1
|
Kim J, Kim JH. Photocatalytic remediation of organic pollutants in contaminated water using trimetallic zeolitic imidazole framework: From methylene blue to wastewater. CHEMOSPHERE 2025; 377:144362. [PMID: 40158345 DOI: 10.1016/j.chemosphere.2025.144362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2025] [Revised: 03/08/2025] [Accepted: 03/24/2025] [Indexed: 04/02/2025]
Abstract
Photocatalysts have recently attracted significant attention for their ability to efficiently degrade organic contaminants in wastewater under sunlight irradiation conditions. In this study, trimetallic Zn-ZIF photocatalyst is synthesized by incorporating Ni- and Cd-dopant atoms to enhance photocatalytic performance. Morphological and crystallographic analyses confirm the formation of the ZIF-L structure. Compared to monometallic and bimetallic variants, the trimetallic ZIF exhibits enhanced optical absorbance. PL analysis indicates that additional impurities introduce more active sites, resulting in improved photocatalytic performance. Trimetallic N2C4 ZIF photocatalyst shows the highest organic degradability with 95.1 % MB degradation, with stable second-order kinetics derived primarily from superoxide radicals. The catalyst also effectively degrades melanoidin chromophore in coffee and wastewater. This work demonstrates a promising approach to developing broadly applicable ZIF photocatalysts to photodegrade various polluted environmental systems.
Collapse
Affiliation(s)
- Joohyun Kim
- Department of Chemical Engineering & Center for Innovative Chemical Processes (Institute of Engineering), University of Seoul, 163 Seoulsiripdae-ro, Dongdaemun-gu, Seoul, 02504, South Korea
| | - Jung Hyeun Kim
- Department of Chemical Engineering & Center for Innovative Chemical Processes (Institute of Engineering), University of Seoul, 163 Seoulsiripdae-ro, Dongdaemun-gu, Seoul, 02504, South Korea.
| |
Collapse
|
2
|
Liu X, Li H, Wang D, Lu J, Wu Y, Sun W. Highly Stable Flexible SERS-Imprinted Membrane Based on Plasmonic MOF Material for the Selective Detection of Chrysoidin in Environmental Water. Polymers (Basel) 2024; 17:81. [PMID: 39795484 PMCID: PMC11723279 DOI: 10.3390/polym17010081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 12/23/2024] [Accepted: 12/26/2024] [Indexed: 01/13/2025] Open
Abstract
Chrysoidin (CG) can be ingested into the human body through the skin and cause chronic toxicity, so the detection of CG levels in the environment is crucial. In this study, we synthesize F-Ag@ZIF-8/PVC molecular-imprinted membranes (FZAP-MIM) by an innovative combination of SERS detection, membrane separation, and a molecular-imprinted technique in order to perform the analysis of CG in water. The plasmonic MOF material as a SERS substrate helps to enrich the target and realize the spatial overlap of the target with the nanoparticle tip "hotspot". To avoid the poor reproducibility of Raman signals caused by the random arrangement of the powder substrate, polyvinyl chloride (PVC) is used to provide support and protection for the powder substrate. PVC has excellent dirt immunity and chemical stability, enabling the substrate to maintain Raman performance under complex and extreme detection conditions. FAZP-MIM has outstanding sensitivity and selectivity and can quickly and accurately capture targets even in the presence of similar structural interferences. The method showed superior recoveries in spiked recovery tests of real water samples and is expected to be practically applied to the trace detection of organic dye molecules in the environment.
Collapse
Affiliation(s)
- Xinyi Liu
- Hainan Engineering Research Center of Tropical Ocean Advanced Opto-Electrical Functional Materials, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158, China; (X.L.); (W.S.)
| | - Hongji Li
- Hainan Engineering Research Center of Tropical Ocean Advanced Opto-Electrical Functional Materials, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158, China; (X.L.); (W.S.)
| | - Dandan Wang
- Hainan Engineering Research Center of Tropical Ocean Advanced Opto-Electrical Functional Materials, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158, China; (X.L.); (W.S.)
- Key Laboratory of Advanced Materials of Tropical Island Resources, Ministry of Education, School of Chemistry and Chemical Engineering, Hainan University, Haikou 570228, China
| | - Jian Lu
- School of Fashion and Textiles, The Hong Kong Polytechnic University, Hong Kong 999077, China;
| | - Yilin Wu
- Institute of Green Chemistry and Chemical Technology, Advanced Chemical Engineering Laboratory of Green Materials and Energy of Jiangsu Province, School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, China;
| | - Wei Sun
- Hainan Engineering Research Center of Tropical Ocean Advanced Opto-Electrical Functional Materials, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158, China; (X.L.); (W.S.)
| |
Collapse
|
3
|
Belousov AS, Parkhacheva AA, Shotina VA, Titaev DN, Suleimanov EV, Shafiq I. Engineering a staggered type-II Bi 2WO 6/WO 3 heterojunction with improved photocatalytic activity in wastewater treatment. CHEMOSPHERE 2024; 359:142316. [PMID: 38735501 DOI: 10.1016/j.chemosphere.2024.142316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 03/22/2024] [Accepted: 05/09/2024] [Indexed: 05/14/2024]
Abstract
In recent years, the removal organic pollutants from wastewater by advanced oxidation processes, especially photocatalysis, has become a meaningful approach due to its eco-friendliness and low cost. Herein, staggered type-II Bi2WO6/WO3 heterojunction photocatalysts were prepared by a facile hydrothermal route and investigated by modern physicochemical methods (X-ray diffraction, scanning electron microscopy, low-temperature nitrogen adsorption-desorption, and diffuse reflectance spectroscopy). The optimized BWOW-5 photocatalyst exhibited a H2O2-assisted photocatalytic methylene blue removal efficiency of 94.1% (k = 0.01414 min-1) within 180 min under optimal reaction conditions, which is much higher than that of unmodified Bi2WO6 and WO3 due to efficient separation of the photogenerated charge carriers. The trapping experiments demonstrated that photogenerated hydroxyl radicals and holes play a key role in the photodegradation reaction. Moreover, the optimized BWOW-5 heterojunction photocatalyst exhibited excellent activity in the H2O2-assisted degradation of other pollutants, namely phenol, isoniazid, levofloxacin, and dibenzothiophene with the removal rate of 63.1, 73.6, 95.0, and 72.4%, respectively. This investigation offers a design strategy for Bi2WO6-based multifunctional photocatalytic composites with improved activity for organic pollutant degradation.
Collapse
Affiliation(s)
- Artem S Belousov
- Lobachevsky State University of Nizhny Novgorod, Gagarin Avenue 23, Nizhny Novgorod, 603950, Russian Federation.
| | - Alina A Parkhacheva
- Lobachevsky State University of Nizhny Novgorod, Gagarin Avenue 23, Nizhny Novgorod, 603950, Russian Federation
| | - Valeria A Shotina
- Lobachevsky State University of Nizhny Novgorod, Gagarin Avenue 23, Nizhny Novgorod, 603950, Russian Federation
| | - Dmitry N Titaev
- Lobachevsky State University of Nizhny Novgorod, Gagarin Avenue 23, Nizhny Novgorod, 603950, Russian Federation
| | - Evgeny V Suleimanov
- Lobachevsky State University of Nizhny Novgorod, Gagarin Avenue 23, Nizhny Novgorod, 603950, Russian Federation
| | - Iqrash Shafiq
- Department of Chemical Engineering, COMSATS University Islamabad, Lahore Campus, Defence Road, Off Raiwind Road, Lahore, 54000, Pakistan
| |
Collapse
|
4
|
Xiang D, Jin X, Sun G, Zhong C, Gao S. Oxygen vacancy engineering of ultra-small CuWO 4 nanoparticles for boosting photocatalytic organic pollutant degradation. Dalton Trans 2024; 53:7839-7847. [PMID: 38624191 DOI: 10.1039/d4dt00628c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/17/2024]
Abstract
Nanomaterials have attracted great interest in the field of photocatalytic degradation due to their larger specific surface area and efficient charge/mass transfer ability, which are beneficial for enhancing photocatalytic activity. However, the bandgap of photocatalysts would increase with the size reduction, weakening the photoabsorption ability. Thus the relationship between the size of catalysts and photoactivity should be balanced to achieve optimal photocatalytic performance. Herein, ultra-small CuWO4 nanoparticles (ca. 39 nm) with moderate oxygen vacancies (CuWO4-OVs) were synthesized by the cascade strategy (ligand confinement@fast calcination). The introduction of oxygen vacancies offset the deficiency of light absorption ability caused by the small size effect. Besides, oxygen vacancies could provide more reaction active sites, conducive to the adsorption and activation of dye molecules and H2O. Degradation experiments reveal that the optimized photocatalyst CuWO4-OVs 350 shows outstanding photocatalytic activity, and the removal ratio of methylene blue (MB) reaches over 90.26% in 70 min, exceeding that of pure CuWO4-air (37.66%). Additionally, the degradation performance of CuWO4-OVs 350 surpasses most of the other CuWO4-based photocatalytic systems. More importantly, the photocatalytic degradation activity of CuWO4-OVs 350 could remain at 88.26% even after five cycles, and high photostability was achieved. This work affords constructive inspiration for synergistic photoactivity enhancement and increase of catalyst reaction active sites to achieve eminent photocatalytic degradation performance.
Collapse
Affiliation(s)
- Dingzhou Xiang
- School of Chemistry and Chemical Engineering, Faculty of Materials Science and Engineering, Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Anhui University, 230601 Hefei, Anhui, P.R. China.
| | - Xin Jin
- School of Chemistry and Chemical Engineering, Faculty of Materials Science and Engineering, Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Anhui University, 230601 Hefei, Anhui, P.R. China.
| | - Guilin Sun
- School of Chemistry and Chemical Engineering, Faculty of Materials Science and Engineering, Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Anhui University, 230601 Hefei, Anhui, P.R. China.
| | - Chenghuan Zhong
- School of Chemistry and Chemical Engineering, Faculty of Materials Science and Engineering, Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Anhui University, 230601 Hefei, Anhui, P.R. China.
| | - Shan Gao
- School of Chemistry and Chemical Engineering, Faculty of Materials Science and Engineering, Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Anhui University, 230601 Hefei, Anhui, P.R. China.
| |
Collapse
|
5
|
Mengting Z, Duan L, Zhao Y, Song Y, Xia S, Gikas P, Othman MHD, Kurniawan TA. Fabrication, characterization, and application of BiOI@ZIF-8 nanocomposite for enhanced photocatalytic degradation of acetaminophen from aqueous solutions under UV-vis irradiation. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 345:118772. [PMID: 37597373 DOI: 10.1016/j.jenvman.2023.118772] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 07/27/2023] [Accepted: 08/09/2023] [Indexed: 08/21/2023]
Abstract
This work investigates the use of novel BiOI@ZIF-8 nanocomposite for the removal of acetaminophen (Ace) from synthetic wastewater. The samples were analyzed using FTIR, XRD, XPS, DRS, PL, FESEM-EDS, and ESR techniques. The effects of the loading capacity of ZIF-8 on the photocatalytic oxidation performance of bismuth oxyiodide (BiOI) were studied. The photocatalytic degradation of Ace was maximized by optimizing pH, reaction time and the amount of photocatalyst. On this basis, the removal mechanisms of the target pollutant by the nanocomposite and its photodegradation pathways were elucidated. Under optimized conditions of 1 g/L of composite, pH 6.8, and 4 h of reaction time, it was found that the BiOI@ZIF-8 (w/w = 1:0.01) nanocomposite exhibited the highest Ace removal (94%), as compared to that of other loading ratios at the same Ace concentration of 25 mg/L. Although this result was encouraging, the treated wastewater still did not satisfy the required statutory of 0.2 mg/L. It is suggested that the further biological processes need to be adopted to complement Ace removal in the samples. To sustain its economic viability for wastewater treatment, the spent composite still could be reused for consecutive five cycles with 82% of regeneration efficiency. Overall, this series of work shows that the nanocomposite was a promising photocatalyst for Ace removal from wastewater samples.
Collapse
Affiliation(s)
- Zhu Mengting
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Science, Beijing, 100012, China; State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China
| | - Liang Duan
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Science, Beijing, 100012, China.
| | - Yang Zhao
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Science, Beijing, 100012, China; State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, 100084, China
| | - Yonghui Song
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Science, Beijing, 100012, China
| | - Siqing Xia
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China
| | - Petros Gikas
- Technical University of Crete, School of Chemical and Environmental Engineering, Chania, 73100, Greece
| | - Mohd Hafiz Dzarfan Othman
- Advanced Membrane Technology Research Centre (AMTEC), Faculty of Chemical and Energy Engineering, Universiti Teknologi Malaysia, 81310, Skudai, Johor Bahru, Malaysia
| | | |
Collapse
|
6
|
Fiaz M, Sohail M, Nafady A, Will G, Wahab MA. A facile two-step hydrothermal preparation of 2D/2D heterostructure of Bi 2WO 6/WS 2 for the efficient photodegradation of methylene blue under sunlight. ENVIRONMENTAL RESEARCH 2023; 234:116550. [PMID: 37437862 DOI: 10.1016/j.envres.2023.116550] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 06/26/2023] [Accepted: 07/02/2023] [Indexed: 07/14/2023]
Abstract
A facile two-step hydrothermal method was successfully used to prepare a photocatalyst Bi2WO6/WS2 heterojunction for methyl blue (MB) photodegradation. Fabricated photocatalysts were characterized by X-ray diffraction (XRD), scanning electron microscope (SEM), energy-dispersive X-ray analysis (EDX), and X-ray photoelectron spectroscopy (XPS). Band gap measurements were carried out by diffuse reflectance spectroscopy (DRS). Results indicated that the prepared heterostructure photocatalyst has increased visible light absorption. Photocatalytic performance was evaluated under sunlight irradiation for methylene blue (MB) degradation as a model dye. Variations in pH (4-10), amount of catalyst (0.025-0.1 g/L), and initial MB concentrations (5-20 ppm) were carried out, whereas all prepared catalysts were used to conduct the tests with a visible spectrophotometer. Degradation activity improved with the pH increase; the optimum pH was approximately 8. Catalyst concentration is directly related to degradation efficiency and reached 93.56% with 0.075 g of the catalyst. Among tested catalysts, 0.01 Bi2WO6/WS2 has exhibited the highest activity and a degradation efficiency of 99.0% in 40 min (min) for MB. MB photodegradation follows pseudo-first-order kinetics, and obtained values of kapp were 0.0482 min-1, 0.0337 min-1, 0.0205 min-1, and 0.0087 min-1 for initial concentrations of 5 ppm, 10 ppm, 15 ppm, and 20 ppm, respectively. The catalyst was reused for six cycles with a negligible decrease in the degradation activity. Heterostructure 0.01 Bi2WO6/WS2 has exhibited a photocurrent density of 16 μA cm-2, significantly higher than 2.0 and 4.5 μA cm-2 for the pristine WS2 and Bi2WO6, respectively. The findings from these investigations may serve as a crucial stepping stone towards the remediation of polluted water facilitated by implementing such highly efficient photocatalysts.
Collapse
Affiliation(s)
- Muhammad Fiaz
- Department of Chemistry, School of Natural Sciences, National University of Sciences and Technology, Islamabad, 44000, Pakistan
| | - Manzar Sohail
- Department of Chemistry, School of Natural Sciences, National University of Sciences and Technology, Islamabad, 44000, Pakistan.
| | - Ayman Nafady
- Chemistry Department, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Geoffrey Will
- Energy and Process Engineering Laboratory, School of Mechanical, Medical and Process Engineering, Faculty of Science, Queensland University of Technology (QUT), 2 George Street, Brisbane, QLD 4000, Australia
| | - Md A Wahab
- Energy and Process Engineering Laboratory, School of Mechanical, Medical and Process Engineering, Faculty of Science, Queensland University of Technology (QUT), 2 George Street, Brisbane, QLD 4000, Australia.
| |
Collapse
|
7
|
Yuan N, Zhang X, Chen T, Xu H, Wang Q. Fabricating Materials of Institute Lavoisier-53(Fe)/zeolite imidazolate framework-8 hybrid materials as high-efficiency and reproducible adsorbents for removing organic pollutants. J Colloid Interface Sci 2023; 646:438-451. [PMID: 37207425 DOI: 10.1016/j.jcis.2023.05.022] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 04/06/2023] [Accepted: 05/04/2023] [Indexed: 05/21/2023]
Abstract
Environmental pollution by emerging contaminants has become an urgent problem. Herein, novel binary metal-organic framework hybrids were constructed from Materials of Institute Lavoisier-53(Fe) (MIL-53(Fe)) and zeolite imidazolate framework-8 (ZIF-8) for the first time. A battery of characterizations were employed to determine the MIL/ZIF hybrids' properties and morphology. Furthermore, the MIL/ZIF towards toxic antibiotics (tetracycline, ciprofloxacin and ofloxacin) were studied to explore their adsorption abilities. The present work disclosed that the obtained MIL-53(Fe)/ZIF-8 = 2:3 possessed an eminent specific surface area with an admirable removal efficiency of tetracycline (97.4%), ciprofloxacin (97.1%) and ofloxacin (92.4%), respectively. The tetracycline adsorption process conformed to the pseudo-second-order kinetic model and this process was more compatible with the Langmuir isotherm model with the highest adsorption capacity of 215.0 mg g-1. Moreover, the process of removing tetracycline was proved to be spontaneous and exothermic by the thermodynamic results. Furthermore, the MIL-53(Fe)/ZIF-8 = 2:3 towards tetracycline exhibited significant regeneration ability. The effects of pH, dosage, interfering ions and oscillation frequency on tetracycline adsorption capacity and removal efficiency were also investigated. The primary factors contributing to the decent adsorption ability between MIL-53(Fe)/ZIF-8 = 2:3 and tetracycline included electrostatic, π-π stacking, hydrogen bonding and weak coordination interactions. Additionally, we also investigated the adsorption ability in real wastewater. Thus, the proposed binary metal-organic framework hybrid materials can be deemed a promising adsorbent in wastewater purification.
Collapse
Affiliation(s)
- Ning Yuan
- School of Chemical and Environmental Engineering, China University of Mining and Technology, Beijing 100083, China.
| | - Xinling Zhang
- School of Chemical and Environmental Engineering, China University of Mining and Technology, Beijing 100083, China
| | - Tianxiang Chen
- School of Chemical and Environmental Engineering, China University of Mining and Technology, Beijing 100083, China
| | - Hao Xu
- School of Chemical and Environmental Engineering, China University of Mining and Technology, Beijing 100083, China
| | - Qibao Wang
- School of Chemical and Environmental Engineering, China University of Mining and Technology, Beijing 100083, China
| |
Collapse
|
8
|
Chang YC, Lin YR, Chen SW, Chou CM. Density-Controlled Growth of ZnO Nanowalls for High-Performance Photocatalysts. MATERIALS (BASEL, SWITZERLAND) 2022; 15:9008. [PMID: 36556814 PMCID: PMC9780911 DOI: 10.3390/ma15249008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 12/07/2022] [Accepted: 12/13/2022] [Indexed: 06/17/2023]
Abstract
ZnO nanowires and nanowalls can be fabricated on the glass substrate with a ZnO seed film and low-cost aluminum (Al) foil by the aqueous solution method (ASM), respectively. The different concentrations of ZnO precursors can use to control the densities of ZnO nanowalls. In addition, FESEM, FETEM, EDS, XRD, XPS, and CL were used to evaluate the characteristics of ZnO nanowalls. The ZnO nanowalls exhibited higher photocatalytic efficiency (99.4%) than that of ZnO nanowires (53.3%) for methylene blue (MB) degradation under UVC light irradiation at the ZnO precursors of 50 mM. This result is attributed to ZnO nanowalls with Al-doped, which can improve the separation of photogenerated electron-hole pairs for enhanced photocatalytic activity. In addition, ZnO nanowalls can also reveal higher photocatalytic activity for the degradation of tetracycline capsules (TC) rather than commercial ZnO nanopowder under UVC light irradiation. The superoxide and hydroxyl radicals play essential roles in the degradation of MB and TC solutions by the radical-trapping experiment. Furthermore, the ZnO nanowalls exhibit excellent recycling and reuse capacity for up to four cycles for the degradation of MB and TC. This study highlights the potential use of ZnO nanowalls directly grown on commercial and low-cost Al foil as noble metal-free photocatalysis.
Collapse
Affiliation(s)
- Yu-Cheng Chang
- Department of Materials Science and Engineering, Feng Chia University, Taichung 407102, Taiwan
| | - Ying-Ru Lin
- Department of Materials Science and Engineering, Feng Chia University, Taichung 407102, Taiwan
- Department of Materials Science and Engineering, National Yang Ming Chiao Tung University, Hsinchu 30010, Taiwan
| | - Sheng-Wen Chen
- Department of Materials Science and Engineering, Feng Chia University, Taichung 407102, Taiwan
| | - Chia-Man Chou
- Department of Surgery, Taichung Veterans General Hospital, Taichung 40705, Taiwan
- College of Medicine, National Yang Ming Chiao Tung University, Taipei 11221, Taiwan
- Department of Post-Baccalaureate Medicine, National Chung Hsing University, Taichung 40227, Taiwan
| |
Collapse
|
9
|
Advances in Bi 2WO 6-Based Photocatalysts for Degradation of Organic Pollutants. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27248698. [PMID: 36557830 PMCID: PMC9785842 DOI: 10.3390/molecules27248698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Revised: 12/05/2022] [Accepted: 12/07/2022] [Indexed: 12/13/2022]
Abstract
With the rapid development of modern industries, water pollution has become an urgent problem that endangers the health of human and wild animals. The photocatalysis technique is considered an environmentally friendly strategy for removing organic pollutants in wastewater. As an important member of Bi-series semiconductors, Bi2WO6 is widely used for fabricating high-performance photocatalysts. In this review, the recent advances of Bi2WO6-based photocatalysts are summarized. First, the controllable synthesis, surface modification and heteroatom doping of Bi2WO6 are introduced. In the respect of Bi2WO6-based composites, existing Bi2WO6-containing binary composites are classified into six types, including Bi2WO6/carbon or MOF composite, Bi2WO6/g-C3N4 composite, Bi2WO6/metal oxides composite, Bi2WO6/metal sulfides composite, Bi2WO6/Bi-series composite, and Bi2WO6/metal tungstates composite. Bi2WO6-based ternary composites are classified into four types, including Bi2WO6/g-C3N4/X, Bi2WO6/carbon/X, Bi2WO6/Au or Ag-based materials/X, and Bi2WO6/Bi-series semiconductors/X. The design, microstructure, and photocatalytic performance of Bi2WO6-based binary and ternary composites are highlighted. Finally, aimed at the existing problems in Bi2WO6-based photocatalysts, some solutions and promising research trends are proposed that would provide theoretical and practical guidelines for developing high-performance Bi2WO6-based photocatalysts.
Collapse
|