the uncontrolled release of nutrients is in the interest of the scientific community. Adsorption, being operationally simple and economical with no significant secondary pollution, has proven to be a feasible technology for resource recovery. However, the utility of adsorption often lies in the availability of effective adsorbents. In this regard, polymer-based nanocomposite (PNC) adsorbents have been highly acclaimed by researchers because of their high surface area, multiple functional groups, biodegradability, and ease of large-scale production. This review paper elaborates on the functionality, adsorption mechanisms, and factors that affect the adsorption and adsorption-desorption cycles of PNC adsorbents toward nutrient resources. Moreover, this review gives insight into the application of recovered nutrient resources in soil amendment.
Collapse
Affiliation(s)
- Aminat Mohammed Ahmed
- Department of Industrial Chemistry, College of Natural and Applied Sciences, Addis Ababa Science and Technology University P.O. Box 16417 Addis Ababa Ethiopia
- Nanotechnology Centre of Excellence, Addis Ababa Science and Technology University P.O. Box 16417 Addis Ababa Ethiopia
- Department of Chemistry, College of Natural Sciences, Wollo University P.O. Box 1145, Dessie Ethiopia
| | - Menbere Leul Mekonnen
- Department of Industrial Chemistry, College of Natural and Applied Sciences, Addis Ababa Science and Technology University P.O. Box 16417 Addis Ababa Ethiopia
- Nanotechnology Centre of Excellence, Addis Ababa Science and Technology University P.O. Box 16417 Addis Ababa Ethiopia
| | - Kebede Nigussie Mekonnen
- Department of Industrial Chemistry, College of Natural and Applied Sciences, Addis Ababa Science and Technology University P.O. Box 16417 Addis Ababa Ethiopia
- Nanotechnology Centre of Excellence, Addis Ababa Science and Technology University P.O. Box 16417 Addis Ababa Ethiopia
- Department of Chemistry, College of Natural and Computational Sciences, Mekelle University P.O. Box 231 Mekelle Ethiopia
| |
Collapse
|
5
|
Zhan Y, Qiu B, Lin J. Effect of common ions aging treatment on adsorption of phosphate onto and control of phosphorus release from sediment by lanthanum-modified bentonite. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 341:118109. [PMID: 37172347 DOI: 10.1016/j.jenvman.2023.118109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 04/21/2023] [Accepted: 05/04/2023] [Indexed: 05/14/2023]
Abstract
The objective of this work was to explore the influence of combined aging treatment using Na+, Ca2+, Cl-, HCO3- and SO42- on the adsorption of phosphate (HiPO4i-3) onto and the restraint of internal phosphorus (P) migration into overlying water (OW) by lanthanum modified bentonite (LMB). To achieve this aim, the adsorption characteristics and mechanisms of HiPO4i-3 onto the raw and aged LMBs (named as R-LMB and A-LMB, respectively) were comparatively studied, and the effects of R-LMB and A-LMB treatments (addition and capping) on the migration of P from sediment to OW were comparatively investigated. The results showed that the combined aging treatment of R-LMB with Na+, Ca2+, Cl-, HCO3- and SO42- inhibited the adsorption of HiPO4i-3. Similar to R-LMB, the precipitation of HiPO4i-3 with La3+ to form LaPO4 and the ligand exchange between CO32- and HiPO4i-3 to form the inner-sphere lanthanum-phosphate complexes are the important mechanisms for the HiPO4i-3 uptake by A-LMB. The R-LMB addition and capping can be effective in the suppression of endogenous P release to OW under hypoxia conditions. The inactivation of diffusive gradient in thin film-unstable P (DGT-UP) and potentially mobile P (PM-P) in sediment acted as a key role in the restraint of internal P release to OW by the R-LMB addition, and the immobilization of DGT-UP and PM-P in the topmost sediment played a key role in the interception of endogenous P migration into OW by the R-LMB capping. Although the Na+/Ca2+/Cl-/HCO3-/SO42- combined aging treatment had a certain negative effect on the efficiencies of LMB addition and capping to hinder the liberation of P from sediment into OW, the A-LMB addition and capping still can be effective in the control of sediment internal phosphorus pollution to a certain degree. The results of this work indicate that LMB has a high potential to be used as a capping/amendment material to control internal phosphorus pollution.
Collapse
Affiliation(s)
- Yanhui Zhan
- College of Marine Ecology and Environment, Shanghai Ocean University, Shanghai, 201306, China
| | - Bo Qiu
- College of Marine Ecology and Environment, Shanghai Ocean University, Shanghai, 201306, China
| | - Jianwei Lin
- College of Marine Ecology and Environment, Shanghai Ocean University, Shanghai, 201306, China.
| |
Collapse
|
6
|
Gou J, Wang G, Al-Tamimi HM, Alkhalifah T, Alturise F, Ali HE. Application of aluminum oxide nanoparticles in asphalt cement toward non-polluted green environment using linear regression. CHEMOSPHERE 2023; 321:137925. [PMID: 36682634 DOI: 10.1016/j.chemosphere.2023.137925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 12/23/2022] [Accepted: 01/18/2023] [Indexed: 06/17/2023]
Abstract
In order to decrease the greenhouse gas emissions generated by regular Portland cement (OPC), additional cementitious ingredients have been frequently employed, even while building road bases. OPC's susceptibility to moisture and lack of flexibility make it ineffective for stabilizing road bases. This research used alkali-activated materials (AAM) with fly ash to investigate the mechanical properties of cold asphalt binder (freeze-thaw cycles) including the compressive, flexural strength, workability and porosity of cement. Dry specimens and specimens in distilled water have both been used in the experiments to study these temperature correlations. One sample was tested at 20 °C, and the other was frozen and thawed five times at a temperature of -5 °C (cold region environment). The resulting mixtures' morphologies and microstructures were analyzed via SEM images. During the 7 to 28-day curing period, the mixture's growth ratio rose. The combination registered both the greatest and lowest robust elastic modulus. The total compressive strength of the material decreased as the water-to-cement ratio increased due to the greater amount of free water accessible with a higher cationic asphalt emulsion (CAE) content. The moderate loss of flexural strength with increasing CAE concentration after 7 and 28 days of curing was seen. There is not a major impact on flexural strength in the materials by looking at the very modest gaps in flexural strength between 7 and 28 days curing periods. Due to the particle shape and size of this precursor, FA's inclusion allowed for a lower water to binder rate while maintaining a similar level of workability. The porosity and water absorption values rose with FA substitutions. Further studies might clarify the lower flexural strength observed in this study by adding other hybrids plus fly ash such as lime or nanoparticles.
Collapse
Affiliation(s)
- Junfang Gou
- Hebei Agricultural University, BaoDing Hebei 071000 China
| | - Gang Wang
- Hebei Agricultural University, BaoDing Hebei 071000 China.
| | - Haneen M Al-Tamimi
- Air conditioning and Refrigeration Techniques Engineering Department, Al-Mustaqbal University College, Babylon, Iraq
| | - Tamim Alkhalifah
- Department of Computer, College of Science and Arts in Ar Rass, Qassim University, Ar Rass, Qassim, Saudi Arabia
| | - Fahad Alturise
- Department of Computer, College of Science and Arts in Ar Rass, Qassim University, Ar Rass, Qassim, Saudi Arabia
| | - H Elhosiny Ali
- Department of Physics, Faculty of Science, King Khalid University, P.O. Box 9004, Abha, 61413, Saudi Arabia; Research Center for Advanced Materials Science (RCAMS), King Khalid University, Abha 61413, P.O. Box 9004, Saudi Arabia; Physics Department, Faculty of Science, Zagazig University, Zagazig, Egypt
| |
Collapse
|
7
|
Esmaeili Bidhendi M, Parandi E, Mahmoudi Meymand M, Sereshti H, Rashidi Nodeh H, Joo SW, Vasseghian Y, Mahmoudi Khatir N, Rezania S. Removal of lead ions from wastewater using magnesium sulfide nanoparticles caged alginate microbeads. ENVIRONMENTAL RESEARCH 2023; 216:114416. [PMID: 36181897 DOI: 10.1016/j.envres.2022.114416] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 07/24/2022] [Accepted: 09/20/2022] [Indexed: 06/16/2023]
Abstract
In this study, an adsorbent made of alginate (Alg) caged magnesium sulfide nanoparticles (MgS) microbeads were used to treat lead ions (Pb2+ ions). The MgS nanoparticles were synthesized at low temperatures, and Alg@MgS hydrogel microbeads were made by the ion exchange process of the composite materials. The newly fabricated Alg@MgS was characterized by XRD, SEM, and FT-IR. The adsorption conditions were optimized for the maximum removal of Pb2+ ions by adjusting several physicochemical parameters, including pH, initial concentration of lead ions, Alg/MgS dosage, reaction temperature, equilibration time, and the presence of co-ions. This is accomplished by removing the maximum amount of Pb2+ ions. Moreover, the adsorbent utilized more than six times with a substantial amount (not less than 60%) of Pb2+ ions was eliminated. Considering the ability of sodium alginate (SA) for excellent metal chelation and controlled nanosized pore structure, the adsorption equilibrium of Alg@MgS can be reached in 60 min, and the highest adsorption capacity for Pb2+ was 84.7 mg/g. The sorption mechanism was explored by employing several isotherms. It was found that the Freundlich model fits the adsorption process quite accurately. The pseudo-second-order model adequately described the adsorption kinetics.
Collapse
Affiliation(s)
- Mehdi Esmaeili Bidhendi
- Department of Environmental Engineering, Graduate Faculty of Environment, University of Tehran, Iran
| | - Ehsan Parandi
- Department of Food Science & Technology, Faculty of Agricultural Engineering and Technology, University of Tehran, Karaj, Iran; Food Technology and Agricultural Products Research Center, Standard Research Institute (SRI), Karaj, Iran
| | - Masoumeh Mahmoudi Meymand
- Food Technology and Agricultural Products Research Center, Standard Research Institute (SRI), Karaj, Iran
| | - Hassan Sereshti
- Department of Chemistry, Faculty of Science, University of Tehran, Tehran, Iran.
| | - Hamid Rashidi Nodeh
- Food Technology and Agricultural Products Research Center, Standard Research Institute (SRI), Karaj, Iran
| | - Sang-Woo Joo
- Department of Chemistry, Soongsil University, Seoul, 06978, South Korea
| | - Yasser Vasseghian
- Department of Chemistry, Soongsil University, Seoul, 06978, South Korea; Department of Sustainable Engineering, Saveetha School of Engineering, SIMATS, Chennai, 602105, India
| | - Nadia Mahmoudi Khatir
- Department of Biotechnology, Faculty of Biological Sciences, Alzahra University, Tehran, Iran
| | - Shahabaldin Rezania
- Department of Environment and Energy, Sejong University, Seoul, 05006, South Korea.
| |
Collapse
|
8
|
Ji M, Li B, Majdi A, Alkhalifah T, Alturise F, Ali HE. Application of nano remediation of mine polluted in acid mine drainage water using machine learning model. CHEMOSPHERE 2023; 311:136926. [PMID: 36272625 DOI: 10.1016/j.chemosphere.2022.136926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 10/13/2022] [Accepted: 10/16/2022] [Indexed: 06/16/2023]
Abstract
Acid mine drainage (AMD) is the term used to describe drainage from coal mines with high sulfur-bearing rocks. The oxidative weathering of metal sulfides leads to AMD. The acidic environment corrodes more harmful compounds in the soil, which is spread throughout the working area. One such significant metal is copper, which is extracted in massive quantities from ores rich in sulfide. A copper-extraction resin might be created by combining diatomaceous earth (DE) particles with polyethyleneimine (PEI), which is shown to have great selectivity and affinity for copper. In this effort, PEI-DE particles' copper absorption level was examined by using synthetic and actual acid mine drainage samples at varied pH values. The findings of the copper uptake particles have been examined through the Support Vector Machine (SVM) model. Using the n-fold 14 cross-validation approach, the quantities of parameters and C are estimated to be 0.001 and 0.01, respectively. The SVM analysis was correct, and the findings indicated that copper could bind to the material efficiently and preferentially at pH 4. Subsequent water elution studies at a pH value of 1 confirmed the pH-reliant interaction between dissolved Cu and PEI by demonstrating full release of the adsorbed Cu. In this research, the copper absorption of PEI-DE particles from synthetic and genuine AMD specimens was studied based on several pH conditions. The findings suggest that copper may attach to the material effectively and preferentially at pH 4. Studies of filtering water at pH1 later confirmed that all of the adsorbed Cu was released. This shows that the interaction between PEI and dissolved Cu depends on PH.
Collapse
Affiliation(s)
- Mingfei Ji
- Collaborative Innovation Center of Water Security for Water Source Region of Mid-route Project of South-North Water Diversion of Henan Province, Nanyang Normal University, Nanyang, 473061, China; College of Water Resource and Environment Engineering, Nanyang Normal University, Nanyang, 473061, China.
| | - Bailian Li
- International Center for Ecology and Sustainability, University of California, Riverside, 17619 Glen Hollow Way, Riverside, CA, 92504, USA
| | - Ali Majdi
- Department of Building and Construction Technologies Engineering, Al- Mustaqbal University College, 51001 Babylon, Iraq
| | - Tamim Alkhalifah
- Department of Computer, College of Science and Arts in Ar Rass, Qassim University, Ar Rass, Qassim, Saudi Arabia
| | - Fahad Alturise
- Department of Computer, College of Science and Arts in Ar Rass, Qassim University, Ar Rass, Qassim, Saudi Arabia
| | - H Elhosiny Ali
- Advanced Functional Materials & Optoelectronic Laboratory (AFMOL), Department of Physics, Faculty of Science, King Khalid University, P.O. Box 9004, Abha, 61413, Saudi Arabia; Research Center for Advanced Materials Science (RCAMS), King Khalid University, P.O. Box 9004, Abha, 61413, Saudi Arabia; Physics Department, Faculty of Science, Zagazig University, Zagazig, 44519, Egypt
| |
Collapse
|
9
|
Ahmed AM, Mekonnen ML, Mekonnen KN. Polymer-based nanocomposite adsorbents for resource recovery from wastewater. RSC Adv 2023; 13:31687-31703. [DOI: https:/doi.org/10.1039/d3ra05453e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2023] Open
Abstract
Adsorption is alternative technique for recovery of nutrient resources with no/less secondary pollution. PNC adsorbents are effective for removal and recovery of nutrient resources, and reusing nutrients as fertilizer could prevent eutrophication.
Collapse
Affiliation(s)
- Aminat Mohammed Ahmed
- Department of Industrial Chemistry, College of Natural and Applied Sciences, Addis Ababa Science and Technology University, P.O. Box 16417, Addis Ababa, Ethiopia
- Nanotechnology Centre of Excellence, Addis Ababa Science and Technology University, P.O. Box 16417, Addis Ababa, Ethiopia
- Department of Chemistry, College of Natural Sciences, Wollo University, P.O. Box 1145, Dessie, Ethiopia
| | - Menbere Leul Mekonnen
- Department of Industrial Chemistry, College of Natural and Applied Sciences, Addis Ababa Science and Technology University, P.O. Box 16417, Addis Ababa, Ethiopia
- Nanotechnology Centre of Excellence, Addis Ababa Science and Technology University, P.O. Box 16417, Addis Ababa, Ethiopia
| | - Kebede Nigussie Mekonnen
- Department of Industrial Chemistry, College of Natural and Applied Sciences, Addis Ababa Science and Technology University, P.O. Box 16417, Addis Ababa, Ethiopia
- Nanotechnology Centre of Excellence, Addis Ababa Science and Technology University, P.O. Box 16417, Addis Ababa, Ethiopia
- Department of Chemistry, College of Natural and Computational Sciences, Mekelle University, P.O. Box 231, Mekelle, Ethiopia
| |
Collapse
|