1
|
Liu W, Su X, Wu Y, Yi G, Guo X, Shi S, Zhang C, Zhang Y. A comprehensive review of PbO 2 electrodes in electrocatalytic degradation of organic pollutants. ENVIRONMENTAL RESEARCH 2025; 279:121885. [PMID: 40383422 DOI: 10.1016/j.envres.2025.121885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2025] [Revised: 05/06/2025] [Accepted: 05/16/2025] [Indexed: 05/20/2025]
Abstract
This paper provides a systematic review of recent advancements in PbO2 electrodes for the electrocatalytic degradation of organic pollutants, emphasizing innovative breakthroughs and key technological optimizations in this domain. This work analyzes PbO2 electrode fabrication methods, assessing strengths/weaknesses, and summarizes recent advances in surface modification. Atomic-scale strategies such as elemental doping, composite oxides, and nanomaterial coupling, enhance its catalytic performance. Kinetic modeling and characterization confirm the improved efficiency and durability in organic contaminant mineralization. Kinetic and experimental analyses demonstrate the high efficiency and stability of modified PbO2 electrodes in degrading organic pollutants. Industrial feasibility analysis indicates that the PbO2 electrode demonstrates technical robustness, economic viability, and scalability for industrial implementation. This work elucidates direct/indirect oxidation mechanisms in electrocatalysis, revealing correlations between surface reactive sites and active oxidant generation, guiding electrode design optimization. Looking ahead, this paper proposes innovative trajectories for PbO2 electrode technology, such as exploring novel modified materials, intelligently designing hierarchical architectures, and integrating advanced systems with smart control. These directions aim to promote its widespread use in environmental protection for more efficient and eco-friendly organic pollutant treatment. This review enriches the theoretical framework for PbO2 electrode electrocatalytic degradation of organic contaminants and offers references and inspirations for future research.
Collapse
Affiliation(s)
- Wenlong Liu
- Henan Key Laboratory of Coal Green Conversion, International Joint Laboratory of Coal Clean Utilization, Collaborative Innovation Center of Coal Work Safety and Clean High Efficiency Utilization, and College of Chemistry and Chemical Engineering, Henan Polytechnic University, Jiaozuo, 454003, China
| | - Xiaoxiao Su
- School of Mechanical and Power Engineering, Henan Polytechnic University, Jiaozuo, 454003, China
| | - Yuanfeng Wu
- Henan Key Laboratory of Coal Green Conversion, International Joint Laboratory of Coal Clean Utilization, Collaborative Innovation Center of Coal Work Safety and Clean High Efficiency Utilization, and College of Chemistry and Chemical Engineering, Henan Polytechnic University, Jiaozuo, 454003, China.
| | - Guiyun Yi
- Henan Key Laboratory of Coal Green Conversion, International Joint Laboratory of Coal Clean Utilization, Collaborative Innovation Center of Coal Work Safety and Clean High Efficiency Utilization, and College of Chemistry and Chemical Engineering, Henan Polytechnic University, Jiaozuo, 454003, China
| | - Xiangkun Guo
- Henan Key Laboratory of Coal Green Conversion, International Joint Laboratory of Coal Clean Utilization, Collaborative Innovation Center of Coal Work Safety and Clean High Efficiency Utilization, and College of Chemistry and Chemical Engineering, Henan Polytechnic University, Jiaozuo, 454003, China
| | - Shengbin Shi
- Institute of Zhejiang University - Quzhou, Quzhou, 324000, China
| | - Chuanxiang Zhang
- Henan Key Laboratory of Coal Green Conversion, International Joint Laboratory of Coal Clean Utilization, Collaborative Innovation Center of Coal Work Safety and Clean High Efficiency Utilization, and College of Chemistry and Chemical Engineering, Henan Polytechnic University, Jiaozuo, 454003, China
| | - Yulong Zhang
- Henan Key Laboratory of Coal Green Conversion, International Joint Laboratory of Coal Clean Utilization, Collaborative Innovation Center of Coal Work Safety and Clean High Efficiency Utilization, and College of Chemistry and Chemical Engineering, Henan Polytechnic University, Jiaozuo, 454003, China
| |
Collapse
|
2
|
Wang Z, Zhang L, Su R, Yang L, Xiao F, Chen L, He P, Yang D, Zeng Y, Zhou Y, Wan Y, Tang B. PANI/GO and Sm co-modified Ti/PbO 2 dimensionally stable anode for highly efficient amoxicillin degradation: Performance assessment, impact parameters and degradation mechanism. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 364:121435. [PMID: 38889646 DOI: 10.1016/j.jenvman.2024.121435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 05/22/2024] [Accepted: 06/07/2024] [Indexed: 06/20/2024]
Abstract
The abuse and uncontrolled discharge of antibiotics present a severe threat to environment and human health, necessitating the development of efficient and sustainable treatment technology. In this work, we employ a facile one-step electrodeposition method to prepare polyaniline/graphite oxide (PANI/GO) and samarium (Sm) co-modified Ti/PbO2 (Ti/PbO2-PANI/GO-Sm) electrode for the degradation of amoxicillin (AMX). Compared with traditional Ti/PbO2 electrode, Ti/PbO2-PANI/GO-Sm electrode exhibits more excellent oxygen evolution potential (2.63 V) and longer service life (56 h). In degradation experiment, under optimized conditions (50 mg L-1 AMX, 20 mA cm-2, pH 3, 0.050 M Na2SO4, 25 °C), Ti/PbO2-PANI/GO-Sm electrode achieves remarkable removal efficiencies of 88.76% for AMX and 79.92% for chemical oxygen demand at 90 min. In addition, trapping experiment confirms that ·OH plays a major role in the degradation process. Based on theoretical calculation and liquid chromatography-mass spectrometer results, the heterocyclic portion of AMX molecule is more susceptible to ·OH attacks. Thus, this novel electrode offers a sustainable and efficient solution to address environmental challenges posed by antibiotic-contaminated wastewater.
Collapse
Affiliation(s)
- Zeyi Wang
- School of Materials and Chemistry, Southwest University of Science and Technology, Mianyang, 621010, PR China
| | - Luyao Zhang
- School of Materials and Chemistry, Southwest University of Science and Technology, Mianyang, 621010, PR China
| | - Rong Su
- School of Materials and Chemistry, Southwest University of Science and Technology, Mianyang, 621010, PR China; School of Science, Xichang University, Xichang, 615000, PR China
| | - Lu Yang
- School of Materials and Chemistry, Southwest University of Science and Technology, Mianyang, 621010, PR China
| | - Feng Xiao
- School of Materials and Chemistry, Southwest University of Science and Technology, Mianyang, 621010, PR China
| | - Lichuan Chen
- School of Materials and Chemistry, Southwest University of Science and Technology, Mianyang, 621010, PR China
| | - Ping He
- School of Materials and Chemistry, Southwest University of Science and Technology, Mianyang, 621010, PR China; International Science and Technology Cooperation Laboratory of Micro-nanoparticle Application Research, Southwest University of Science and Technology, Mianyang, 621010, PR China.
| | - Dingming Yang
- School of Materials and Chemistry, Southwest University of Science and Technology, Mianyang, 621010, PR China.
| | - Yali Zeng
- Sichuan Mianyang 404 Hospital, Mianyang, 621000, PR China
| | - Yun Zhou
- Sichuan Mianyang 404 Hospital, Mianyang, 621000, PR China.
| | - Ying Wan
- School of Basic Medical Sciences, Southwest Medical University, Luzhou, 646000, PR China
| | - Bin Tang
- School of Basic Medical Sciences, Southwest Medical University, Luzhou, 646000, PR China.
| |
Collapse
|
3
|
Zeng J, Liu X, Chen Q, Hu D. A chemical coating strategy for assembling a boron-doped diamond anode towards electrocatalytic degradation of late landfill leachate. RSC Adv 2024; 14:18355-18366. [PMID: 38854836 PMCID: PMC11160392 DOI: 10.1039/d4ra03107e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Accepted: 06/04/2024] [Indexed: 06/11/2024] Open
Abstract
The high efficiency electrocatalytic degradation of late landfill leachate is still not an easy task due to the complexity and variability of organic pollutants. A chemical coating strategy for assembling a boron-doped diamond anode (BDD) towards electrocatalytic degradation of late landfill leachate was adopted and studied. The results shows the high removal rates of organic carbon (TOC) and ammonia nitrogen (NH3-N) after electrochemical oxidation for 5 h can reach 99% and 100%. Further, the organic migration and transformation depends on current density, A/V value, initial pH, electrochemical degradation time, and composition of the stock solution. Specifically, alkaline conditions can increase both TOC and NH3-N removal rates, which is reflected in the NH3-N removal rate of 100% when the pH is 8.5 after only 5 h. The types of organic matter decreased from 63 species to 24 species in 5 h, in which the removal of fulvic acids is superior to that of soluble biometabolites. Amides/olefins and phenolic alcohols are all degraded and converted into other substances or decomposed into CO2 and H2O by BDD, accompanied by the continuous decomposition of alcohol-phenols into alkanes. In all, this study provides a core reference on electrocatalytic degradation of late landfill leachate.
Collapse
Affiliation(s)
- Juanmei Zeng
- State Key Laboratory of Featured Metal Materials and Life-cycle Safety for Composite Structures, School of Resources, Environment and Materials, Guangxi University Nanning 530004 China
| | - Xi Liu
- Guangxi Environmental Protection Industry Development Research Institute Co., Ltd, Guangxi Key Laboratory of Environmental Pollution Control and Ecological Restoration Technology Nanning 530007 China
| | - Qizhi Chen
- Guangxi Huiyuan Manganese Industry Co., Ltd Laibin 546100 China
| | - Dongying Hu
- State Key Laboratory of Featured Metal Materials and Life-cycle Safety for Composite Structures, School of Resources, Environment and Materials, Guangxi University Nanning 530004 China
| |
Collapse
|
4
|
Mohd Radhuwan SN, Abdulhameed AS, Jawad AH, ALOthman ZA, Wilson LD, Algburi S. Production of activated carbon from food wastes (chicken bones and rice waste) by microwave assisted ZnCl 2 activation: an optimized process for crystal violet dye removal. INTERNATIONAL JOURNAL OF PHYTOREMEDIATION 2023; 26:699-709. [PMID: 37740478 DOI: 10.1080/15226514.2023.2260004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/24/2023]
Abstract
A major worldwide challenge that presents significant economic, environmental, and social concerns is the rising generation of food waste. The current work used chicken bones (CB) and rice (R) food waste as alternate precursors for the production of activated carbon (CBRAC) by microwave radiation-assisted ZnCl2 activation. The adsorption characteristics of CBRAC were investigated in depth by removing an organic dye (crystal violet, CV) from an aquatic environment. To establish ideal conditions from the significant adsorption factors (A: CBRAC dosage (0.02-0.12 g/100 mL); B: pH (4-10); and C: duration (30-420), a numerical desirability function of Box-Behnken design (BBD) was utilized. The highest CV decolorization by CBRAC was reported to be 90.06% when the following conditions were met: dose = 0.118 g/100 mL, pH = 9.0, and time = 408 min. Adsorption kinetics revealed that the pseudo-first order (PFO) model best matches the data, whereas the Langmuir model was characterized by equilibrium adsorption, where the adsorption capacity of CBRAC for CV dye was calculated to be 57.9 mg/g. CV adsorption is accomplished by several processes, including electrostatic forces, pore diffusion, π-π stacking, and H-bonding. This study demonstrates the use of CB and R as biomass precursors for the efficient creation of CBRAC and their use in wastewater treatment, resulting in a greener environment.
Collapse
Affiliation(s)
- Siti Nasuha Mohd Radhuwan
- Advanced Biomaterials and Carbon Development Research Group, Faculty of Applied Sciences, Universiti Teknologi MARA, Shah Alam, Malaysia
| | - Ahmed Saud Abdulhameed
- Department of Pharmaceutical Chemistry, College of Pharmacy, University of Anbar, Ramadi, Iraq
| | - Ali H Jawad
- Advanced Biomaterials and Carbon Development Research Group, Faculty of Applied Sciences, Universiti Teknologi MARA, Shah Alam, Malaysia
| | - Zeid A ALOthman
- Chemistry Department, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Lee D Wilson
- Department of Chemistry, University of Saskatchewan, Saskatoon, Canada
| | - Sameer Algburi
- College of Engineering Technology, Al-Kitab University, Kirkuk, Iraq
| |
Collapse
|
5
|
Teixeira RA, Lima EC, Benetti AD, Naushad M, Thue PS, Mello BL, Dos Reis GS, Rabiee N, Franco D, Seliem MK. Employ a Clay@TMSPDETA hybrid material as an adsorbent to remove textile dyes from wastewater effluents. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:86010-86024. [PMID: 37395882 DOI: 10.1007/s11356-023-28568-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 06/29/2023] [Indexed: 07/04/2023]
Abstract
A grafting of N1-(3-trimethoxysilylpropyl)diethylenetriamine (TMSPDETA) on natural clay was carried out to obtain an organic-inorganic hybrid clay material that was applied as an adsorbent to the uptake of Reactive Blue 19 (RB-19) and Reactive Green 19 (RG-19) dyes from aqueous wastewaters. This research demonstrates the effect of TMSPDETA contents on amino-functionalized clay materials' hydrophobic/hydrophilic behavior. The resultant material was utilized to uptake reactive dyes in aqueous solutions. The clay@TMSPDETA hybrid material was characterized by isotherm of adsorption and desorption of nitrogen, FTIR, elemental analysis, TGA, pHpzc, total acidity, total basicity groups, and hydrophilic balance. The hybrid samples were more hydrophilic than the pristine clay for ratios from 0.1 up to 0.5 due to adding amino groups to the pristine clay. FTIR spectra suggest that TMSPDETA was grafted onto the clay. The hybrid material presents a surface area 2.17-fold (42.7 m2/g) lower than pristine clay (92.7 m2/g). The total volume of pores of hybrid material was 0.0822 cm3/g, and the pristine clay material was 0.127 cm3/g, corresponding to a diminution of the total pore volume (Vtot) of 1.54 times. The kinetic data followed the pseudo-second-order (PSO) model for RB-19 and RG-19 reactive dyes. The equilibrium data were better fitted to the Liu isotherm model, displaying a Qmax as 178.8 and 361.1 mg g-1 for RB-19 and RG-19, respectively, at 20.0 °C. The main mechanism of interactions of the reactive dyes with the hybrid clay is electrostatic interaction. The clay@TMSPDETA has a very good effect on treating synthetic dye-textile wastewater. The removal percentage of simulated wastewater was up to 97.67% and 88.34% using distilled water and plastic industry wastewater as the solvents, respectively. The clay@TMSPDETA-0.1 could be recycled up to 5 cycles of adsorption and desorption of both dyes, attaining recoveries of 98.42% (RB-19) and 98.32% (RG-19) using 0.1 M HCl + 10% ethanol.
Collapse
Affiliation(s)
- Roberta A Teixeira
- Graduate Program in Water Resources and Environmental Sanitation, Hydraulic Research Institute (IPH), Federal University of Rio Grande Do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Eder C Lima
- Institute of Chemistry, Federal University of Rio Grande Do Sul (UFRGS), Porto Alegre, RS, Brazil.
- Graduate Program in Mine, Metallurgical, and Materials Engineering (PPGE3M). School of Engineering, Federal University of Rio Grande Do Sul (UFRGS), Av. Bento Gonçalves 9500, Porto Alegre, RS, Brazil.
- Department of Chemistry, College of Science, King Saud University, Riyadh, P.O. Box 2455, Saudi Arabia.
| | - Antônio D Benetti
- Graduate Program in Water Resources and Environmental Sanitation, Hydraulic Research Institute (IPH), Federal University of Rio Grande Do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Mu Naushad
- Department of Chemistry, College of Science, King Saud University, Riyadh, P.O. Box 2455, Saudi Arabia
| | - Pascal S Thue
- Environmental Science Graduate Program, Engineering Center, Federal University of Pelotas (UFPel), Pelotas, RS, Brazil
| | - Beatris L Mello
- Graduate Program in Mine, Metallurgical, and Materials Engineering (PPGE3M). School of Engineering, Federal University of Rio Grande Do Sul (UFRGS), Av. Bento Gonçalves 9500, Porto Alegre, RS, Brazil
| | - Glaydson S Dos Reis
- Department of Forest Biomaterials and Technology, Biomass Technology Centre, Swedish University of Agricultural Sciences, 901 83, Umeå, Sweden
| | - Navid Rabiee
- Centre for Molecular Medicine and Innovative Therapeutics, Murdoch University, Perth, WA, 6150, Australia
| | - Dison Franco
- Universidad de La Costa, CUC, Barranquilla, Atlántico, Colombia
| | - Moaaz K Seliem
- Faculty of Earth Science, Beni-Suef University, Beni Suef, 62511, Egypt
| |
Collapse
|
6
|
Sarfo DK, Kaur A, Marshall DL, O'Mullane AP. Electrochemical degradation and mineralisation of organic dyes in aqueous nitrate solutions. CHEMOSPHERE 2023; 316:137821. [PMID: 36640986 DOI: 10.1016/j.chemosphere.2023.137821] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 01/09/2023] [Accepted: 01/10/2023] [Indexed: 06/17/2023]
Abstract
Electrochemical treatment of organic matter for environmental remediation necessitates the development of cheap and robust electrodes that are chemically and structurally stable. To address this challenging requirement, we demonstrate a new electrochemical approach using a simple copper electrode under cathodic conditions to electrochemically generate reactive nitrosonium ions for the degradation of different classes of synthetic organic dyes. This could be achieved in an aqueous HNO3/KNO3 electrolyte at a relatively low cathodic potential of -0.5 V RHE at room temperature. UV-visible absorption spectroscopy, Raman spectroscopy, liquid chromatography - mass spectrometry and total organic carbon measurements revealed the rapid decolorisation and mineralisation of several dye types such as triarylmethane dyes (crystal violet, cresol red), an azo dye (methyl orange) as well as a sulfur containing thiazine dye (toluidine blue). The total organic carbon content of a 50 mg L-1 methyl orange solution was found to decrease by 83% after 1 h of electrolysis. Promisingly, locally sourced river and creek water samples spiked with 50 mg L-1 methyl orange were also successfully treated for up to 6 cycles at a simple Cu electrode, demonstrating potential for the remediation of polluted waterways.
Collapse
Affiliation(s)
- Daniel K Sarfo
- School of Chemistry and Physics, Queensland University of Technology (QUT), Brisbane, QLD, 4001, Australia; Centre for Materials Science, Queensland University of Technology (QUT), Brisbane, QLD, 4001, Australia
| | - Arshdeep Kaur
- School of Chemistry and Physics, Queensland University of Technology (QUT), Brisbane, QLD, 4001, Australia; Centre for Materials Science, Queensland University of Technology (QUT), Brisbane, QLD, 4001, Australia
| | - David L Marshall
- Central Analytical Research Facility (CARF), Queensland University of Technology (QUT), Brisbane, QLD, 4001, Australia
| | - Anthony P O'Mullane
- School of Chemistry and Physics, Queensland University of Technology (QUT), Brisbane, QLD, 4001, Australia; Centre for Materials Science, Queensland University of Technology (QUT), Brisbane, QLD, 4001, Australia.
| |
Collapse
|
7
|
Zhao D, Zhai C, He Y, Chen B, Gao C, Huang H, Guo Z. Insights into the degradation of norfloxacin antibiotics on boron-doped diamond anode: Kinetics, pathways and mechanisms. J Taiwan Inst Chem Eng 2023. [DOI: 10.1016/j.jtice.2023.104826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2023]
|
8
|
Tang Y, Lu XM, Yang G, Wang YY. Paddle-Wheel-Shaped Porous Cu(II)-Organic Framework with Two Different Channels as an Absorbent for Methylene Blue. Inorg Chem 2023; 62:1735-1743. [PMID: 36656916 DOI: 10.1021/acs.inorgchem.2c04350] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
The destruction of the ecological environment caused by human activity and modern industrial development is so severe that the water environment has become seriously polluted. Therefore, the exploration of high-efficiency absorbents has become one of the hot topics to solve this issue. Herein, a porous metal-organic framework [Cu(L)]·2.5H2O·0.5DMF (1, DMF = N,N-dimethylformamide) was successfully constructed using a rigid N-heterocyclic 5-(4-(1H,3,4-triazol-1-yl)phenyl)isophthalic acid (H2L) ligand. In particular, its structure includes the classical paddle-wheel-shaped secondary building units and two 1D channels with diameters of 7.2 and 3.2 Å, respectively. Complex 1 shows great sorption performance for methylene blue (MB) with a maximum capacity of 589 mg·g-1. The various influence factors, including the time, dye concentration, adsorbent dosage, and the pH of the solution, are investigated respectively. Also, the adsorption process is more in line with the first-order kinetics and the Langmuir isothermal adsorption model. The strong electrostatic force and intermolecular forces are primarily responsible for the remarkable adsorption ability of MB.
Collapse
Affiliation(s)
- Yue Tang
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, Shaanxi Key Laboratory of Physico-Inorganic Chemistry, Xi'an Key Laboratory of Functional Supramolecular Structure and Materials, College of Chemistry and Materials Science, Northwest University, Xi'an710127, P.R. China
| | - Xiang-Mei Lu
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, Shaanxi Key Laboratory of Physico-Inorganic Chemistry, Xi'an Key Laboratory of Functional Supramolecular Structure and Materials, College of Chemistry and Materials Science, Northwest University, Xi'an710127, P.R. China
| | - Guoping Yang
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, Shaanxi Key Laboratory of Physico-Inorganic Chemistry, Xi'an Key Laboratory of Functional Supramolecular Structure and Materials, College of Chemistry and Materials Science, Northwest University, Xi'an710127, P.R. China
| | - Yao-Yu Wang
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, Shaanxi Key Laboratory of Physico-Inorganic Chemistry, Xi'an Key Laboratory of Functional Supramolecular Structure and Materials, College of Chemistry and Materials Science, Northwest University, Xi'an710127, P.R. China
| |
Collapse
|
9
|
Wang K, Zhang S, Xu Q, Lian T, Xu Z, Jiang M, Liu P. Fabrication of Salt-tolerant Chitosan-based Polyelectrolyte Flocculant through Enhancing H-bond Hydration Effect for Treating and Recycling of Highly Saline Dyeing Wastewater. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.122786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|