1
|
Lawan I, Umbuzeiro GDA, Lyndon AR, Henry TB. Developing behavioural ecotoxicology assessment methods in the tropical marine amphipod, Parhyale hawaiensis: A study with benzo[a]pyrene (BaP). MARINE POLLUTION BULLETIN 2024; 209:117142. [PMID: 39432986 DOI: 10.1016/j.marpolbul.2024.117142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 10/08/2024] [Accepted: 10/11/2024] [Indexed: 10/23/2024]
Abstract
Toxicant-induced behavioural changes provide important insights into environmental toxicity, particularly in vulnerable tropical marine habitats. However, ecotoxicological knowledge of organisms in these environments is insufficient. We aimed to develop innovative and cost-effective ecotoxicology methods using Parhyale hawaiensis as a tropical model organism. Adult P. hawaiensis were exposed to aqueous benzo[a]pyrene (BaP) (2 μM) and dietary BaP (50, 250, or 1250 μg BaP/g diet). Survival (24 to 96 h) and behavioural responses (21d) to foraging, reproduction, and predator avoidance were studied. Aqueous and dietary exposures to benzo[a]pyrene (BaP) did not affect survival but induced significant immobility with effective concentration (EC50 ± SE, 96 h at 11.89 ± 1.19 μM). Relative to the control group, aqueous exposure to 2 μM and dietary exposure to 250 and 1250 μg BaP/g feed resulted in statistically significant behavioural changes. These included a 55-76 % reduction in feeding rates, 133 % increase in chemosensation time, 60-122 % drop in moulting frequency, 200 % delay in precopulatory activity, 50-83 % decrease in geotactic activity, and 300-400 % increase in phototactic activity (all significant at p ≤ 0.05). The methods developed in this study are cost-effective, sensitive, and readily integrated into other endpoint analyses, reinforcing the potential of P. hawaiensis as a tropical ecotoxicology model for detecting toxicant-induced behavioural responses and enhancing marine risk assessments.
Collapse
Affiliation(s)
- Ibrahim Lawan
- Institute of Life and Earth Sciences, School of Energy, Geoscience, Infrastructure, and Society, Heriot-Watt University, Edinburgh EH14 4AS, Scotland, United Kingdom
| | | | - Alastair Robert Lyndon
- Institute of Life and Earth Sciences, School of Energy, Geoscience, Infrastructure, and Society, Heriot-Watt University, Edinburgh EH14 4AS, Scotland, United Kingdom
| | - Theodore Burdick Henry
- Institute of Life and Earth Sciences, School of Energy, Geoscience, Infrastructure, and Society, Heriot-Watt University, Edinburgh EH14 4AS, Scotland, United Kingdom; Department of Forestry Wildlife and Fisheries, The University of Tennessee, Knoxville, TN, USA.
| |
Collapse
|
2
|
Botelho MT, Umbuzeiro GDA. Designing and applying a methodology to assess sperm cell viability and DNA damage in a model amphipod. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 950:175318. [PMID: 39111426 DOI: 10.1016/j.scitotenv.2024.175318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 07/16/2024] [Accepted: 08/04/2024] [Indexed: 08/10/2024]
Abstract
Sperm quality is defined as the sperm cell ability to successfully fertilize eggs and allow normal embryo development. Few studies explore sperm quality using aquatic invertebrates. Parhyale hawaiensis is a marine amphipod with a circumtropical distribution and considered a model for evolution, development, and ecotoxicological studies. We aimed to develop a methodology to collect sperm cells of P. hawaiensis and evaluate their viability and DNA damage (comet assay). We directly exposed the sperm cells to different mutagenic agents to optimize/develop the protocols. Then, as a proof of concept, we exposed the males to mutagenic compounds (EMS, benzo[a]pyrene (BaP), azo and anthraquinone dyes) at non-lethal concentrations verified by the proposed viability test and analyzed their sperm cells for DNA damage (comet assay). Organisms exposed to EMS presented a clear concentration response in the DNA damage response. We also showed that BaP was able to induce a statistically significant increase in DNA damage of the sperm cells. For the two dyes, although DNA damage increased, statistically differences were not observed. We believe we successfully developed a test to detect genotoxicity of chemicals in sperm cells using an invertebrate model. The protocol for sperm cell viability needs to be further explored with different chemicals to verify its utility as a toxicity endpoint. The developed genotoxicity test has the advantages to employ organisms that are easily cultivated in reduced space, use simple laboratory resources and reduced amount of material and reagents. Positive responses with this model could be used to disclose new germ cell mutagen candidates which could be further confirmed in vertebrates' systems.
Collapse
|
3
|
Ramírez-Olivares AI, Vargas-Abúndez JA, Capparelli MV. Microplastics impair the reproductive behavior and life history traits of the amphipod Parhyale hawaiensis. MARINE POLLUTION BULLETIN 2024; 205:116630. [PMID: 38925027 DOI: 10.1016/j.marpolbul.2024.116630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 06/15/2024] [Accepted: 06/16/2024] [Indexed: 06/28/2024]
Abstract
We investigated the distribution and effects of waterborne microplastic (MP) (polyethylene microspheres, 53-63 um) on the emergent model for ecotoxicology, the amphipod Parhyale hawaiensis, during 30 days of exposure. The following life-history traits were measured: (1) survival, (2) specific growth rate (SGR), (3) reproductive performance (precopulatory pairing behavior, fecundity, and time to release neonates), (4) molting frequency, (5) F1 newborn offspring survival and (6) MP bioaccumulation. No significant mortality or molt was seen in any of the treatments. MP caused a reduction in SGR, being more pronounced in females. The time for precopulatory pairing was 3-fold longer in amphipods exposed to MP. Fecundity decreased by 50 %, and the time to release juveniles was 6.7 days longer for amphipods exposed to MP. Finally, neonate survival decreased by 80 % after ten days of release. MP disrupts the reproductive mechanisms and triggers adverse effects on life history traits in P. hawaiensis.
Collapse
Affiliation(s)
| | - Jorge Arturo Vargas-Abúndez
- Facultad de Ciencias, Unidad Multidisciplinaria de Docencia e Investigación, Universidad Nacional Autónoma de México, Puerto de Abrigo s/n, Sisal, Yucatán, Mexico
| | - Mariana V Capparelli
- Estación El Carmen, Instituto de Ciencias del Mar y Limnología, Universidad Nacional Autónoma de México, Carretera Carmen-Puerto Real km 9.5, 24157 Ciudad del Carmen, Mexico.
| |
Collapse
|
4
|
Leppanen MT, Sourisseau S, Burgess RM, Simpson SL, Sibley P, Jonker MTO. Sediment Toxicity Tests: A Critical Review of Their use in Environmental Regulations. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2024; 43:1697-1716. [PMID: 38597781 PMCID: PMC11326746 DOI: 10.1002/etc.5861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Revised: 03/01/2024] [Accepted: 03/05/2024] [Indexed: 04/11/2024]
Abstract
Sediments are an integral component of aquatic systems, linking multiple water uses, functions, and services. Contamination of sediments by chemicals is a worldwide problem, with many jurisdictions trying to prevent future pollution (prospective) and manage existing contamination (retrospective). The present review assesses the implementation of sediment toxicity testing in environmental regulations globally. Currently, the incorporation of sediment toxicity testing in regulations is most common in the European Union (EU), North America, and Australasian regions, with some expansion in Asia and non-EU Europe. Employing sediment toxicity testing in prospective assessments (i.e., before chemicals are allowed on the market) is most advanced and harmonized with pesticides. In the retrospective assessment of environmental risks (i.e., chemicals already contaminating sediments), regulatory sediment toxicity testing practices are applied inconsistently on the global scale. International harmonization of sediment toxicity tests is considered an asset and has been successful through the widespread adoption and deployment of Organisation for Economic Co-operation and Development guidelines. On the other hand, retrospective sediment assessments benefit from incorporating regional species and protocols. Currently used toxicity testing species are diverse, with temperate species being applied most often, whereas test protocols are insufficiently flexible to appropriately address the range of environmental contaminants, including nanomaterials, highly hydrophobic contaminants, and ionized chemicals. The ever-increasing and -changing pressures placed on aquatic resources are a challenge for protection and management efforts, calling for continuous sediment toxicity test method improvement to insure effective use in regulatory frameworks. Future developments should focus on including more subtle and specific toxicity endpoints (e.g., incorporating bioavailability-based in vitro tests) and genomic techniques, extending sediment toxicity testing from single to multispecies approaches, and providing a better link with ecological protection goals. Environ Toxicol Chem 2024;43:1697-1716. © 2024 The Authors. Environmental Toxicology and Chemistry published by Wiley Periodicals LLC on behalf of SETAC.
Collapse
Affiliation(s)
| | | | - Robert M Burgess
- Atlantic Coastal Environmental Science Division, Office of Research and Development, US Environmental Protection Agency, Narragansett, Rhode Island
| | | | - Paul Sibley
- School of Environmental Sciences, Ontario Agricultural College, University of Guelph, Guelph, Ontario, Canada
| | - Michiel T O Jonker
- Institute for Risk Assessment Sciences, Utrecht University, Utrecht, The Netherlands
| |
Collapse
|
5
|
Dos Santos A, Umbuzeiro GDA. Proposal of a chronic toxicity test using the tropical epibenthic amphipod Parhyale hawaiensis. MARINE POLLUTION BULLETIN 2023; 194:115375. [PMID: 37579598 DOI: 10.1016/j.marpolbul.2023.115375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 07/30/2023] [Accepted: 08/02/2023] [Indexed: 08/16/2023]
Abstract
Chronic toxicity tests with representative organisms are essential for ecological risk assessment. The circumtropical marine amphipod Parhyale hawaiensis is a promising test organism in ecotoxicology. This study aimed to develop a chronic toxicity protocol for liquid samples testing with P. hawaiensis using reproduction and growth as endpoints. In the proposed protocol, organisms (≤52 days old) are placed in 5 replicates each containing 100 mL of solution, 10 organisms, and 5 g of crushed coral for 42 days of exposure. The protocol was successfully developed but reproduction showed better performance than growth rate. NOECs based on reproduction were determined for zinc (0.10 mg Zn L-1) and 3,4-DCA (0.50 mg L-1), and they are of the same order of magnitude compared with the values of other amphipods. The developed test based on reproduction can be considered a promising tool for hazard characterizations although more tests with different substances are still needed.
Collapse
Affiliation(s)
- Amanda Dos Santos
- School of Pharmaceutical Sciences, University of São Paulo, São Paulo, SP, Brazil; School of Technology, University of Campinas, Limeira, SP, Brazil
| | | |
Collapse
|
6
|
Di Cicco M, Di Lorenzo T, Fiasca B, Galmarini E, Vaccarelli I, Cerasoli F, Tabilio Di Camillo A, Galassi DMP. Some like it hot: Thermal preference of the groundwater amphipod Niphargus longicaudatus (Costa, 1851) and climate change implications. J Therm Biol 2023; 116:103654. [PMID: 37478581 DOI: 10.1016/j.jtherbio.2023.103654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 06/21/2023] [Accepted: 06/29/2023] [Indexed: 07/23/2023]
Abstract
Groundwater is a crucial resource for humans and the environment, but its global human demand currently exceeds available volumes by 3.5 times. Climate change is expected to exacerbate this situation by increasing the frequency of droughts along with human impacts on groundwater ecosystems. Despite prior research on the quantitative effects of climate change on groundwater, the direct impacts on groundwater biodiversity, especially obligate groundwater species, remain largely unexplored. Therefore, investigating the potential impacts of climate change, including groundwater temperature changes, is crucial for the survival of obligate groundwater species. This study aimed to determine the thermal niche breadth of the crustacean amphipod species Niphargus longicaudatus by using the chronic method. We found that N. longicaudatus has a wide thermal niche with a natural performance range of 7-9 °C, which corresponds to the thermal regime this species experiences within its distribution range in Italy. The observed range of preferred temperature (PT) was different from the mean annual temperature of the sites from which the species has been collected, challenging the idea that groundwater species are only adapted to narrow temperature ranges. Considering the significant threats of climate change to groundwater ecosystems, these findings provide crucial information for the conservation of obligate groundwater species, suggesting that some of them may be more resilient to temperature changes than previously thought. Understanding the fundamental thermal niche of these species can inform conservation efforts and management strategies to protect groundwater ecosystems and their communities.
Collapse
Affiliation(s)
- Mattia Di Cicco
- Department of Life, Health and Environmental Sciences, University of L'Aquila, Via Vetoio, 67100 L'Aquila, Italy.
| | - Tiziana Di Lorenzo
- National Biodiversity Future Center, Palermo, Italy; IRET-CNR, Istituto di Ricerca Sugli Ecosistemi Terrestri Del CNR, Florence, Italy; Racovitza Institute of Speleology, Romanian Academy, Clinicilor 400006 Cluj Napoca, Romania; Departamento de Biologia Animal, Faculdade de Ciências, Centre for, Ecology, Evolution and Environmental Changes (cE3c) & CHANGE - Global Change and Sustainability Institute, Universidade de Lisboa, Campo Grande, 1749-016 Lisbon, Portugal. 4 Natural History Museum of Denmark
| | - Barbara Fiasca
- Department of Life, Health and Environmental Sciences, University of L'Aquila, Via Vetoio, 67100 L'Aquila, Italy
| | - Emma Galmarini
- Department of Life, Health and Environmental Sciences, University of L'Aquila, Via Vetoio, 67100 L'Aquila, Italy
| | - Ilaria Vaccarelli
- Department of Life, Health and Environmental Sciences, University of L'Aquila, Via Vetoio, 67100 L'Aquila, Italy; University Institute of Higher Studies in Pavia, Pavia, Italy
| | - Francesco Cerasoli
- Department of Life, Health and Environmental Sciences, University of L'Aquila, Via Vetoio, 67100 L'Aquila, Italy
| | - Agostina Tabilio Di Camillo
- Department of Life, Health and Environmental Sciences, University of L'Aquila, Via Vetoio, 67100 L'Aquila, Italy; IRET-CNR, Istituto di Ricerca Sugli Ecosistemi Terrestri Del CNR, Florence, Italy
| | - Diana Maria Paola Galassi
- Department of Life, Health and Environmental Sciences, University of L'Aquila, Via Vetoio, 67100 L'Aquila, Italy
| |
Collapse
|