1
|
Wang Z, Tang Y, Zhang Y, Li Y, Chen C, Gao S, Qiao L. Nanomaterials as novel matrices to improve biomedical applications of MALDI-TOF/MS. Talanta 2025; 293:128092. [PMID: 40215718 DOI: 10.1016/j.talanta.2025.128092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2025] [Revised: 04/02/2025] [Accepted: 04/04/2025] [Indexed: 05/14/2025]
Abstract
With the rapid development of biomedical technology, there is an increasing demand for accurate analysis of biomolecules and their interactions. Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) is a novel soft ionization biomass spectrometry technology that can accurately assess the molecular weight of samples quickly and sensitively, and it plays an important role in the analysis and detection of large molecule substances, drug research, and life sciences. In recent years, due to the outstanding performance of nanomaterials, they have been widely used as matrices in drug metabolism research and cancer detection. This paper aims to review the latest research progress of nanomaterials as new matrices for MALDI-TOF MS in enhancing biomedical analysis, discus its value and limitations, and look forward to its future research direction.
Collapse
Affiliation(s)
- Zhiyi Wang
- College of Phamaceutical Science, Shandong University of Traditional Chinese Medicine, Jinan, 250355, PR China
| | - Yuanting Tang
- College of Phamaceutical Science, Shandong University of Traditional Chinese Medicine, Jinan, 250355, PR China
| | - Ying Zhang
- College of Phamaceutical Science, Shandong University of Traditional Chinese Medicine, Jinan, 250355, PR China
| | - Yingjing Li
- College of Phamaceutical Science, Shandong University of Traditional Chinese Medicine, Jinan, 250355, PR China
| | - Cong Chen
- Academy of Chinese Medicine Literature and Culture, Shandong University of Traditional Chinese Medicine, Jinan, 250355, PR China.
| | - Shijie Gao
- Experimental Centre, Shandong University of Traditional Chinese Medicine, Jinan, 250355, PR China.
| | - Li Qiao
- Experimental Centre, Shandong University of Traditional Chinese Medicine, Jinan, 250355, PR China.
| |
Collapse
|
2
|
Zorzo CF, Albornoz LL, Bernardes AM, Pérez-Herranz V, Borba FH, da Silva SW. Electrochemical oxidation for the rapid degradation of emerging contaminants: Insights into electrolytes and process parameters for phytotoxicity reduction. CHEMOSPHERE 2025; 377:144363. [PMID: 40179709 DOI: 10.1016/j.chemosphere.2025.144363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2025] [Revised: 03/24/2025] [Accepted: 03/25/2025] [Indexed: 04/05/2025]
Abstract
Atrazine (ATZ), carbamazepine (CBZ), and sulfamethoxazole (SMX) are contaminants of emerging concern (CECs) commonly detected in water sources, posing a risk to health, sanitation, and the ecosystems. This study evaluates the degradation, mineralization, and phytotoxicity reduction of a solution containing these three CECs using an electrochemical advanced oxidation process (EAOP). Key operational parameters - pH, flow rate (Q), current density (j), and type and concentration of supporting electrolytes (NaCl and Na2SO4) - were systematically investigated. The results showed that pH had minimal impact on the process. Higher flow rates (250 L h-1) improved mineralization due to enhanced mass transfer to •OH on the anode surface. However, the flow rate had less effect on degradation, as the dominant degradation mechanisms involved chlorine- or sulfate-based oxidants. Current densities of 1 and 10 mA cm-2 produced the most favorable results, leading to efficient degradation and mineralization, along with satisfactory mineralization current efficiency (up to 47 %) and energy consumption values (91,76-3142,88 kW h kg-1). When NaCl was used as supporting electrolyte, the degradation of CECs was twice as fast as with Na2SO4, achieving over 88 % degradation in 5 min and 40 % mineralization within 60 min. While chlorinated and sulfate species enhance process efficiency, excessive electrolyte concentration should be avoided to prevent scaling and •OH scavenging. Phytotoxicity tests with Allium cepa revealed an unexpected reduction in toxicity in samples treated with NaCl, suggesting that Na2SO4 may be more phytotoxic under the tested conditions.
Collapse
Affiliation(s)
- Camila F Zorzo
- Federal University of Rio Grande do Sul (UFRGS), Postgraduate Program in Water Resources and Environmental Sanitation (PPG-IPH), Postal Code 15029, Av. Bento Gonçalves, 9500, Porto Alegre, CEP 91501-970, RS, Brazil.
| | - Louidi L Albornoz
- Federal University of Rio Grande do Sul (UFRGS), Postgraduate Program in Water Resources and Environmental Sanitation (PPG-IPH), Postal Code 15029, Av. Bento Gonçalves, 9500, Porto Alegre, CEP 91501-970, RS, Brazil
| | - Andréa M Bernardes
- Federal University of Rio Grande do Sul (UFRGS), Postgraduate Program in Mining, Metallurgical and Materials Engineering (PPGE3M), Av. Bento Gonçalves, 9500, Porto Alegre, CEP 91501-970, RS, Brazil
| | - Valentín Pérez-Herranz
- IEC Group, ISIRYM, Universitat Politècnica de València, Camí de Vera s/n, 46022, P.O. Box 22012, València, E-46071, Spain
| | - Fernando H Borba
- Federal University of Fronteira Sul (UFFS), Postgraduate Program of Environment and Sustainable Technologies, Rua Jacob Reinaldo Haupenthal 1580, CEP: 97900-00, Cerro Largo, RS, Brazil
| | - Salatiel W da Silva
- Federal University of Rio Grande do Sul (UFRGS), Postgraduate Program in Water Resources and Environmental Sanitation (PPG-IPH), Postal Code 15029, Av. Bento Gonçalves, 9500, Porto Alegre, CEP 91501-970, RS, Brazil
| |
Collapse
|
3
|
Felisardo RJA, Brillas E, Boyer TH, Cavalcanti EB, Garcia-Segura S. Electrochemical degradation of acetaminophen in urine matrices: Unraveling complexity and implications for realistic treatment strategies. WATER RESEARCH 2024; 261:122034. [PMID: 38996729 DOI: 10.1016/j.watres.2024.122034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 05/29/2024] [Accepted: 07/01/2024] [Indexed: 07/14/2024]
Abstract
Urine has an intricate composition with high concentrations of organic compounds like urea, creatinine, and uric acid. Urine poses a formidable challenge for advanced effluent treatment processes following urine diversion strategies. Urine matrix complexity is heightened when dealing with pharmaceutical residues like acetaminophen (ACT) and metabolized pharmaceuticals. This work explores ACT degradation in synthetic, fresh real, and hydrolyzed real urines using electrochemical oxidation with a dimensional stable anode (DSA). Analyzing drug concentration (2.5 - 40 mg L-1) over 180 min at various current densities in fresh synthetic effluent revealed a noteworthy 75% removal at 48 mA cm-2. ACT degradation kinetics and that of the other organic components followed a pseudo-first-order reaction. Uric acid degradation competed with ACT degradation, whereas urea and creatinine possessed higher oxidation resistance. Fresh real urine presented the most challenging scenario for the electrochemical process. Whereas, hydrolyzed real urine achieved higher ACT removal than fresh synthetic urine. Carboxylic acids like acetic, tartaric, maleic, and oxalic were detected as main by-products. Inorganic ionic species nitrate, nitrite, and ammonium ions were released to the medium from N-containing organic compounds. These findings underscore the importance of considering urine composition complexities and provide significant advancements in strategies for efficiently addressing trace pharmaceutical contamination.
Collapse
Affiliation(s)
- Raul José Alves Felisardo
- Graduate Program in Process Engineering, Tiradentes University, 300 Murilo Dantas Avenue, Aracaju 49032-490, SE, Brazil; Nanosystems Engineering Research Center for Nanotechnology-Enabled Water Treatment. School of Sustainable Engineering and the Built Environment, Arizona State University, Tempe 85287, AZ, United States
| | - Enric Brillas
- Departament de Ciència de Materials i Química Física, Facultat de Química, Universitat de Barcelona, Martí i Franquès 1-11, 08028 Barcelona, Spain
| | - Treavor H Boyer
- Nanosystems Engineering Research Center for Nanotechnology-Enabled Water Treatment. School of Sustainable Engineering and the Built Environment, Arizona State University, Tempe 85287, AZ, United States
| | - Eliane Bezerra Cavalcanti
- Graduate Program in Process Engineering, Tiradentes University, 300 Murilo Dantas Avenue, Aracaju 49032-490, SE, Brazil; Institute of Technology and Research. 300 Murilo Dantas Avenue, Aracaju 49032-490, SE, Brazil
| | - Sergi Garcia-Segura
- Nanosystems Engineering Research Center for Nanotechnology-Enabled Water Treatment. School of Sustainable Engineering and the Built Environment, Arizona State University, Tempe 85287, AZ, United States.
| |
Collapse
|
4
|
Felisardo RJA, Brillas E, Romanholo Ferreira LF, Cavalcanti EB, Garcia-Segura S. Degradation of the antibiotic ciprofloxacin in urine by electrochemical oxidation with a DSA anode. CHEMOSPHERE 2023; 344:140407. [PMID: 37838029 DOI: 10.1016/j.chemosphere.2023.140407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 10/08/2023] [Accepted: 10/09/2023] [Indexed: 10/16/2023]
Abstract
Ciprofloxacin (CIP) is a commonly prescribed fluoroquinolone antibiotic that, even after uptake, remains unmetabolized to a significant extent-over 70%. Unmetabolized CIP is excreted through both urine and feces. This persistent compound manages to evade removal in municipal wastewater facilities, leading to its substantial accumulation in aquatic environments. This accumulation raises concerns about potential risks to the health of various living organisms. Herein, we present a study on the remediation of CIP in synthetic urine by electrochemical oxidation in an undivided cell with a DSA (Ti/IrO2) anode and a stainless-steel cathode. Physisorbed hydroxyl radical formed at the anode surface from water discharge and free chlorine generated from Cl- oxidation were the main oxidizing agents. The effect of pH and current density (j) on CIP degradation was examined, and its total removal was easily achieved at pH ≥ 7.0 and j ≥ 60 mA cm-2 due to the action of free chlorine. The CIP decay always followed a pseudo-first-order kinetics. The components of the synthetic urine were also oxidized. The main nitrogenated species released was NH3. A very small concentration of free chlorine was quantified at the end of the treatment, thus demonstrating the good performance of electrochemical oxidation and its effectiveness to destroy all the organic pollutants. The present study demonstrates the simultaneous oxidation of the organic components of urine during CIP degradation, thus showing a unique perspective for its electrochemical oxidation that enhances the environmental remediation strategies.
Collapse
Affiliation(s)
- Raul José Alves Felisardo
- Graduate Program in Process Engineering, Tiradentes University, 300 Murilo Dantas Avenue, 49032-490, Aracaju, SE, Brazil; Nanosystems Engineering Research Center for Nanotechnology-Enabled Water Treatment, School of Sustainable Engineering and the Built Environment, Arizona State University, Tempe, AZ, 85287, USA
| | - Enric Brillas
- Laboratori d'Electroquímica dels Materials i del Medi Ambient, Secció de Química Física, Facultat de Química, Universitat de Barcelona, Martí i Franqus 1-11, 08028, Barcelona, Spain
| | | | - Eliane Bezerra Cavalcanti
- Graduate Program in Process Engineering, Tiradentes University, 300 Murilo Dantas Avenue, 49032-490, Aracaju, SE, Brazil; Institute of Technology and Research, 300 Murilo Dantas Avenue, 49032-490, Aracaju, SE, Brazil
| | - Sergi Garcia-Segura
- Nanosystems Engineering Research Center for Nanotechnology-Enabled Water Treatment, School of Sustainable Engineering and the Built Environment, Arizona State University, Tempe, AZ, 85287, USA.
| |
Collapse
|
5
|
Li Q, Liu GH, Qi L, Wang H, Xian G. Chlorine-mediated electrochemical advanced oxidation process for ammonia removal: Mechanisms, characteristics and expectation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 896:165169. [PMID: 37400024 DOI: 10.1016/j.scitotenv.2023.165169] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 06/06/2023] [Accepted: 06/25/2023] [Indexed: 07/05/2023]
Abstract
Chlorine-Mediated Electrochemical Advanced Oxidation (Cl-EAO) technology is a promising approach for ammonia removal from wastewater due to its numerous advantages, including small infrastructure, short processing time, easy operation, high security, and high nitrogen selectivity. This paper provides a review of the ammonia oxidation mechanisms, characteristics, and anticipated applications of Cl-EAO technology. The mechanisms of ammonia oxidation encompass breakpoint chlorination and chlorine radical oxidation, although the contributions of active chlorine, Cl, and ClO remain uncertain. This study critically examines the limitations of existing research and suggests that a combination of determining free radical concentration and simulating a kinetic model would help elucidate the contributions of active chlorine, Cl, and ClO to ammonia oxidation. Furthermore, this review comprehensively summarizes the characteristics of ammonia oxidation, including kinetic properties, influencing factors, products, and electrodes. The amalgamation of Cl-EAO technology with photocatalytic and concentration technologies has the potential to enhance ammonia oxidation efficiency. Future research should concentrate on clarifying the contributions of active chlorine, Cl, and ClO to ammonia oxidation, the production of chloramines and other byproducts, and the development of more efficient anodes for the Cl-EAO process. The main objective of this review is to enhance the understanding of the Cl-EAO process. The findings presented herein contribute to the advancement of Cl-EAO technology and provide a foundation for future studies in this field.
Collapse
Affiliation(s)
- Qiangang Li
- School of Environment and Nature Resources, Renmin University of China, Beijing 100872, China
| | - Guo-Hua Liu
- School of Environment and Nature Resources, Renmin University of China, Beijing 100872, China.
| | - Lu Qi
- School of Environment and Nature Resources, Renmin University of China, Beijing 100872, China
| | - Hongchen Wang
- School of Environment and Nature Resources, Renmin University of China, Beijing 100872, China
| | - Guang Xian
- Logistics Command Department, Army Logistics Academy, Chongqing 401331, China
| |
Collapse
|
6
|
Wang P, Chu G, Gao G, Li F, Ren Y, Ding Y, Gu Y, Jiang W, Zhang X. Efficient Electrochemical Oxidation of Chloramphenicol by Novel Reduced TiO 2 Nanotube Array Anodes: Kinetics, Reaction Parameters, Degradation Pathway and Biotoxicity Forecast. MATERIALS (BASEL, SWITZERLAND) 2023; 16:ma16113971. [PMID: 37297106 DOI: 10.3390/ma16113971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 05/15/2023] [Accepted: 05/23/2023] [Indexed: 06/12/2023]
Abstract
The key component of electrochemical advanced oxidation technology are high-efficiency anodes, and highly efficient and simple-to-prepare materials have generated a lot of interest. In this study, novel self-supported Ti3+-doped titanium dioxide nanotube arrays (R-TNTs) anodes were successfully prepared by a two-step anodic oxidation and straightforward electrochemical reduction technique. The electrochemical reduction self-doping treatment produced more Ti3+ sites with stronger absorption in the UV-vis region, a band gap reduction from 2.86 to 2.48 ev, and a significant increase in electron transport rate. The electrochemical degradation effect of R-TNTs electrode on chloramphenicol (CAP) simulated wastewater was investigated. At pH = 5, current density of 8 mA cm-2, electrolyte concentration of 0.1 M sodium sulfate (Na2SO4), initial CAP concentration of 10 mg L-1, CAP degradation efficiency exceeded 95% after 40 min. In addition, molecular probe experiments and electron paramagnetic resonance (EPR) tests revealed that the active species were mainly •OH and SO4-, among which •OH played a major role. The CAP degradation intermediates were discovered using high-performance liquid chromatography-mass spectrometry (HPLC-MS), and three possible degradation mechanisms were postulated. In cycling experiments, the R-TNTs anode demonstrated good stability. The R-TNTs prepared in this paper were an anode electrocatalytic material with high catalytic activity and stability, which could provide a new approach for the preparation of electrochemical anode materials for difficult-to-degrade organic compounds.
Collapse
Affiliation(s)
- Pengqi Wang
- School of Environmental Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
| | - Guangyi Chu
- Jinan Water & Wastewater Monitoring Center, Jinan 250353, China
| | - Guangfei Gao
- School of Environmental Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
| | - Fengchun Li
- School of Environmental Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
| | - Yi Ren
- School of Environmental Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
| | - Yue Ding
- School of Environmental Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
| | - Yawei Gu
- School of Environmental Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
| | - Wenqiang Jiang
- School of Environmental Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
| | - Xuan Zhang
- School of Environmental Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
| |
Collapse
|
7
|
Quan F, Wu B, Guo Y, Zhang X, Shen W, Jia F, Liu X, Ai Z, Zhang L. Electrochemical removal of gaseous benzene using a flow-through reactor with efficient and ultra-stable titanium suboxide/titanium-foam anode at ambient temperature. J Colloid Interface Sci 2023; 645:533-541. [PMID: 37163799 DOI: 10.1016/j.jcis.2023.04.160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 04/26/2023] [Accepted: 04/28/2023] [Indexed: 05/12/2023]
Abstract
Catalytic oxidation technology is currently considered as a feasible approach to degrade and mineralize volatile organic compounds (VOCs). However, it is still challenging to realize efficient removal of VOCs through catalytic oxidation at room temperature. In our study, a novel flow-through electrocatalytic reactor was designed, composed of porous solid-electrolyte, gas-permeable titanium sub-oxides/titanium-foam (TiSO/Ti-foam) as anode and platinum coated titanium foam (Pt/Ti-foam) as cathode. This device could oxidize nearly 100% of benzene (10 ppm) to carbon dioxide at a current density of 1.2 mA/cm2 under room temperature. More importantly, the device maintained excellent stability over 1000 h. Mechanism of benzene mineralization was discussed. Hydroxyl radicals generated on the TiSO/Ti-foam anode played a crucial role in the oxidation of benzene. This study provides a promising prototype of the electrochemical air purifier, and may find its application in domestic and industrial air pollution control.
Collapse
Affiliation(s)
- Fengjiao Quan
- College of Chemistry, Central China Normal University, Wuhan 430079, PR China; College of Chemical and Environmental Engineering, Wuhan Polytechnic University, Wuhan 430023, PR China
| | - Bin Wu
- College of Chemistry, Central China Normal University, Wuhan 430079, PR China
| | - Yuxiao Guo
- College of Chemistry, Central China Normal University, Wuhan 430079, PR China
| | - Xu Zhang
- College of Chemistry, Central China Normal University, Wuhan 430079, PR China
| | - Wenjuan Shen
- College of Chemical and Environmental Engineering, Wuhan Polytechnic University, Wuhan 430023, PR China
| | - Falong Jia
- College of Chemistry, Central China Normal University, Wuhan 430079, PR China.
| | - Xiao Liu
- College of Chemistry, Central China Normal University, Wuhan 430079, PR China.
| | - Zhihui Ai
- College of Chemistry, Central China Normal University, Wuhan 430079, PR China
| | - Lizhi Zhang
- College of Chemistry, Central China Normal University, Wuhan 430079, PR China
| |
Collapse
|
8
|
Wang J, Yuan S, Dai X, Dong B. Application, mechanism and prospects of Fe-based/ Fe-biochar catalysts in heterogenous ozonation process: A review. CHEMOSPHERE 2023; 319:138018. [PMID: 36731663 DOI: 10.1016/j.chemosphere.2023.138018] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 01/19/2023] [Accepted: 01/28/2023] [Indexed: 06/18/2023]
Abstract
A growing number of novel organic contaminants have escalated the demands and challenges for water treatment technology. Advanced oxidation processes based on ozone have the advantage of strong oxidative capacity and higher efficiency, which have promising application prospects in the treatment of refractory organic contaminants. Biochar has attracted a lot of interest in recent years in wastewater treatment owing to its porous structure, portable preparation and outstanding stability. Moreover, iron species are widely used in catalytic ozonation owing to their magnetic polarization, vast abundance and low price. Despite a plethora of research on Fe-based catalysts in ozonation process, the heterogeneous catalytic ozonation with Fe-loaded biochar lacks a comprehensive compendium. This review intends to introduce the research progress on Fe-based catalysts and Fe-loaded biochar in heterogeneous catalytic ozonation progress, summarize and further explore the mechanisms and detection techniques of various active components in catalytic ozonation, as well as providing fresh insights for future research.
Collapse
Affiliation(s)
- Jingjing Wang
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, PR China
| | - Shijie Yuan
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, PR China.
| | - Xiaohu Dai
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, PR China
| | - Bin Dong
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, PR China; YANGTZE Eco-Environment Engineering Research Center, China Three Gorges Corporation, Beijing, 100038, PR China; Shanghai Investigation Design & Research Institute Co. Ltd, Shanghai, 200335, PR China.
| |
Collapse
|
9
|
Zhao Y, Boukherroub R, Xu G, Li H, Zhao RS, Wei Q, Yu X, Chen X. Au@BN-enhanced laser desorption/ionization mass spectrometry and imaging for determination of fipronil and its metabolites in food and biological samples. Food Chem 2023; 418:135935. [PMID: 36944310 DOI: 10.1016/j.foodchem.2023.135935] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 03/03/2023] [Accepted: 03/09/2023] [Indexed: 03/18/2023]
Abstract
Gold nanoparticles (AuNPs) represent an attractive inorganic matrix for laser desorption/ionization mass spectrometry (LDI-MS) detection of low-molecular-weight analytes; however, their direct use is hindered by severe aggregation. To limit AuNPs aggregation, hexagonal boron nitride nanosheets (h-BNNs) were employed as supports to improve their desorption/ionization efficiency. Thus, Au@BN was synthesized and systematically characterized. It showed low background noise and high sensitivity for LDI-MS of fipronil and its metabolites. Au@BN-assisted LDI-MS was validated using complex samples including blueberry juice, green tea beverage, and fish muscle, achieving low detection limits (0.05-0.20 µg·L-1 for liquid media, 0.82-1.25 ng·g-1 for fish muscle), wide linear ranges (0.2-100 µg·L-1 for liquid media, 3.00-1000 ng·g-1 for fish muscle), high reproducibility (7.55%-13.7%), and satisfactory recoveries (82.62%-109.1%). Furthermore, spatial distributions of analytes in strawberries and zebrafish were successfully imaged. This strategy allows for the quantitative analysis of other small molecules in complex substrates.
Collapse
Affiliation(s)
- Yanfang Zhao
- Beijing Key Laboratory of Materials Utilisation of Nonmetallic Minerals and Solid Wastes, National Laboratory of Mineral Materials, School of Materials Science and Technology, China University of Geosciences, Beijing 100083, China; Qilu University of Technology (Shandong Academy of Sciences), Shandong Analysis and Test Center, Key Laboratory for Applied Technology of Sophisticated Analytical Instruments of Shandong Province, Jinan 250014, China
| | - Rabah Boukherroub
- Univ. Lille, CNRS, Centrale Lille, Univ. Polytechnique Hauts-de-France, UMR 8520, IEMN, F-59000 Lille, France
| | - Guiju Xu
- Qilu University of Technology (Shandong Academy of Sciences), Shandong Analysis and Test Center, Key Laboratory for Applied Technology of Sophisticated Analytical Instruments of Shandong Province, Jinan 250014, China
| | - Huijuan Li
- Qilu University of Technology (Shandong Academy of Sciences), Shandong Analysis and Test Center, Key Laboratory for Applied Technology of Sophisticated Analytical Instruments of Shandong Province, Jinan 250014, China
| | - Ru-Song Zhao
- Qilu University of Technology (Shandong Academy of Sciences), Shandong Analysis and Test Center, Key Laboratory for Applied Technology of Sophisticated Analytical Instruments of Shandong Province, Jinan 250014, China
| | - Qin Wei
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, China
| | - Xiang Yu
- Beijing Key Laboratory of Materials Utilisation of Nonmetallic Minerals and Solid Wastes, National Laboratory of Mineral Materials, School of Materials Science and Technology, China University of Geosciences, Beijing 100083, China.
| | - Xiangfeng Chen
- Qilu University of Technology (Shandong Academy of Sciences), Shandong Analysis and Test Center, Key Laboratory for Applied Technology of Sophisticated Analytical Instruments of Shandong Province, Jinan 250014, China.
| |
Collapse
|
10
|
Insights into the toxicity and biodegradation of fipronil in contaminated environment. Microbiol Res 2022; 266:127247. [DOI: 10.1016/j.micres.2022.127247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Revised: 10/21/2022] [Accepted: 10/26/2022] [Indexed: 11/05/2022]
|