1
|
Yan M, Wang X, Zhao Y, Bai Q, Ma S, Bo C, Ou J. Design and fabrication of acorn-like Janus molecularly imprinted materials for highly specific separation and enrichment of oxytetracycline from restaurant oily wastewater. Talanta 2025; 281:126898. [PMID: 39288587 DOI: 10.1016/j.talanta.2024.126898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 09/12/2024] [Accepted: 09/15/2024] [Indexed: 09/19/2024]
Abstract
Molecularly imprinted polymer (MIP) is dedicated to the adsorption of target substances in the aqueous phase, but ignores the adsorption in a more complex environment (oily wastewater). In order to explore the application field of existing MIPs, acorn-like Janus particles were fabricated by photo-initiated seed swelling polymerization. A novel amphiphilic Janus-MIP was prepared with the acorn-like Janus particles as matrix, methacrylic acid, ethylene dimethacrylate and oxytetracycline (OTC) as functional monomers, crosslinking agents and template molecules via surface initiated-atom transfer radical polymerization (SI-ATRP). For comparison, the poly (glycidyl methacrylate-co-ethylene glycol dimethacrylate) (poly (GMA-co-EDMA)) microspheres were also utilized as the matrix to prepare common spherical-MIP. The adsorption capacity of Janus-MIP for OTC was 23.8 mg g-1 in oil-water system, while the adsorption capacity of spherical-MIP for OTC was only 12.6 mg g-1 in the same system. At the same time, through high performance liquid chromatography (HPLC) analysis, Janus-MIP can specifically recognize and adsorb trace OTC in restaurant oily wastewater samples, and the proposed method exhibited a lower limit of detection (LOD, 3 ng mL-1) and a higher OTC recovery rate (94.2 %-98.4 %). This work demonstrated great potential for the detection and control of OTC contamination from real samples in an oil-water mixed environment.
Collapse
Affiliation(s)
- Mingjia Yan
- School of Chemistry and Chemical Engineering, Ningxia Key Laboratory of Solar Chemical Conversion Technology, Key Laboratory for Chemical Engineering and Technology, State Ethnic Affairs Commission, North Minzu University, Yinchuan, 750021, China
| | - Xiaoqiong Wang
- School of Chemistry and Chemical Engineering, Ningxia Key Laboratory of Solar Chemical Conversion Technology, Key Laboratory for Chemical Engineering and Technology, State Ethnic Affairs Commission, North Minzu University, Yinchuan, 750021, China
| | - Yashuai Zhao
- School of Chemistry and Chemical Engineering, Ningxia Key Laboratory of Solar Chemical Conversion Technology, Key Laboratory for Chemical Engineering and Technology, State Ethnic Affairs Commission, North Minzu University, Yinchuan, 750021, China
| | - Qingyan Bai
- School of Chemistry and Chemical Engineering, Ningxia Key Laboratory of Solar Chemical Conversion Technology, Key Laboratory for Chemical Engineering and Technology, State Ethnic Affairs Commission, North Minzu University, Yinchuan, 750021, China
| | - Shujuan Ma
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| | - Chunmiao Bo
- School of Chemistry and Chemical Engineering, Ningxia Key Laboratory of Solar Chemical Conversion Technology, Key Laboratory for Chemical Engineering and Technology, State Ethnic Affairs Commission, North Minzu University, Yinchuan, 750021, China.
| | - Junjie Ou
- College of Chemistry and Materials Science, Northwest University, Xi'an, 710127, China; CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China.
| |
Collapse
|
2
|
Hu Z, Wang J, Tie M, Zhu J, Sharaf F. Enhanced adsorption of tylosin by ordered multistage porous carbon and efficient in-situ regeneration of saturated adsorbents by activated persulfate oxidation: Performance, mechanism and multiple cycles. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 361:124861. [PMID: 39216668 DOI: 10.1016/j.envpol.2024.124861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Revised: 08/15/2024] [Accepted: 08/28/2024] [Indexed: 09/04/2024]
Abstract
In this study, a novel ordered multistage porous carbon (OMPC) with a micro-mesoporous structure was prepared and used for the removal of tylosin (TYL). The porous material, carbonized at 900 °C (OMPC-900), exhibited micro-mesoporous structures with pore sizes of 0.71 nm and 3.63 nm, while had a specific surface area of 1300.02 m2 g-1. OMPC-900 demonstrated a maximum adsorption capacity of 341.28 mg g-1 for TYL in water by electrostatic attraction, hydrogen bonding, π-π interactions, and pore-filling mechanisms, which is 6.41 times higher than that of activated carbon. The TYL-saturated adsorbents could be efficiently regenerated by in-situ oxidation through the activation of persulfate (PDS), achieving a regeneration rate of 94.17%, significantly higher than that of activated carbon (55.22%). The excellent regeneration performance may be attributed to the presence of -C=O and graphitic carbon in the adsorbent, which promotes the production of free radicals (•OH, SO4•- and •O2-) and non-free radicals. Among these, the non-radical pathways (1O2 and electron transfer) played a key role in the degradation of TYL loaded on the adsorbent. OMPC-900 maintained stable regenerative adsorption performance of 80.85% after five in-situ regeneration, and the normalized adsorption capacity per unit surface area increased from 0.21 to 0.39 mg m-2, which may be due to that the increase in oxygen-carbon ratio and surface defects improved the adsorption sites activity of the regenerated adsorbent. In comparison to conventional pyrolysis and organic solvent elution, oxidative regeneration through the activation of PDS is a more efficient and sustainable method.
Collapse
Affiliation(s)
- Zhi Hu
- School of Environmental Science and Engineering, Shaanxi University of Science & Technology, Xi'an, 710021, China; Shaanxi Key Laboratory of Green Preparation and Functionalization of Inorganic Materials, Xi'an, 710021, China
| | - Jiahong Wang
- School of Environmental Science and Engineering, Shaanxi University of Science & Technology, Xi'an, 710021, China; Shaanxi Key Laboratory of Green Preparation and Functionalization of Inorganic Materials, Xi'an, 710021, China.
| | - Min Tie
- School of Environmental Science and Engineering, Shaanxi University of Science & Technology, Xi'an, 710021, China; Shaanxi Key Laboratory of Green Preparation and Functionalization of Inorganic Materials, Xi'an, 710021, China
| | - Jie Zhu
- School of Environmental Science and Engineering, Shaanxi University of Science & Technology, Xi'an, 710021, China; Shaanxi Key Laboratory of Green Preparation and Functionalization of Inorganic Materials, Xi'an, 710021, China
| | - Faisal Sharaf
- School of Environmental Science and Engineering, Shaanxi University of Science & Technology, Xi'an, 710021, China; Shaanxi Key Laboratory of Green Preparation and Functionalization of Inorganic Materials, Xi'an, 710021, China
| |
Collapse
|
3
|
Akaniro IR, Zhang R, Chai X, Tsang CHM, Wang P, He S, Yang Z, Zhao J. Engineered digestate-derived biochar mediated peroxymonosulfate activation for oxytetracycline removal in sustainable wastewater remediation. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 360:124640. [PMID: 39084587 DOI: 10.1016/j.envpol.2024.124640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Revised: 07/25/2024] [Accepted: 07/29/2024] [Indexed: 08/02/2024]
Abstract
Nowadays, biochar is extensively used in wastewater remediation with the aim of achieving water security and circularity with minimal impacts on ecosystems and the environment. In this study, digestate biochar was prepared and modified using different methods and then employed as a peroxymonosulfate (PMS) activator to oxidize oxytetracycline, a model antibiotic pollutant in wastewater. The optimal biochar catalyst was characterized, spin trapping tests were carried out to confirm the dominant catalytic mechanism, and in silico toxicity prediction was conducted based on structure-activity relationships. Assessment of the catalytic performance of the pristine and engineered biochar showed that nitrogen doping increased oxytetracycline degradation efficiency by 1.92-fold (i.e., 100% oxytetracycline degradation with the engineered biochar compared to 52% with pristine biochar), while pyrrolic nitrogen was identified as a major PMS activation site. It was discovered that several parameters, such as catalyst dose, pH, PMS concentration, and competing ions, affected oxytetracycline degradation efficiencies. Additionally, the toxicity of the degradation intermediate was studied. Scavenger trapping tests showed that 1O2 and SO4•- were the most prevalent species during oxytetracycline degradation in the system, with four possible degradation pathways proposed, including secondary alcohol oxidation, hydroxylation, dehydration, and deamidation. Overall, it is anticipated that this study would contribute to our understanding of metal-free biochar activation of PMS as an attractive treatment scheme for antibiotic-polluted water.
Collapse
Affiliation(s)
| | - Ruilong Zhang
- Department of Biology, Hong Kong Baptist University, Hong Kong, China
| | - Xuyang Chai
- State Key Laboratory of Environmental and Biological Analysis, Hong Kong Baptist University, Hong Kong, China
| | | | - Peixin Wang
- Department of Biology, Hong Kong Baptist University, Hong Kong, China
| | - Shan He
- School of Food and Pharmacy, Zhejiang Ocean University, Zhoushan, Zhejiang, China; Faculty of Science, Technology and Engineering, Charles Darwin University, Darwin, Northern Territory, Australia
| | - Zhu Yang
- Department of Biology, Hong Kong Baptist University, Hong Kong, China; State Key Laboratory of Environmental and Biological Analysis, Hong Kong Baptist University, Hong Kong, China
| | - Jun Zhao
- Department of Biology, Hong Kong Baptist University, Hong Kong, China; Institute of Advanced Materials, Hong Kong Baptist University, Hong Kong, China.
| |
Collapse
|
4
|
Zhang P, Li N, Li L, Yu Y, Tuerhong R, Su X, Zhang B, Han L, Han Y. g-C 3N 4-Based Photocatalytic Materials for Converting CO 2 Into Energy: A Review. Chemphyschem 2024; 25:e202400075. [PMID: 38822681 DOI: 10.1002/cphc.202400075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 04/23/2024] [Accepted: 05/22/2024] [Indexed: 06/03/2024]
Abstract
Environmental pollution management and renewable energy development are humanity's biggest issues in the 21st century. The rise in atmospheric CO2, which has surpassed 400 parts per million, has stimulated research on CO2 reduction and conversion methods. Presently, photocatalytic conversion of CO2 to valuable hydrocarbons enables the transformation of solar energy into chemical energy and offers a novel avenue for energy conversion while regulating the greenhouse effect. This is an ideal strategy for simultaneously addressing environmental issues and the energy crisis. Photocatalysts are essential to photocatalytic processes. Photocatalyst is the core of photocatalytic technology, and graphite carbon nitride (g-C3N4) has attracted much attention because of its nonmetallic characteristics, and it has the characteristics of low cost, tunable electronic structure, easy manufacture and strong reducibility. However, its activity is not only affected by external reaction conditions, but also by the band gap structure, physical and chemical stability, surface morphology and specific surface area of the photocatalyst it. In this paper, the application progress of g-C3N4-based photocatalytic materials in CO2 reduction is reviewed, and the modification strategies of g-C3N4-based catalysts to obtain better catalytic efficiency and selectivity in CO2 photocatalytic reduction are summarized, and the future development of this material is prospected.
Collapse
Affiliation(s)
- Ping Zhang
- Key Laboratory of Environment-Friendly Composite Materials of the State Ethnic Affairs Commission, Gansu Provincial Biomass Function Composites Engineering Research Center, Key Laboratory for Utility of Environment-Friendly Composite Materials and Biomass in University of Gansu Province, College of Chemical Engineering, Northwest Minzu University, Lanzhou, 730030, P.R.China
| | - Ning Li
- Key Laboratory of Environment-Friendly Composite Materials of the State Ethnic Affairs Commission, Gansu Provincial Biomass Function Composites Engineering Research Center, Key Laboratory for Utility of Environment-Friendly Composite Materials and Biomass in University of Gansu Province, College of Chemical Engineering, Northwest Minzu University, Lanzhou, 730030, P.R.China
| | - Longjian Li
- Key Laboratory of Environment-Friendly Composite Materials of the State Ethnic Affairs Commission, Gansu Provincial Biomass Function Composites Engineering Research Center, Key Laboratory for Utility of Environment-Friendly Composite Materials and Biomass in University of Gansu Province, College of Chemical Engineering, Northwest Minzu University, Lanzhou, 730030, P.R.China
| | - Yongchong Yu
- Key Laboratory of Environment-Friendly Composite Materials of the State Ethnic Affairs Commission, Gansu Provincial Biomass Function Composites Engineering Research Center, Key Laboratory for Utility of Environment-Friendly Composite Materials and Biomass in University of Gansu Province, College of Chemical Engineering, Northwest Minzu University, Lanzhou, 730030, P.R.China
| | - Reyila Tuerhong
- Key Laboratory of Environment-Friendly Composite Materials of the State Ethnic Affairs Commission, Gansu Provincial Biomass Function Composites Engineering Research Center, Key Laboratory for Utility of Environment-Friendly Composite Materials and Biomass in University of Gansu Province, College of Chemical Engineering, Northwest Minzu University, Lanzhou, 730030, P.R.China
| | - Xiaoping Su
- Key Laboratory of Environment-Friendly Composite Materials of the State Ethnic Affairs Commission, Gansu Provincial Biomass Function Composites Engineering Research Center, Key Laboratory for Utility of Environment-Friendly Composite Materials and Biomass in University of Gansu Province, College of Chemical Engineering, Northwest Minzu University, Lanzhou, 730030, P.R.China
| | - Bin Zhang
- Key Laboratory of Environment-Friendly Composite Materials of the State Ethnic Affairs Commission, Gansu Provincial Biomass Function Composites Engineering Research Center, Key Laboratory for Utility of Environment-Friendly Composite Materials and Biomass in University of Gansu Province, College of Chemical Engineering, Northwest Minzu University, Lanzhou, 730030, P.R.China
| | - Lijuan Han
- Gansu Natural Energy Institute, Gansu Academy of Science, Lanzhou, 730046, P.R.China
| | - Yuqi Han
- College of Chemistry and Chemical Engineering, He Xi University, No.846 North Circle Road, Zhangye, 734000, P.R.China
| |
Collapse
|
5
|
Liu X, Hao Z, Fang C, Pang K, Yan J, Huang Y, Huang D, Astruc D. Using waste to treat waste: facile synthesis of hollow carbon nanospheres from lignin for water decontamination. Chem Sci 2023; 15:204-212. [PMID: 38131073 PMCID: PMC10732141 DOI: 10.1039/d3sc05275c] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 11/27/2023] [Indexed: 12/23/2023] Open
Abstract
Lignin, the most abundant natural material, is considered as a low-value commercial biomass waste from paper mills and wineries. In an effort to turn biomass waste into a highly valuable material, herein, a new-type of hollow carbon nanospheres (HCNs) is designed and synthesized by pyrolysis of biomass dealkali lignin, as an efficient nanocatalyst for the elimination of antibiotics in complex water matrices. Detailed characterization shows that HCNs possess a hollow nanosphere structure, with abundant graphitic C/N and surface N and O-containing functional groups favorable for peroxydisulfate (PDS) activation. Among them, HCN-500 provides the maximum degradation rate (95.0%) and mineralization efficiency (74.4%) surpassing those of most metal-based advanced oxidation processes (AOPs) in the elimination of oxytetracycline (OTC). Density functional theory (DFT) calculations and high-resolution mass spectroscopy (HR-MS) were employed to reveal the possible degradation pathway of OTC elimination. In addition, the HCN-500/PDS system is also successfully applied to real antibiotics removal in complex water matrices (e.g. river water and tap water), with excellent catalytic performances.
Collapse
Affiliation(s)
- Xiang Liu
- Engineering Research Center of Eco-Environment in Three Gorges Reservoir Region of Ministry of Education, College of Materials and Chemical Engineering, China Three Gorges University Yichang Hubei 443002 China
| | - Zixuan Hao
- Engineering Research Center of Eco-Environment in Three Gorges Reservoir Region of Ministry of Education, College of Materials and Chemical Engineering, China Three Gorges University Yichang Hubei 443002 China
| | - Chen Fang
- Engineering Research Center of Eco-Environment in Three Gorges Reservoir Region of Ministry of Education, College of Materials and Chemical Engineering, China Three Gorges University Yichang Hubei 443002 China
| | - Kun Pang
- Engineering Research Center of Eco-Environment in Three Gorges Reservoir Region of Ministry of Education, College of Materials and Chemical Engineering, China Three Gorges University Yichang Hubei 443002 China
| | - Jiaying Yan
- Engineering Research Center of Eco-Environment in Three Gorges Reservoir Region of Ministry of Education, College of Materials and Chemical Engineering, China Three Gorges University Yichang Hubei 443002 China
| | - Yingping Huang
- Engineering Research Center of Eco-Environment in Three Gorges Reservoir Region of Ministry of Education, College of Materials and Chemical Engineering, China Three Gorges University Yichang Hubei 443002 China
| | - Di Huang
- Engineering Research Center of Eco-Environment in Three Gorges Reservoir Region of Ministry of Education, College of Materials and Chemical Engineering, China Three Gorges University Yichang Hubei 443002 China
| | - Didier Astruc
- Engineering Research Center of Eco-Environment in Three Gorges Reservoir Region of Ministry of Education, College of Materials and Chemical Engineering, China Three Gorges University Yichang Hubei 443002 China
- ISM, UMR CNRS N°5255, Université de Bordeaux 351 Cours de la Libération, 33405 Talence Cedex France
| |
Collapse
|
6
|
Xiang S, Lin Y, Chang T, Mei B, Liang Y, Wang Z, Sun W, Cai C. Oxygen doped graphite carbon nitride as efficient metal-free catalyst for peroxymonosulfate activation: Performance, mechanism and theoretical calculation. CHEMOSPHERE 2023; 338:139539. [PMID: 37474028 DOI: 10.1016/j.chemosphere.2023.139539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 06/20/2023] [Accepted: 07/15/2023] [Indexed: 07/22/2023]
Abstract
In this study, oxygen-doped graphitic carbon nitride (g-C3N4), named O-g-C3N4, was successfully fabricated and characterized, and its performance in activating peroxymonosulfate (PMS, HSO5-) for the removal of phenol, 2,4-dichlorophenol (2,4-DCP), bisphenol A (BPA), rhodamine B (RhB), reactive brilliant blue (RBB) and acid orange 7 (AO7) was evaluated. The catalytic performance of O-g-C3N4 for AO7 removal increased by 14 times compared to g-C3N4. In the presence of 0.2 g L-1 O-g-C3N4, 3.5 mM PMS at natural pH 5.8, 96.4% of AO7 could be removed in 60 min, reduced toxicity of the treated AO7 solution was obtained, and the mineralization efficiency was 47.2% within 120 min. Density functional theory (DFT) calculations showed that the charge distribution changed after oxygen doping, and PMS was more readily adsorbed by O-g-C3N4 with the adsorption energy (Eads) of -0.855 kcal/mol than that of the pristine g-C3N4 (Eads: -0.305 kcal/mol). Mechanism investigation implied that AO7 was primarily removed by the sulfate radicals (SO4•-) and hydroxyl radicals (•OH) on the surface of O-g-C3N4, but the role of singlet oxygen (1O2) to AO7 elimination was negligible. The results of cyclic experiments and catalyst characterization after reaction confirmed the favorable catalytic activity and structural stability of O-g-C3N4 particles. Furthermore, the O-g-C3N4/PMS system was very resistant to most of the environmental impacts, and AO7 removal was still acceptable in natural water environment. This study may provide an efficient metal-free carbonaceous activator with low dosage for PMS activation to remove recalcitrant organic pollutants (ROPs).
Collapse
Affiliation(s)
- Shaofeng Xiang
- School of Environmental Studies, Hubei Provincial Engineering Research Center of Systematic Water Pollution Control, China University of Geosciences, Wuhan, 430074, China.
| | - Yu Lin
- School of Environmental Studies, Hubei Provincial Engineering Research Center of Systematic Water Pollution Control, China University of Geosciences, Wuhan, 430074, China
| | - Tongda Chang
- School of Environmental Studies, Hubei Provincial Engineering Research Center of Systematic Water Pollution Control, China University of Geosciences, Wuhan, 430074, China
| | - Bingrui Mei
- School of Environmental Studies, Hubei Provincial Engineering Research Center of Systematic Water Pollution Control, China University of Geosciences, Wuhan, 430074, China
| | - Yuhang Liang
- School of Environmental Studies, Hubei Provincial Engineering Research Center of Systematic Water Pollution Control, China University of Geosciences, Wuhan, 430074, China
| | - Ziqian Wang
- School of Environmental Studies, Hubei Provincial Engineering Research Center of Systematic Water Pollution Control, China University of Geosciences, Wuhan, 430074, China
| | - Wenwu Sun
- School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan, 430074, China
| | - Chun Cai
- School of Environmental Studies, Hubei Provincial Engineering Research Center of Systematic Water Pollution Control, China University of Geosciences, Wuhan, 430074, China.
| |
Collapse
|
7
|
He J, Han L, Ma W, Xu C, Xu EG, Ma C, Xing B, Yang Z. Mechanism insight into the facet-dependent photoaging of polystyrene microplastics on hematite in freshwater. WATER RESEARCH X 2023; 19:100185. [PMID: 37292178 PMCID: PMC10245329 DOI: 10.1016/j.wroa.2023.100185] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Revised: 05/17/2023] [Accepted: 05/26/2023] [Indexed: 06/10/2023]
Abstract
Hematite, as an extensive natural mineral with multiple crystal facets, profoundly affects the migration and transformation of pollutants in the natural environment. However, little is known about the photochemical behavior of microplastics on different facets of hematite in the aquatic environment. In this work, the photoaging of polystyrene microplastics (PS-MPs) on different crystal planes ({001}, {100}, and {012} facets) and related mechanisms were studied. Two-dimensional correlation spectroscopy analysis illustrated that the reaction pathways of PS-MPs photoaging on hematite tended to preferential chemical oxidization. The stronger performance of PS-MPs photoaging, expressed by particle size reduction and surface oxidation, was observed on the {012} crystal facet. Under irradiation, {012} facet-dominated hematite with a narrower bandgap (1.93 eV) reinforced the photogenerated charge carrier separation, and the lower activation energy barrier (1.41 eV calculated from density functional theory) led to effective •OH formation from water oxidation. These findings elucidate the underlying photoaging mechanism of MPs on hematite with different mineralogical phases.
Collapse
Affiliation(s)
- Jiehong He
- Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Ecology, Environment and Resources, Guangdong University of Technology, Guangzhou 510006, PR China
| | - Lanfang Han
- Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Ecology, Environment and Resources, Guangdong University of Technology, Guangzhou 510006, PR China
| | - Weiwei Ma
- Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Ecology, Environment and Resources, Guangdong University of Technology, Guangzhou 510006, PR China
| | - Chao Xu
- Research Center for Eco-Environmental Engineering, Dongguan University of Technology, Dongguan 523808, PR China
| | - Elvis Genbo Xu
- Department of Biology, University of Southern Denmark, Odense 5230, Denmark
| | - Chuanxin Ma
- Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Ecology, Environment and Resources, Guangdong University of Technology, Guangzhou 510006, PR China
| | - Baoshan Xing
- Stockbridge School of Agriculture, University of Massachusetts, Amherst, MA 01003, USA
| | - Zhifeng Yang
- Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Ecology, Environment and Resources, Guangdong University of Technology, Guangzhou 510006, PR China
| |
Collapse
|
8
|
Masud MAA, Shin WS, Kim DG. Degradation of phenol by ball-milled activated carbon (AC BM) activated dual oxidant (persulfate/calcium peroxide) system: Effect of preadsorption and sequential injection. CHEMOSPHERE 2023; 312:137120. [PMID: 36334750 DOI: 10.1016/j.chemosphere.2022.137120] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 10/30/2022] [Accepted: 10/31/2022] [Indexed: 06/16/2023]
Abstract
This study explored pre-adsorption and sequential injection of dual oxidant (DuOx) of persulfate (PS) and calcium peroxide (CP) for phenol degradation in an aqueous solution. Ball-milled activated carbon (ACBM) was used as the catalyst in the following systems: pre-adsorption and sequential injection of PS and CP (ACBM + PS + CP), pre-adsorption and simultaneous injection of PS and CP (ACBM + PS/CP), simultaneous injection of ACBM, PS, and CP (ACBM/PS/CP), simultaneous injection of ACBM and PS (ACBM/PS), and simultaneous injection of ACBM and CP (ACBM/CP). The ACBM had a larger specific surface area, more graphitic structures, and more defects. Moreover, it showed better phenol removal when introduced simultaneously with PS and CP. The phenol removal was most the efficient in ACBM + PS + CP (98.8%) with a near-neutral final pH, followed by ACBM + PS/CP, ACBM/PS, ACBM/PS/CP, and ACBM/CP. This indicates that pre-adsorption and separate injection of PS and CP were the key strategy for improved performance and maintained favorable pH for the activation of PS and CP. The dual oxidant system (PS/CP) is superior to single oxidant systems (PS or CP). Scavenger experiments and the electron spin resonance spectra (ESR) demonstrated that non-radical species (1O2) were dominantly involved in ACBM + PS + CP, but radical species (HO•, SO4•-) also contributed. HCO3- and HPO42- inhibited phenol degradation in ACBM + PS + CP, whereas Cl- and HA had negligible effects. The ACBM + PS + CP showed high total organic carbon removal and ACBM was recyclable with a slight decrease in activity. This work is important as it provides a detailed insight into the strategy of pre-adsorption and sequential injection of dual oxidants for a practical and cost-effective method of groundwater remediation.
Collapse
Affiliation(s)
- Md Abdullah Al Masud
- School of Architecture, Civil, Environmental and Energy Engineering, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - Won Sik Shin
- School of Architecture, Civil, Environmental and Energy Engineering, Kyungpook National University, Daegu, 41566, Republic of Korea.
| | - Do Gun Kim
- Department of Environmental Engineering, Sunchon National University, Suncheon, Jeollanam-do, 57922, Republic of Korea.
| |
Collapse
|