1
|
Berri N, Moise S, Keirouz A, Jennings A, Castro-Dominguez B, Leese HS. Repurposing Laboratory Plastic into Functional Fibrous Scaffolds via Green Electrospinning for Cell Culture and Tissue Engineering Applications. ACS Biomater Sci Eng 2025. [PMID: 40207865 DOI: 10.1021/acsbiomaterials.5c00146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/11/2025]
Abstract
Cell culture for tissue engineering is a global and flexible research method that relies heavily on plastic consumables, which generates millions of tons of plastic waste annually. Here, we develop an innovative sustainable method for scaffold production by repurposing spent tissue culture polystyrene into biocompatible microfiber scaffolds, while using environmentally friendly solvents. Our new green electrospinning approach utilizes two green, biodegradable and low-toxicity solvents, dihydrolevoglucosenone (Cyrene) and dimethyl carbonate (DMC) to process laboratory cell culture petri dishes into polymer dopes for electrospinning. Scaffolds produced from these spinning dopes, produced both aligned and non-aligned microfiber configurations, were examined in detail. The scaffolds exhibited mechanical properties comparable to cancellous bones whereby aligned scaffolds achieved an ultimate tensile strength (UTS) of 4.58 ± 0.34 MPa and a Young's modulus of 11.87 ± 0.54 MPa, while the non-aligned scaffolds exhibited a UTS of 4.27 ± 0.92 MPa and a Young's modulus of 20.37 ± 4.85. To evaluate their potential for cell-culture, MG63 osteoblast-like cells were seeded onto aligned and non-aligned scaffolds to assess their biocompatibility, cell adhesion, and differentiation, where the cell viability, DNA content, and proliferation were monitored over 14 days. DNA quantification demonstrated an eight-fold increase from 0.195 μg/mL (day 1) to 1.55 μg/mL (day 14), with a significant rise in cell metabolic activity over 7 days, and no observed cytotoxic effects. Confocal microscopy revealed elongated cell alignment on aligned fiber scaffolds, while rounded, disoriented cells were observed on non-aligned fiber scaffolds. Alizarin Red staining and calcium quantification confirmed osteogenic differentiation, as evidenced by mineral deposition on the scaffolds. This research therefore demonstrates the feasibility of this new method to repurpose laboratory polystyrene waste into sustainable cell culture tissue engineering scaffolds using eco-friendly solvents. Such an approach provides a route for cell culture for tissue engineering related activities to transition towards more sustainable and environmentally conscious scientific practices, thereby aligning with the principles of a circular economy.
Collapse
Affiliation(s)
- Nael Berri
- Department of Chemical Engineering, University of Bath, Bath BA2 7AY U.K
- Centre for Bioengineering and Biomedical Technologies (CBio), University of Bath, Bath BA2 7AY U.K
| | - Sandhya Moise
- Department of Chemical Engineering, University of Bath, Bath BA2 7AY U.K
- Centre for Bioengineering and Biomedical Technologies (CBio), University of Bath, Bath BA2 7AY U.K
| | - Antonios Keirouz
- Department of Chemical Engineering, University of Bath, Bath BA2 7AY U.K
| | - Andrew Jennings
- Department of Mechanical Engineering, University of Bath, Bath BA2 7AY U.K
| | - Bernardo Castro-Dominguez
- Department of Chemical Engineering, University of Bath, Bath BA2 7AY U.K
- Centre for Digital Manufacturing and Design (dMaDe), University of Bath, Bath BA2 7AY U.K
| | - Hannah S Leese
- Department of Chemical Engineering, University of Bath, Bath BA2 7AY U.K
- Centre for Bioengineering and Biomedical Technologies (CBio), University of Bath, Bath BA2 7AY U.K
| |
Collapse
|
2
|
Catizane C, Jiang Y, Sumner J. Mechanisms of electrochemical hydrogenation of aromatic compound mixtures over a bimetallic PtRu catalyst. Commun Chem 2025; 8:56. [PMID: 39988702 PMCID: PMC11847916 DOI: 10.1038/s42004-025-01413-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Accepted: 01/14/2025] [Indexed: 02/25/2025] Open
Abstract
Efficient electrochemical hydrogenation (ECH) of organic compounds is essential for sustainability, promoting chemical feedstock circularity and synthetic fuel production. This study investigates the ECH of benzoic acid, phenol, guaiacol, and their mixtures, key components in upgradeable oils, using a carbon-supported PtRu catalyst under varying initial concentrations, temperatures, and current densities. Phenol achieved the highest conversion (83.17%) with a 60% Faradaic efficiency (FE). In mixtures, benzoic acid + phenol yielded the best performance (64.19% conversion, 74% FE), indicating a synergistic effect. Notably, BA consistently exhibited 100% selectivity for cyclohexane carboxylic acid (CCA) across all conditions. Density functional theory (DFT) calculations revealed that parallel adsorption of BA on the cathode (-1.12 eV) is more stable than perpendicular positioning (-0.58 eV), explaining the high selectivity for CCA. These findings provide a foundation for future developments in ECH of real pyrolysis oil.
Collapse
Affiliation(s)
- Cesar Catizane
- School of Water, Energy and Environment, Cranfield University, Cranfield, MK43 0AL, UK
| | - Ying Jiang
- School of Water, Energy and Environment, Cranfield University, Cranfield, MK43 0AL, UK.
- Renewable and Sustainable Energy Research Centre, Technology Innovation Institute, Abu Dhabi, UAE.
| | - Joy Sumner
- School of Water, Energy and Environment, Cranfield University, Cranfield, MK43 0AL, UK.
| |
Collapse
|
3
|
Adamou P, Harkou E, Bumajdad A, De Jong X, Van Haute M, Constantinou A, Al-Salem SM. Effect of Polyethylene Pyrolysis Oil Hydrotreatment on the Pt/Al 2O 3 Catalyst: Experimental Characterization. ACS OMEGA 2024; 9:19057-19062. [PMID: 38708201 PMCID: PMC11064189 DOI: 10.1021/acsomega.3c09729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 03/29/2024] [Accepted: 04/02/2024] [Indexed: 05/07/2024]
Abstract
The dramatic increase in plastics production, coupled with a low recycling and recovery rate, has been a major challenge for sustainable practices and combating climate change. Hydrotreatment processing to upgrade fuel oils is a well-known process in the petroleum industry. In this work, we aim to investigate the catalyst properties before and after the hydrotreatment of pyrolysis oil derived from plastics, namely, linear low-density polyethylene, as no such report is available in the literature. Granular and powder forms of the Pt/Al2O3 catalyst were used in this study with characterization methods executed as such: transmission electron microscopy, X-ray photoelectron spectroscopy (XPS), X-ray diffraction (XRD), thermogravimetric analysis (TGA), and IR-RIS. XRD data show that the crystallinity of the catalyst support was unaffected by the hydrotreatment without any residues left, as the characteristic diffraction peaks were indicated for the crystalline phase of the support as 37.4, 39.8, 46.3, and 67.3°. In addition, the TGA experiments revealed that the carbon deposition on the spent catalyst was higher, as indicated by the higher weight loss (15.359%) compared to the fresh catalyst sample (11.43%). XPS analysis showed that the carbon deposition is more intense on the granular spent catalyst, as the intensity of the peaks is some 15 times greater than the peaks from the fresh catalyst. Also, compared to the observed peaks of the powder catalyst, less coke is formed. The band at 1624.05 cm-1 from the IR-RIS spectra was attributed to a shifted C=O band from the coke formation. The extension of these investigations using different catalysts to improve their characteristics and performance and to inhibit coke deposition will contribute to the incorporation of such processes in industry as well as the cost of fuels.
Collapse
Affiliation(s)
- Panayiota Adamou
- Department
of Chemical Engineering, Cyprus University
of Technology, 57 Corner of 6 Athinon and Anexartisias, 3036 Limassol, Cyprus
| | - Eleana Harkou
- Department
of Chemical Engineering, Cyprus University
of Technology, 57 Corner of 6 Athinon and Anexartisias, 3036 Limassol, Cyprus
| | - Ali Bumajdad
- Department
of Chemistry, Faculty of Science, Kuwait
University, P.O. Box 5969, 13060 Safat, Kuwait
| | - Xander De Jong
- Q8 Research, Kuwait Petroleum Research
and Technology B.V., Moezelweg 251, 3198 LS Europoort Rotterdam, Netherlands
| | - Maarten Van Haute
- Q8 Research, Kuwait Petroleum Research
and Technology B.V., Moezelweg 251, 3198 LS Europoort Rotterdam, Netherlands
| | - Achilleas Constantinou
- Department
of Chemical Engineering, Cyprus University
of Technology, 57 Corner of 6 Athinon and Anexartisias, 3036 Limassol, Cyprus
| | - Sultan Majed Al-Salem
- Environment
& Life Sciences Research Centre, Kuwait
Institute for Scientific Research (KISR), P.O. Box 24885, 13109 Safat, Kuwait
| |
Collapse
|
4
|
Fu Z, Zhang YS, Ji G, Li A. Experimental analysis on products distribution, characterization and mechanism of waste polypropylene (PP) and polyethylene terephthalate (PET) degradation in sub-/supercritical water. CHEMOSPHERE 2024; 350:141045. [PMID: 38154671 DOI: 10.1016/j.chemosphere.2023.141045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Revised: 12/08/2023] [Accepted: 12/25/2023] [Indexed: 12/30/2023]
Abstract
Supercritical water (SCW) treatment of plastics is a clean technology in the 'waste-to-energy' path. In this work, PP and PET plastics were processed by sub-/supercritical water. The results showed that temperature was the most important factor of the PP and PET degradation. The influence of factors on the degradation of plastics follows the following order: temperature > residence time > plastic/water ratio. These factors influenced the yield of gas products by promoting or inhibiting various reactions (such as reverse water gas shift reaction, methylation reaction, and Fischer-Tropsch synthesis reaction). Besides, the composition of liquid oil was also analyzed. The main composition of the liquid oil produced by PET was benzoic acid and acetaldehyde, which were generated from the decarboxylation of terephthalic acid (TPA) and dehydration reaction of ethylene glycol (EG). The liquid oil from PP was mainly long-chain olefins, long-chain alkanes, cycloalkanes, etc., which were formed by the interaction of various methyl, alkyl, hydroxyl, and other free radicals. This study could build fundamental theories of plastic mixture treatment.
Collapse
Affiliation(s)
- Zegang Fu
- School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, Liaoning, China
| | - Ye Shui Zhang
- School of Engineering, University of Aberdeen, Aberdeen AB24 3UE, UK
| | - Guozhao Ji
- School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, Liaoning, China.
| | - Aimin Li
- School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, Liaoning, China.
| |
Collapse
|
5
|
Ran J, Talebian-Kiakalaieh A, Zhang S, Hashem EM, Guo M, Qiao SZ. Recent advancement on photocatalytic plastic upcycling. Chem Sci 2024; 15:1611-1637. [PMID: 38303948 PMCID: PMC10829029 DOI: 10.1039/d3sc05555h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 12/22/2023] [Indexed: 02/03/2024] Open
Abstract
More than 8 billion tons of plastics have been generated since 1950. About 80% of these plastics have been dumped in landfills or went into natural environments, resulting in ever-worsening contamination. Among various strategies for waste plastics processing (e.g., incineration, mechanical recycling, thermochemical conversion and electrocatalytic/photocatalytic techniques), photocatalysis stands out as a cost-effective, environmentally benign and clean technique to upcycle plastic waste at ambient temperature and pressure using solar light. The mild reaction conditions for photocatalysis enable the highly selective conversion of plastic waste into targeted value-added chemicals/fuels. Here, we for the first time summarize the recent development of photocatalytic plastic upcycling based on the chemical composition of photocatalysts (e.g., metal oxides, metal sulfides, non-metals and composites). The pros and cons of various photocatalysts have been critically discussed and summarized. At last, the future challenges and opportunities in this area are presented in this review.
Collapse
Affiliation(s)
- Jingrun Ran
- School of Chemical Engineering, University of Adelaide Adelaide SA 5005 Australia
| | | | - Shuai Zhang
- School of Chemical Engineering, University of Adelaide Adelaide SA 5005 Australia
| | - Elhussein M Hashem
- School of Chemical Engineering, University of Adelaide Adelaide SA 5005 Australia
| | - Meijun Guo
- School of Chemical Engineering, University of Adelaide Adelaide SA 5005 Australia
| | - Shi-Zhang Qiao
- School of Chemical Engineering, University of Adelaide Adelaide SA 5005 Australia
| |
Collapse
|
6
|
Seyyedi SR, Kowsari E, Ramakrishna S, Gheibi M, Chinnappan A. Marine plastics, circular economy, and artificial intelligence: A comprehensive review of challenges, solutions, and policies. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 345:118591. [PMID: 37423188 DOI: 10.1016/j.jenvman.2023.118591] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 06/09/2023] [Accepted: 07/03/2023] [Indexed: 07/11/2023]
Abstract
Global plastic production is rapidly increasing, resulting in significant amounts of plastic entering the marine environment. This makes marine litter one of the most critical environmental concerns. Determining the effects of this waste on marine animals, particularly endangered organisms, and the health of the oceans is now one of the top environmental priorities. This article reviews the sources of plastic production, its entry into the oceans and the food chain, the potential threat to aquatic animals and humans, the challenges of plastic waste in the oceans, the existing laws and regulations in this field, and strategies. Using conceptual models, this study looks at a circular economy framework for energy recovery from ocean plastic wastes. It does this by drawing on debates about AI-based systems for smart management. In the last sections of the present research, a novel soft sensor is designed for the prediction of accumulated ocean plastic waste based on social development features and the application of machine learning computations. Plus, the best scenario of ocean plastic waste management with a concentration on both energy consumption and greenhouse gas emissions is discussed using USEPA-WARM modeling. Finally, a circular economy concept and ocean plastic waste management policies are modeled based on the strategies of different countries. We deal with green chemistry and the replacement of plastics derived from fossil sources.
Collapse
Affiliation(s)
- Seyed Reza Seyyedi
- Department of Chemistry, Amirkabir University of Technology (Tehran Polytechnic), Hafez St., Tehran 15875-4413, Iran
| | - Elaheh Kowsari
- Department of Chemistry, Amirkabir University of Technology (Tehran Polytechnic), Hafez St., Tehran 15875-4413, Iran.
| | - Seeram Ramakrishna
- Department of Mechanical Engineering, Center for Nanofibers and Nanotechnology, National University of Singapore, 119260, Singapore.
| | - Mohammad Gheibi
- Department of Civil Engineering, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Amutha Chinnappan
- Department of Mechanical Engineering, Center for Nanofibers and Nanotechnology, National University of Singapore, 119260, Singapore
| |
Collapse
|
7
|
Yan M, Yang Y, Chen F, Hantoko D, Pariatamby A, Kanchanatip E. Development of reusable Ni/γ-Al 2O 3 catalyst for catalytic hydrolysis of waste PET bottles into terephthalic acid. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:102560-102573. [PMID: 37668784 DOI: 10.1007/s11356-023-29596-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 08/26/2023] [Indexed: 09/06/2023]
Abstract
In order to efficiently recycle waste polyethylene terephthalate (PET) bottles, this study aimed to enhance the hydrolysis process to convert PET bottle into valuable terephthalic acid (TPA) by developing effective and reusable Ni/γ-Al2O3 catalysts. A series of Ni/γ-Al2O3 catalyst was prepared by the impregnation method with different Ni loadings (5-15 wt%) and was characterized by various techniques including XRD, SEM-EDX, and N2 adsorption-desorption. The prepared catalysts were employed in the catalytic hydrolysis of PET under varied influencing factors, namely reaction temperature (220-280 °C), reaction time (20-60 min), and Ni loading. The response surface methodology (RSM) was used to optimize the operating condition to produce the maximum TPA yield, and the optimal values were determined as follows: reaction temperature = 267.07 °C, reaction time = 48.54 min, and Ni loading = 12.90 wt%, giving the highest TPA yield of 97.06%. The R2, F-value, and P-value of the analysis of variance (ANOVA) were 0.9982, 424.96, and <0.0001, respectively, indicating a good fit of the model. The results from XRD and FTIR measurement of the produced TPA indicated the high purity and comparable chemical structures to the TPA standard. In addition, the 12.9Ni/Al catalyst exhibited high catalytic activity in repeated cycles of hydrolysis process of PET and could be regenerated by calcination to restore its catalytic activity. This finding could be a promising alternative for an effective TPA recovery from waste plastic bottles.
Collapse
Affiliation(s)
- Mi Yan
- Institute of Energy and Power Engineering, Zhejiang University of Technology, Hangzhou, 310014, China
- Zhejiang Carbon Neutral Innovation Institute, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Yayong Yang
- Institute of Energy and Power Engineering, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Feng Chen
- Institute of Energy and Power Engineering, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Dwi Hantoko
- Interdisciplinary Research Center for Refining & Advanced Chemicals, King Fahd University of Petroleum & Minerals, Dhahran, 31261, Saudi Arabia
| | - Agamuthu Pariatamby
- Jeffrey Sachs Center on Sustainable Development, Sunway University, Bandar Sunway, 47500, Petaling Jaya, Malaysia
| | - Ekkachai Kanchanatip
- Department of Civil and Environmental Engineering, Faculty of Science and Engineering, Kasetsart University Chalermphrakiat Sakon Nakhon Province Campus, Sakon Nakhon, 47000, Thailand.
- Center of Excellence in Environmental Catalysis and Adsorption, Faculty of Engineering, Thammasat University, Pathum Thani, 12120, Thailand.
| |
Collapse
|
8
|
Yousef S, Eimontas J, Striūgas N, Mohamed A, Ali Abdelnaby M. Pyrolysis Kinetic Behavior and Thermodynamic Analysis of PET Nonwoven Fabric. MATERIALS (BASEL, SWITZERLAND) 2023; 16:6079. [PMID: 37763357 PMCID: PMC10532786 DOI: 10.3390/ma16186079] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 08/27/2023] [Accepted: 08/31/2023] [Indexed: 09/29/2023]
Abstract
This research aims to maximize polyethylene terephthalate (PET) nonwoven fabric waste and make it as a new source for benzoic acid extraction using a pyrolysis process. The treatment was performed using a thermogravimetric analyzer (TGA) and released products were characterized using FTIR spectroscopy and gas chromatography-mass spectrometry (GC-MS). The pyrolysis kinetic and thermodynamic behavior of PET fabric was also studied and simulated using different linear and nonlinear models. The results show that the PET fabric is very rich in volatile matter (80 wt.%) and can completely degrade under 490 °C with a weight loss of 84%. Meanwhile, the generated vapor was rich in the carbonylic C=O functional group (FTIR), and the GC-MS analysis concluded that benzoic acid was the major compound with an abundance of 75% that was achieved at the lowest heating rate (5 °C/min). The linear kinetic results showed that PET samples had an activation energy in the ranges of 193-256 kJ/mol (linear models) and ~161 kJ/mol (nonlinear models). The thermodynamic parameters, including enthalpy, Gibbs free energy, and entropy, were estimated in the ranges of 149-250 kJ/mol, 153-232 kJ/mol, and 256-356 J/mol K, respectively. Accordingly, pyrolysis treatment can be used to extract benzoic acid from PET fabric waste with a 134% increase in the benzoic acid abundance that can be recovered from PET bottle plastic waste.
Collapse
Affiliation(s)
- Samy Yousef
- Department of Production Engineering, Faculty of Mechanical Engineering and Design, Kaunas University of Technology, LT-51424 Kaunas, Lithuania
| | - Justas Eimontas
- Laboratory of Combustion Processes, Lithuanian Energy Institute, Breslaujos 3, LT-44403 Kaunas, Lithuania
| | - Nerijus Striūgas
- Laboratory of Combustion Processes, Lithuanian Energy Institute, Breslaujos 3, LT-44403 Kaunas, Lithuania
| | - Alaa Mohamed
- Department of Production Engineering and Printing Technology, Akhbar Elyom Academy, 6th of October 12566, Egypt;
| | - Mohammed Ali Abdelnaby
- Mechatronics Systems Engineering Department, October University for Modern Sciences and Arts-MSA, Giza 12451, Egypt
| |
Collapse
|
9
|
Hussain A, Podgursky V, Goljandin D, Antonov M, Sergejev F, Krasnou I. Circular Production, Designing, and Mechanical Testing of Polypropylene-Based Reinforced Composite Materials: Statistical Analysis for Potential Automotive and Nuclear Applications. Polymers (Basel) 2023; 15:3410. [PMID: 37631467 PMCID: PMC10458085 DOI: 10.3390/polym15163410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 08/04/2023] [Accepted: 08/13/2023] [Indexed: 08/27/2023] Open
Abstract
The circularity of polymer waste is an emerging field of research in Europe. In the present research, the thermal, surface, mechanical, and tribological properties of polypropylene (PP)-based composite produced by injection molding were studied. The pure PP matrix was reinforced with 10, 30, and 40% wt. of pure cotton, synthetic polyester, and polyethylene terephthalate post-consumer fibers using a combination of direct extrusion and injection molding techniques. Results indicate that PP-PCPESF-10% wt. exhibits the highest value of tensile strength (29 MPa). However, the values of tensile and flexural strain were lowered with an increase in fiber content due to the presence of micro-defects. Similarly, the values of modulus of elasticity, flexural modulus, flexural strength, and impact energy were enhanced due to an increase in the amount of fiber. The PP-PCCF-40% wt. shows the highest values of flexural constant (2780 MPa) and strength (57 MPa). Additionally, the increase in fiber loadings is directly proportional to the creation of micro-defects, surface roughness, abrasive wear, coefficient of friction, and erosive wear. The lowest average absolute arithmetic surface roughness value (Ra) of PP and PP-PCCF, 10% wt., were 0.19 µm and 0.28 µm. The lowest abrasive wear value of 3.09 × 10-6 mm3/Nm was found for pure PP. The erosive wear value (35 mm3/kg) of PP-PCCF 40% wt. composite material was 2 to 17 times higher than all other composite materials. Finally, the single-step analysis of variance predicts reasonable results in terms of the p-values of each composite material for commercial applications.
Collapse
Affiliation(s)
- Abrar Hussain
- Department of Mechanical and Industrial Engineering, Tallinn University of Technology, Ehitajate Tee 5, 19086 Tallinn, Estonia; (V.P.); (M.A.); (F.S.)
| | - Vitali Podgursky
- Department of Mechanical and Industrial Engineering, Tallinn University of Technology, Ehitajate Tee 5, 19086 Tallinn, Estonia; (V.P.); (M.A.); (F.S.)
| | - Dmitri Goljandin
- Department of Mechanical and Industrial Engineering, Tallinn University of Technology, Ehitajate Tee 5, 19086 Tallinn, Estonia; (V.P.); (M.A.); (F.S.)
| | - Maksim Antonov
- Department of Mechanical and Industrial Engineering, Tallinn University of Technology, Ehitajate Tee 5, 19086 Tallinn, Estonia; (V.P.); (M.A.); (F.S.)
| | - Fjodor Sergejev
- Department of Mechanical and Industrial Engineering, Tallinn University of Technology, Ehitajate Tee 5, 19086 Tallinn, Estonia; (V.P.); (M.A.); (F.S.)
| | - Illia Krasnou
- Department of Materials and Environmental Technology, Tallinn University of Technology, Ehitajate Tee 5, 19086 Tallinn, Estonia
| |
Collapse
|
10
|
Miao B, Yakubu S, Zhu Q, Issaka E, Zhang Y, Adams M. A Review on Tetrabromobisphenol A: Human Biomonitoring, Toxicity, Detection and Treatment in the Environment. Molecules 2023; 28:2505. [PMID: 36985477 PMCID: PMC10054480 DOI: 10.3390/molecules28062505] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Revised: 02/23/2023] [Accepted: 03/01/2023] [Indexed: 03/12/2023] Open
Abstract
Tetrabromobisphenol A (TBBPA) is a known endocrine disruptor employed in a range of consumer products and has been predominantly found in different environments through industrial processes and in human samples. In this review, we aimed to summarize published scientific evidence on human biomonitoring, toxic effects and mode of action of TBBPA in humans. Interestingly, an overview of various pretreatment methods, emerging detection methods, and treatment methods was elucidated. Studies on exposure routes in humans, a combination of detection methods, adsorbent-based treatments and degradation of TBBPA are in the preliminary phase and have several limitations. Therefore, in-depth studies on these subjects should be considered to enhance the accurate body load of non-invasive matrix, external exposure levels, optimal design of combined detection techniques, and degrading technology of TBBPA. Overall, this review will improve the scientific comprehension of TBBPA in humans as well as the environment, and the breakthrough for treating waste products containing TBBPA.
Collapse
Affiliation(s)
- Baoji Miao
- Henan International Joint Laboratory of Nano-Photoelectric Magnetic Materials, School of Materials Science and Engineering, Henan University of Technology, Zhengzhou 450001, China
| | - Salome Yakubu
- Henan International Joint Laboratory of Nano-Photoelectric Magnetic Materials, School of Materials Science and Engineering, Henan University of Technology, Zhengzhou 450001, China
| | - Qingsong Zhu
- Henan International Joint Laboratory of Nano-Photoelectric Magnetic Materials, School of Materials Science and Engineering, Henan University of Technology, Zhengzhou 450001, China
| | - Eliasu Issaka
- School of Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Yonghui Zhang
- Henan International Joint Laboratory of Nano-Photoelectric Magnetic Materials, School of Materials Science and Engineering, Henan University of Technology, Zhengzhou 450001, China
| | - Mabruk Adams
- School of Civil Engineering, National University of Ireland, H91 TK33 Galway, Ireland
| |
Collapse
|
11
|
Abdur Rahman M, Haque S, Athikesavan MM, Kamaludeen MB. A review of environmental friendly green composites: production methods, current progresses, and challenges. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:16905-16929. [PMID: 36607568 DOI: 10.1007/s11356-022-24879-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/25/2021] [Accepted: 12/16/2022] [Indexed: 06/17/2023]
Abstract
The growing concern about environmental damage and the inability to meet the demand for more versatile, environmentally friendly materials has sparked increasing interest in polymer composites derived from renewable and biodegradable plant-based materials, mainly from forests. These composites are mostly referred to as "green" and they can be widely employed in many industrial applications. Green composites are less harmful to the environment and could be potential substitutes for petroleum-based polymeric materials. It is helpful to limit usage of fossil oil assets by developing biopolymer matrices such as cellulose-reinforced biocomposites using renewable assets such as plant oils, carbohydrates, and proteins. This paper focuses on green composites processing utilizing a variety of naturally available resources, sustainable materials which are not detrimental to the environment, new scientific signs of progress in achieving green sustainable development, as well as nanotechnology and its environmental consequences. Additionally, the environmental impacts of different composite materials are examined in this paper, along with their production from eco-friendly materials. Moreover, the manufacturing aspects of green composites and some concerns related to their production are also discussed. The merits of green composite materials and valid reasons why they are a valuable substitute for the traditionally used composite materials are also covered.
Collapse
Affiliation(s)
- M Abdur Rahman
- Department of Mechanical Engineering, B.S. Abdur Rahman Crescent Institute of Science and Technology, Chennai-600048, Tamil Nadu, India.
| | - Serajul Haque
- Department of Mechanical Engineering, B.S. Abdur Rahman Crescent Institute of Science and Technology, Chennai-600048, Tamil Nadu, India
| | - Muthu Manokar Athikesavan
- Department of Mechanical Engineering, B.S. Abdur Rahman Crescent Institute of Science and Technology, Chennai-600048, Tamil Nadu, India
| | - Mohamed Bak Kamaludeen
- Department of Mechanical Engineering, B.S. Abdur Rahman Crescent Institute of Science and Technology, Chennai-600048, Tamil Nadu, India
| |
Collapse
|
12
|
Aleksanyan KV. Polysaccharides for Biodegradable Packaging Materials: Past, Present, and Future (Brief Review). Polymers (Basel) 2023; 15:451. [PMID: 36679331 PMCID: PMC9865279 DOI: 10.3390/polym15020451] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Revised: 01/06/2023] [Accepted: 01/12/2023] [Indexed: 01/18/2023] Open
Abstract
The ecological problems emerging due to accumulation of non-biodegradable plastics are becoming more and more urgent. This problem can be solved by the development of biodegradable materials which will replace the non-biodegradable ones. Among numerous approaches in this field, there is one proposing the use of polysaccharide-based materials. These polymers are biodegradable, non-toxic, and obtained from renewable resources. This review opens discussion about the application of polysaccharides for the creation of biodegradable packaging materials. There are numerous investigations developing new formulations using cross-linking of polymers, mixing with inorganic (metals, metal oxides, clays) and organic (dyes, essential oils, extracts) compounds. The main emphasis in the present work is made on development of the polymer blends consisting of cellulose, starch, chitin, chitosan, pectin, alginate, carrageenan with some synthetic polymers, polymers of natural origin, and essential oils.
Collapse
Affiliation(s)
- Kristine V. Aleksanyan
- Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, ul. Kosygina 4, Moscow 119991, Russia; or
- Engineering Center, Plekhanov Russian University of Economics, Stremyannyi per. 36, Moscow 117997, Russia
| |
Collapse
|
13
|
J RB, V GS. A systematic review on plastic waste conversion for a circular economy: recent trends and emerging technologies. Catal Sci Technol 2023. [DOI: 10.1039/d2cy02066a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/17/2023]
Abstract
Our biosphere has been adversely affected by plastic waste pollution, especially non-biodegradables in landfills, which induces hazardous chemical leaching and toxic gas emissions on burning into the atmosphere.
Collapse
Affiliation(s)
- Rajesh Banu J
- Department of Biotechnology, Central University of Tamil Nadu, Neelakudi, Thiruvarur, Tamil Nadu-610005, India
| | - Godvin Sharmila V
- Department of Civil Engineering, Rohini College of Engineering and Technology, Kanyakumari, Tamil Nadu, India
| |
Collapse
|
14
|
Du H, Wang Q, Chen G, wang J. Photo/electro-catalytic degradation of micro- and nano-plastics by nanomaterials and corresponding degradation mechanism. Trends Analyt Chem 2022. [DOI: 10.1016/j.trac.2022.116815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
15
|
Bleija M, Platnieks O, Macutkevič J, Starkova O, Gaidukovs S. Comparison of Carbon-Nanoparticle-Filled Poly(Butylene Succinate-co-Adipate) Nanocomposites for Electromagnetic Applications. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:3671. [PMID: 36296860 PMCID: PMC9609898 DOI: 10.3390/nano12203671] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Revised: 10/11/2022] [Accepted: 10/16/2022] [Indexed: 06/16/2023]
Abstract
Electrostatic dissipative (ESD), anti-static (AS), and electromagnetic interference (EMI) shielding materials are commonly based on commodity fossil-fuel-based plastics. This, in turn, contributes to ever-growing non-biodegradable plastic pollution. Graphene nanoplatelets (GN), multi-walled carbon nanotubes (MWCNT), nanostructured carbon black (NCB), and amorphous carbon black (CB) were utilized as nanofillers to prepare bio-based and biodegradable poly(butylene succinate-co-adipate) (PBSA) nanocomposites. Solvent-cast composites were prepared with 1.1 to 30.0 vol.% nanoparticle loading. The literature mainly focuses on relatively low loadings; therefore, for this research, filler loadings were increased up to 30 vol.% but the maximum loading for NCB and CB loadings only reached 17.4 vol.% due to a lack of dimensional stability at higher loadings. The composites were characterized using tensile testing, volumetric and surface conductivity measurements, thermal conductivity measurements, dielectric spectroscopy in the microwave region, and transmittance in the terahertz range. Tensile tests showed excellent carbon filler compatibility and enhanced tensile strength for loadings up to 5 vol.% (up to 20 vol.% for MWCNT). The highest thermal conductivity values were reached for the MWCNT filler, with the 30.0 vol.% filled composite reaching 0.756 W/mK (262% increase over PBSA). All fillers were able to produce composites that yielded volume conductivities above 10-10 S/m. Composites with MWCNT, GN, and NCB inclusions above the percolation threshold are suitable for EMI applications in the microwave and THz frequency range.
Collapse
Affiliation(s)
- Miks Bleija
- Institute of Polymer Materials, Faculty of Materials Science and Applied Chemistry, Riga Technical University, P. Valdena 3/7, LV-1048 Riga, Latvia
| | - Oskars Platnieks
- Institute of Polymer Materials, Faculty of Materials Science and Applied Chemistry, Riga Technical University, P. Valdena 3/7, LV-1048 Riga, Latvia
| | - Jan Macutkevič
- Faculty of Physics, Vilnius University, Sauletekio 9, LT-10222 Vilnius, Lithuania
| | - Olesja Starkova
- Institute for Mechanics of Materials, University of Latvia, Jelgavas 3, LV-1004 Riga, Latvia
| | - Sergejs Gaidukovs
- Institute of Polymer Materials, Faculty of Materials Science and Applied Chemistry, Riga Technical University, P. Valdena 3/7, LV-1048 Riga, Latvia
| |
Collapse
|
16
|
Advances and Challenges in Biopolymer-Based Films. Polymers (Basel) 2022; 14:polym14183920. [PMID: 36146065 PMCID: PMC9500674 DOI: 10.3390/polym14183920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Accepted: 09/15/2022] [Indexed: 11/17/2022] Open
|