1
|
Wang Z, Ye H, Li X, Sun Y, Zhao L, Chen Y, Yang P, Weng L, Bai M. Enhancing tetracycline removal: Performance and mechanisms of interspecies electron transfer in microbial consortia. JOURNAL OF HAZARDOUS MATERIALS 2025; 492:138302. [PMID: 40250275 DOI: 10.1016/j.jhazmat.2025.138302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2025] [Revised: 03/26/2025] [Accepted: 04/14/2025] [Indexed: 04/20/2025]
Abstract
With the widespread application of antibiotics in aquaculture, antibiotic contamination of manure has become a serious concern. Interspecies electron transfer between microorganisms plays a crucial role in antibiotic biodegradation. This study investigated the impact and mechanism of electron transfer on tetracycline degradation in microbial electrochemical systems. The results demonstrated that at an initial tetracycline concentration of 5 mg/L, the closed-circuit (CC) group achieved a removal rate exceeding 91.98 % within 4 d, which was 2.71 times higher than that of the open-circuit (OC) group. The electron transfer capacity of the CC group was also significantly greater than that of the OC group. Microbial community analysis identified Serratia, Petrimonas, Pseudochrobactrum, and Sphingobacterium as the key potential tetracycline-degrading genera. Additionally, catalase activity in the CC group was significantly enhanced, reaching up to four times that observed in the OC group. Molecular docking further confirmed the strong affinity between catalase and tetracycline, suggesting that catalase plays a significant role in tetracycline degradation. This study offers both theoretical insights and technical support for enhancing the microbial treatment efficiency of organic pollutants.
Collapse
Affiliation(s)
- Zhennan Wang
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs /Key Laboratory of Original Agro-Environmental Pollution Prevention and Control, MARA /Tianjin Key Laboratory of Agro-Environment and Agro-Product Safety, Tianjin 300191, China
| | - Huike Ye
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs /Key Laboratory of Original Agro-Environmental Pollution Prevention and Control, MARA /Tianjin Key Laboratory of Agro-Environment and Agro-Product Safety, Tianjin 300191, China.
| | - Xiaojing Li
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs /Key Laboratory of Original Agro-Environmental Pollution Prevention and Control, MARA /Tianjin Key Laboratory of Agro-Environment and Agro-Product Safety, Tianjin 300191, China
| | - Yang Sun
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs /Key Laboratory of Original Agro-Environmental Pollution Prevention and Control, MARA /Tianjin Key Laboratory of Agro-Environment and Agro-Product Safety, Tianjin 300191, China
| | - Lixia Zhao
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs /Key Laboratory of Original Agro-Environmental Pollution Prevention and Control, MARA /Tianjin Key Laboratory of Agro-Environment and Agro-Product Safety, Tianjin 300191, China
| | - Yali Chen
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs /Key Laboratory of Original Agro-Environmental Pollution Prevention and Control, MARA /Tianjin Key Laboratory of Agro-Environment and Agro-Product Safety, Tianjin 300191, China
| | - PinPin Yang
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs /Key Laboratory of Original Agro-Environmental Pollution Prevention and Control, MARA /Tianjin Key Laboratory of Agro-Environment and Agro-Product Safety, Tianjin 300191, China
| | - Liping Weng
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs /Key Laboratory of Original Agro-Environmental Pollution Prevention and Control, MARA /Tianjin Key Laboratory of Agro-Environment and Agro-Product Safety, Tianjin 300191, China
| | - Mohan Bai
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs /Key Laboratory of Original Agro-Environmental Pollution Prevention and Control, MARA /Tianjin Key Laboratory of Agro-Environment and Agro-Product Safety, Tianjin 300191, China.
| |
Collapse
|
2
|
Gao J, Qi M, Wang X, Feng X, Li J, Zhang G, Feng S, Yang Z, Ning G. Combined induction by Cu(II) and veratrole enhances the degradation of high molecular weight polyaromatic hydrocarbons by Fusarium dlaminii ZH-H2. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2025; 291:117794. [PMID: 39919596 DOI: 10.1016/j.ecoenv.2025.117794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 12/12/2024] [Accepted: 01/22/2025] [Indexed: 02/09/2025]
Abstract
The effect of combined induction by Cu(II) and veratrole on the degradation of high molecular weight polyaromatic hydrocarbons (HMW-PAHs) by Fusarium sp. ZH-H2 was investigated. This strain was characterized as F. dlaminii. The combination treatment of Cu(II) with veratrole (CL) improved the degradation efficiency of a mixture of 10 HMW-PAHs by 16 % compared to the control without inducer (CK), by 5 % compared to single Cu(II) induction (C), and by 12 % compared to single veratrole induction (L). In particular, degradation of benzo(g,hi)perylene (BghiP) was improved by 36 % compared to CK and by 52 % compared to L. The CL combination treatment increased lignin peroxidase (LiP) activity by 162 % at day 5 of incubation compared to the control and by 277 % compared to C. Transcriptome analysis revealed that the expression of 910 Fusarium genes had changed as a result of the combination treatment, with 510 up-regulated genes and 443 down-regulated genes. The combined CL treatment not only significantly stimulated Lip activity, but also induced the expression of genes coding for non-ligninolytic enzymes, which contributed to the degradation of PAHs. These included cytochrome P450 monooxygenase (EC:1.-.-.-) and downstream PAH converting enzymes such as aldehyde dehydrogenase (EC:1.2.1.3), NADP-dependent ethanol dehydrogenase (EC:1.1.1.2), ethanol dehydrogenase (EC:1.1.1.156], tryptophan 2,3 dioxygenase (EC:1.13.11.52), gentisate 1,2-dioxygenase (EC:1.13.11.5), salicylate hydroxylase (EC:.14.13.1) β-hexokinase (EC:3.2.1.52), and glutathione transferase (EC: 2.5.1.18). Their increased expression enhanced the HMWPAHs degradation under induction of Cu(II) plus veratrole synergistically. These findings provide new insights in the combined use of these inducers for enhanced microbial remediation of HMW-PAHs in the environment.
Collapse
Affiliation(s)
- Jiayuan Gao
- College of Resource and Environmental Sciences, Agricultural University of Hebei, Key Laboratory for Farmland Eco-Environment, Baoding, Hebei 071000, PR China
| | - Mingyue Qi
- College of Resource and Environmental Sciences, Agricultural University of Hebei, Key Laboratory for Farmland Eco-Environment, Baoding, Hebei 071000, PR China
| | - Xiaomin Wang
- College of Resource and Environmental Sciences, Agricultural University of Hebei, Key Laboratory for Farmland Eco-Environment, Baoding, Hebei 071000, PR China; State Key Laboratory of North China Crop Improvement and Regulation, Hebei Agricultural University, Baoding, Hebei 071001, PR China
| | - Xuan Feng
- College of Resource and Environmental Sciences, Agricultural University of Hebei, Key Laboratory for Farmland Eco-Environment, Baoding, Hebei 071000, PR China; Geophysical Exploration Academy of China Metallurgical Bureau, Baoding, Hebei 071051, PR China
| | - Jiahui Li
- College of Resource and Environmental Sciences, Agricultural University of Hebei, Key Laboratory for Farmland Eco-Environment, Baoding, Hebei 071000, PR China
| | - Guangwei Zhang
- College of Resource and Environmental Sciences, Agricultural University of Hebei, Key Laboratory for Farmland Eco-Environment, Baoding, Hebei 071000, PR China
| | - Shengdong Feng
- College of Resource and Environmental Sciences, Agricultural University of Hebei, Key Laboratory for Farmland Eco-Environment, Baoding, Hebei 071000, PR China
| | - Zhixin Yang
- College of Resource and Environmental Sciences, Agricultural University of Hebei, Key Laboratory for Farmland Eco-Environment, Baoding, Hebei 071000, PR China; State Key Laboratory of North China Crop Improvement and Regulation, Hebei Agricultural University, Baoding, Hebei 071001, PR China.
| | - Guohui Ning
- College of Resource and Environmental Sciences, Agricultural University of Hebei, Key Laboratory for Farmland Eco-Environment, Baoding, Hebei 071000, PR China.
| |
Collapse
|
3
|
Hacıoğlu B, Dupaul G, Paladino G, Edman M, Hedenström E. Unlocking the biodegradative potential of native white-rot fungi: a comparative study of fiberbank organic pollutant mycoremediation. Bioengineered 2024; 15:2396642. [PMID: 39219315 PMCID: PMC11370975 DOI: 10.1080/21655979.2024.2396642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 06/26/2024] [Accepted: 07/12/2024] [Indexed: 09/04/2024] Open
Abstract
Fiberbanks refer to a type of fibrous sediment originated by the forestry and wood pulping industry in Sweden. These anthropogenic sediments are significantly contaminated with potentially toxic elements, and a diverse array of organic pollutants. Additionally, these sediments are of environmental concern due to their potential role in greenhouse gas emissions. Given the environmental risks posed by these sediments, the development of effective remediation strategies is of critical importance. However, no specialized methods have been established yet for the cleanup of this specific type of contaminated sediments. To identify effective fungal species for the mycoremediation of the fiberbank substrate, we performed a detailed screening experiment. In this research, we primarily aimed at assessing both the growth capacity and the proficiency in degrading organic pollutants of 26 native white-rot fungi (WRF) species. These species were sourced from natural forest environments in northern Sweden. The experimental setup involved evaluating the WRF on plates containing fiberbank material with a central Hagem-agar disc to closely monitor the interaction of these species with fiberbank substrates. Among the fungi tested, Laetiporus sulphureus exhibited the highest growth area percentage at 72%, followed by Hymenochaete tabacina at 68% and Diplomitoporus crustulinus at 67%. For the removal of 2-3 ring polycyclic aromatic hydrocarbons (PAHs), Phellinus punctatus led with 68%, with Cystostereum muraii at 57% and Diplomitoporus crustulinus at 49%. Regarding the removal percentage of 4-6 ring PAHs, Diplomitoporus crustulinus showed the highest efficiency at 44%, followed by Phlebia tremellosa at 40% and Phlebiopsis gigantea at 28%.
Collapse
Affiliation(s)
- Burcu Hacıoğlu
- Department of Natural Sciences, Design and Sustainable Development, Mid Sweden University, Sundsvall, Sweden
| | - Gabriel Dupaul
- Department of Natural Sciences, Design and Sustainable Development, Mid Sweden University, Sundsvall, Sweden
| | - Gabriela Paladino
- Department of Natural Sciences, Design and Sustainable Development, Mid Sweden University, Sundsvall, Sweden
| | - Mattias Edman
- Department of Natural Sciences, Design and Sustainable Development, Mid Sweden University, Sundsvall, Sweden
| | - Erik Hedenström
- Department of Natural Sciences, Design and Sustainable Development, Mid Sweden University, Sundsvall, Sweden
| |
Collapse
|
4
|
Bilal M. Editorial: Insights in microbiotechnology: 2022. Front Microbiol 2024; 15:1293087. [PMID: 38868094 PMCID: PMC11167075 DOI: 10.3389/fmicb.2024.1293087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 05/20/2024] [Indexed: 06/14/2024] Open
Affiliation(s)
- Muhammad Bilal
- Department of Sanitary Engineering, Faculty of Civil and Environmental Engineering, Gdansk University of Technology, Gdańsk, Poland
- EkoTech Center, Gdańsk University of Technology, Gdańsk, Poland
| |
Collapse
|
5
|
Gao D, Li M, Tang T, Liang H, Chen G, Wang L, Bai Y, Li Y. Biodegradation of Trichloroethylene by Trametes versicolor and its Physiological Response to Contaminant Stress. BULLETIN OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2024; 112:70. [PMID: 38676752 DOI: 10.1007/s00128-024-03898-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Accepted: 04/16/2024] [Indexed: 04/29/2024]
Abstract
Trichloroethylene (TCE) poses a potentially toxic threat to humans and the environment and widely exists in contaminated sites. White rot fungi effectively degrade refractory pollutants, while a few research studies use white rot fungi to degrade TCE. In this study, we investigated TCE biodegradation by white rot fungi and the potential influencing factors in the environment and attempted to research the effect of TCE on the physiological characteristics of white rot fungi. White rot fungi (Trametes versicolor, Pseudotrametes gibbosa, Pycnoporus sanguines and Pleurotus ostreatus) were added to the liquid medium for shock culture. The results revealed that T. versicolor exhibited the most pronounced efficacy in removing TCE, with a degradation rate of 81.10% within a 7 d period. TCE induces and is degraded by cytochrome P450 enzymes. High pH and Cr(VI) adversely affected the effectiveness of the biodegradation of TCE, but the salinity range of 0-1% had less effect on biodegradation. Overall, the effectiveness of degradation of TCE by T. versicolor has been demonstrated, and it provides a reference for the application prospects of white rot fungi in TCE-contaminated soils.
Collapse
Affiliation(s)
- Dawen Gao
- Centre for Urban Environmental Remediation, Beijing University of Civil Engineering and Architecture, Beijing, 100044, China.
- Collaborative Innovation Center of Energy Conservation & Emission Reduction and Sustainable Urban- Rural Development in Beijing, Beijing University of Civil Engineering and Architecture, Beijing, 100044, China.
| | - Meng Li
- Centre for Urban Environmental Remediation, Beijing University of Civil Engineering and Architecture, Beijing, 100044, China
- Collaborative Innovation Center of Energy Conservation & Emission Reduction and Sustainable Urban- Rural Development in Beijing, Beijing University of Civil Engineering and Architecture, Beijing, 100044, China
| | - Teng Tang
- Centre for Urban Environmental Remediation, Beijing University of Civil Engineering and Architecture, Beijing, 100044, China
- Collaborative Innovation Center of Energy Conservation & Emission Reduction and Sustainable Urban- Rural Development in Beijing, Beijing University of Civil Engineering and Architecture, Beijing, 100044, China
| | - Hong Liang
- Centre for Urban Environmental Remediation, Beijing University of Civil Engineering and Architecture, Beijing, 100044, China
- Collaborative Innovation Center of Energy Conservation & Emission Reduction and Sustainable Urban- Rural Development in Beijing, Beijing University of Civil Engineering and Architecture, Beijing, 100044, China
| | - Guanyu Chen
- Centre for Urban Environmental Remediation, Beijing University of Civil Engineering and Architecture, Beijing, 100044, China
- Collaborative Innovation Center of Energy Conservation & Emission Reduction and Sustainable Urban- Rural Development in Beijing, Beijing University of Civil Engineering and Architecture, Beijing, 100044, China
| | - Litao Wang
- Centre for Urban Environmental Remediation, Beijing University of Civil Engineering and Architecture, Beijing, 100044, China
- Collaborative Innovation Center of Energy Conservation & Emission Reduction and Sustainable Urban- Rural Development in Beijing, Beijing University of Civil Engineering and Architecture, Beijing, 100044, China
| | - Yuhong Bai
- Centre for Urban Environmental Remediation, Beijing University of Civil Engineering and Architecture, Beijing, 100044, China
- Collaborative Innovation Center of Energy Conservation & Emission Reduction and Sustainable Urban- Rural Development in Beijing, Beijing University of Civil Engineering and Architecture, Beijing, 100044, China
| | - Ying Li
- Centre for Urban Environmental Remediation, Beijing University of Civil Engineering and Architecture, Beijing, 100044, China
- Collaborative Innovation Center of Energy Conservation & Emission Reduction and Sustainable Urban- Rural Development in Beijing, Beijing University of Civil Engineering and Architecture, Beijing, 100044, China
| |
Collapse
|
6
|
Chane AD, Košnář Z, Hřebečková T, Jozífek M, Doležal P, Tlustoš P. Persistent polycyclic aromatic hydrocarbons removal from sewage sludge-amended soil through phytoremediation combined with solid-state ligninolytic fungal cultures. Fungal Biol 2024; 128:1675-1683. [PMID: 38575240 DOI: 10.1016/j.funbio.2024.01.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 01/26/2024] [Accepted: 01/29/2024] [Indexed: 04/06/2024]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) are widely present in the environment, causing increasing concern because of their impact on soil health, food safety and potential health risks. Four bioremediation strategies were examined to assess the dissipation of PAHs in agricultural soil amended with sewage sludge over a period of 120 days: soil-sludge natural attenuation (SS); phytoremediation using maize (Zea mays L.) (PSS); mycoremediation (MR) separately using three white-rot fungi (Pleurotus ostreatus, Phanerochaete chrysosporium and Irpex lacteus); and plant-assisted mycoremediation (PMR) using a combination of maize and fungi. In the time frame of the experiment, mycoremediation using P. chrysosporium (MR-PH) exhibited a significantly higher (P < 0.05) degradation of total PAHs compared to the SS and PSS treatments, achieving a degradation rate of 52 %. Both the SS and PSS treatments demonstrated a lower degradation rate of total PAHs, with removal rates of 18 % and 32 %, respectively. The PMR treatments showed the highest removal rates of total PAHs at the end of the study, with degradation rates of 48-60 %. In the shoots of maize, only low- and medium-molecular-weight PAHs were found in both the PSS and PMR treatments. The calculated translocation and bioconversion factors always showed values < 1. The analysed enzymatic activities were higher in the PMR treatments compared to other treatments, which can be positively related to the higher degradation of PAHs in the soil.
Collapse
Affiliation(s)
- Abraham Demelash Chane
- Department of Agro-Environmental Chemistry and Plant Nutrition, Czech University of Life Sciences Prague, Kamýcká 129, 165 00, Praha-Suchdol, Czech Republic
| | - Zdeněk Košnář
- Department of Agro-Environmental Chemistry and Plant Nutrition, Czech University of Life Sciences Prague, Kamýcká 129, 165 00, Praha-Suchdol, Czech Republic.
| | - Tereza Hřebečková
- Department of Agro-Environmental Chemistry and Plant Nutrition, Czech University of Life Sciences Prague, Kamýcká 129, 165 00, Praha-Suchdol, Czech Republic
| | - Miroslav Jozífek
- Department of Horticulture, Czech University of Life Sciences Prague, Kamýcká 129, 165 00, Praha-Suchdol, Czech Republic
| | - Petr Doležal
- Department of Agro-Environmental Chemistry and Plant Nutrition, Czech University of Life Sciences Prague, Kamýcká 129, 165 00, Praha-Suchdol, Czech Republic
| | - Pavel Tlustoš
- Department of Agro-Environmental Chemistry and Plant Nutrition, Czech University of Life Sciences Prague, Kamýcká 129, 165 00, Praha-Suchdol, Czech Republic
| |
Collapse
|
7
|
Lv G, Zhang Z, Shen Y, Wang M. Biodegradation of malachite green by Pleurotus eryngii: a study on decolorization, mechanism, toxicity, and enzyme. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:20084-20092. [PMID: 38372929 DOI: 10.1007/s11356-024-32465-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 02/09/2024] [Indexed: 02/20/2024]
Abstract
The purpose of this study was to investigate the biodegradation of malachite green (MG) by Pleurotus eryngii via decolorization. This study also explored the possible mechanisms and toxicity. The results indicated that this fungus exhibited strong decolorizing potential. MG degradation based on UPLC-TOF-Triple-MS analysis revealed the formation of intermediates such as 4-(dimethylamino)benzophenone, 4-(methylamino)benzophenone, and 4-(dimethylamino)phenol. Furthermore, a significant reduction in the toxicity of the degradation products was observed using the zebrafish animal model. A newly discovered dye-decolorizing peroxidase (DyP-PE) from P. eryngii was amplified, cloned, and expressed. The purified 56.4 kDa DyP-PE strongly decolorized MG, suggesting potentially application in the bioremediation of MG pollution. Thus, the DyP-PE derived from P. eryngii may contribute to the degradation of MG.
Collapse
Affiliation(s)
- Guoying Lv
- Institute of Horticulture, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China.
| | - Zuofa Zhang
- Institute of Horticulture, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Yingyue Shen
- Institute of Horticulture, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Mei Wang
- Institute of Horticulture, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| |
Collapse
|
8
|
Banerjee S, Gupta N, Pramanik K, Gope M, GhoshThakur R, Karmakar A, Gogoi N, Hoque RR, Mandal NC, Balachandran S. Microbes and microbial strategies in carcinogenic polycyclic aromatic hydrocarbons remediation: a systematic review. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:1811-1840. [PMID: 38063960 DOI: 10.1007/s11356-023-31140-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 11/16/2023] [Indexed: 01/18/2024]
Abstract
Degradation, detoxification, or removal of the omnipresent polycyclic aromatic hydrocarbons (PAHs) from the ecosphere as well as their prevention from entering into food chain has never appeared simple. In this context, cost-effective, eco-friendly, and sustainable solutions like microbe-mediated strategies have been adopted worldwide. With this connection, measures have been taken by multifarious modes of microbial remedial strategies, i.e., enzymatic degradation, biofilm and biosurfactant production, application of biochar-immobilized microbes, lactic acid bacteria, rhizospheric-phyllospheric-endophytic microorganisms, genetically engineered microorganisms, and bioelectrochemical techniques like microbial fuel cell. In this review, a nine-way directional approach which is based on the microbial resources reported over the last couple of decades has been described. Fungi were found to be the most dominant taxa among the CPAH-degrading microbial community constituting 52.2%, while bacteria, algae, and yeasts occupied 37.4%, 9.1%, and 1.3%, respectively. In addition to these, category-wise CPAH degrading efficiencies of each microbial taxon, consortium-based applications, CPAH degradation-related molecular tools, and factors affecting CPAH degradation are the other important aspects of this review in light of their appropriate selection and application in the PAH-contaminated environment for better human-health management in order to achieve a sustainable ecosystem.
Collapse
Affiliation(s)
- Sandipan Banerjee
- Mycology and Plant Pathology Laboratory, Department of Botany, Visva-Bharati, Santiniketan, 731235, West Bengal, India
| | - Nitu Gupta
- Department of Environmental Science, Tezpur University, Napaam, Tezpur, Assam, 784028, India
| | - Krishnendu Pramanik
- Microbiology and Microbial Bioinformatics Laboratory, Department of Botany, Cooch Behar Panchanan Barma University, Panchanan Nagar, Vivekananda Street, Cooch Behar, 736101, West Bengal, India
| | - Manash Gope
- Department of Environmental Science, The University of Burdwan, Golapbag, 713104, West Bengal, India
| | - Richik GhoshThakur
- Department of Environmental Studies, Visva-Bharati, Santiniketan, 731235, West Bengal, India
| | - Animesh Karmakar
- Department of Chemistry, Visva-Bharati, Santiniketan, 731235, West Bengal, India
| | - Nayanmoni Gogoi
- Department of Environmental Science, Tezpur University, Napaam, Tezpur, Assam, 784028, India
| | - Raza Rafiqul Hoque
- Department of Environmental Science, Tezpur University, Napaam, Tezpur, Assam, 784028, India
| | - Narayan Chandra Mandal
- Mycology and Plant Pathology Laboratory, Department of Botany, Visva-Bharati, Santiniketan, 731235, West Bengal, India
| | - Srinivasan Balachandran
- Department of Environmental Studies, Visva-Bharati, Santiniketan, 731235, West Bengal, India.
| |
Collapse
|
9
|
Dong W, Yan J, Yang Y, Wu Q, Hu X. Immobilization of laccase on magnetic mesoporous silica as a recoverable biocatalyst for the efficient degradation of benzo[a]pyrene. CHEMOSPHERE 2024; 346:140642. [PMID: 37939925 DOI: 10.1016/j.chemosphere.2023.140642] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 08/31/2023] [Accepted: 11/06/2023] [Indexed: 11/10/2023]
Abstract
Laccase is an efficient green biocatalyst, widely used for the degradation of various organic pollutants. However, free laccase is unstable and difficult to recover, which limits its practical application. In this study, a multilayer core-shell magnetic mesoporous silica (Fe3O4@d-SiO2@p-SiO2) microsphere with high specific surface area (275 m2 g-1) was fabricated for immobilization of laccase. The unique structure of Fe3O4@d-SiO2@p-SiO2 enabled the successful immobilization of laccase. Under the optimal immobilization conditions of laccase concentration of 1.5 mg mL-1, immobilization time of 6 h, immobilization pH of 6, the loading capacity of laccase was up to 567 mg g-1. Compared with free laccase, immobilized laccase exhibited remarkable pH stability, thermal stability and storage stability. Moreover, the immobilized laccase was easy to achieve magnetic recovery and possessed excellent reusability, with its activity remaining 58.2% after 10 consecutive reuses. More importantly, immobilized laccase had good degradation performance for benzo[a]pyrene (BaP), which can achieve rapid and efficient degradation of low concentration BaP over a wide range of pH and temperature. The removal efficiency of BaP was up to 99.0% within 1 h, and still exceeded 35.0% after 5 cycles. The removal of BaP by immobilized laccase was achieved through both adsorption and degradation. The degradation products and possible degradation pathways were determined by GC-MS analysis. This study indicated that Fe3O4@d-SiO2@p-SiO2 could effectively enhance the stability and biocatalytic activity of laccase, which is expected to provide a new clean biotechnology for the remediation of BaP contaminated sites.
Collapse
Affiliation(s)
- Wenya Dong
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, Shanghai 201418, PR China
| | - Jiaqi Yan
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, Shanghai 201418, PR China
| | - Yaoyu Yang
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, Shanghai 201418, PR China
| | - Qingsheng Wu
- School of Chemical Science and Engineering, Tongji University, Shanghai 200092, PR China
| | - Xiaojun Hu
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, Shanghai 201418, PR China.
| |
Collapse
|
10
|
Barnes NM, Damare SR, Bhatawadekar VC, Garg A, Lotlikar NP. Degradation of crude oil-associated polycyclic aromatic hydrocarbons by marine-derived fungi. 3 Biotech 2023; 13:335. [PMID: 37693637 PMCID: PMC10482808 DOI: 10.1007/s13205-023-03753-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 08/22/2023] [Indexed: 09/12/2023] Open
Abstract
One of the major environmental concerns today is hydrocarbon contamination resulting from the activities related to the petrochemical industry. Crude oil is a complex mixture of hydrocarbons like alkanes, naphthene and polycyclic aromatic hydrocarbons (PAHs). PAHs are known to be highly toxic to humans and animals due to their carcinogenic and mutagenic effects. PAHs are environmentally recalcitrant due to their hydrophobicity which makes them difficult to degrade, thus making them persistent environmental contaminants. The mechanical and chemical methods in practice currently to remove hydrocarbon contaminants have limited effectiveness and are expensive. Bioremediation is a cost-effective technology for treating hydrocarbon-contaminated sites as it results in the complete mineralisation of the pollutant. This study demonstrates the degradation of crude oil and associated PAHs using ten fungal cultures isolated from the aquatic environment. The current study reported a 98.6% and 92.9% reduction in total PAHs in crude oil by Fusarium species, i.e. isolate NIOSN-T4 and NIOSN-T5, respectively. The fungal isolate, NIOSN-T4, identified as Fusarium equiseti, showed maximum PAH degradation efficiency of LMW PAHs 97.8%. NIOSN-M126, identified as Penicillium citrinum, exhibited a 100% removal of HMW PAHs. Microorganisms possess an untapped potential for various applications in biotechnology, and the current study demonstrated the potential of marine fungi for use in the bioremediation of xenobiotic hydrocarbons in the environment. Supplementary Information The online version contains supplementary material available at 10.1007/s13205-023-03753-2.
Collapse
Affiliation(s)
- Natasha Maria Barnes
- Biological Oceanography Division, CSIR-National Institute of Oceanography, Dona Paula, Panaji, Goa 403004 India
| | - Samir R. Damare
- Biological Oceanography Division, CSIR-National Institute of Oceanography, Dona Paula, Panaji, Goa 403004 India
| | - Vasudha C. Bhatawadekar
- Biological Oceanography Division, CSIR-National Institute of Oceanography, Dona Paula, Panaji, Goa 403004 India
| | - Anita Garg
- Analytical Services Division, CSIR-National Institute of Oceanography, Dona Paula, Panaji, Goa 403004 India
| | - Nikita Pradip Lotlikar
- Biological Oceanography Division, CSIR-National Institute of Oceanography, Dona Paula, Panaji, Goa 403004 India
- Present Address: School of Earth, Ocean and Atmospheric Sciences, Goa University, Taleigao Plateau, Goa India
| |
Collapse
|
11
|
Zhang W, Li Q, Wang J, Wang Z, Zhan H, Yu X, Zheng Y, Xiao T, Zhou LW. Biodegradation of Benzo[a]pyrene by a White-Rot Fungus Phlebia acerina: Surfactant-Enhanced Degradation and Possible Genes Involved. J Fungi (Basel) 2023; 9:978. [PMID: 37888234 PMCID: PMC10607704 DOI: 10.3390/jof9100978] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 09/19/2023] [Accepted: 09/26/2023] [Indexed: 10/28/2023] Open
Abstract
Polycyclic aromatic hydrocarbons (PAHs) are persistent environmental pollutants that pose a threat to human health. Among these PAHs, benzo[a]pyrene (BaP), a five-ring compound, exhibits high resistance to biodegradation. White-rot fungus Phlebia acerina S-LWZ20190614-6 has demonstrated higher BaP degradation capabilities compared with Phanerochaete chrysosporium and P. sordida YK-624, achieving a degradation rate of 57.7% after 32 days of incubation under a ligninolytic condition. To further enhance the biodegradation rate, three nonionic surfactants were used, and the addition of 1 or 2 g·L-1 of polyethylene glycol monododecyl ether (Brij 30) resulted in nearly complete BaP biodegradation by P. acerina S-LWZ20190614-6. Interestingly, Brij 30 did not significantly affect the activity of manganese peroxidase and lignin peroxidase, but it did decrease laccase activity. Furthermore, the impact of cytochrome P450 on BaP degradation by P. acerina S-LWZ20190614-6 was found to be relatively mild. Transcriptomic analysis provided insights into the degradation mechanism of BaP, revealing the involvement of genes related to energy production and the synthesis of active enzymes crucial for BaP degradation. The addition of Brij 30 significantly upregulated various transferase and binding protein genes in P. acerina S-LWZ20190614-6. Hence, the bioremediation potential of BaP by the white-rot fungus P. acerina S-LWZ20190614-6 holds promise and warrants further exploration.
Collapse
Affiliation(s)
- Wenquan Zhang
- Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, China
| | - Qiaoyu Li
- Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, China
| | - Jianqiao Wang
- Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, China
| | - Ziyu Wang
- Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, China
| | - Hongjie Zhan
- Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, China
| | - Xiaolong Yu
- School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Yan Zheng
- School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Tangfu Xiao
- Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, China
- State Key Laboratory of Geohazard Prevention and Geoenvironment Protection, Chengdu University of Technology, Chengdu 610059, China
| | - Li-Wei Zhou
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| |
Collapse
|
12
|
Bhatt P, Udayanga D, Chen S. Microbial engineering to reduce the synthetic pollutants from the environment. CHEMOSPHERE 2023; 334:138919. [PMID: 37178939 DOI: 10.1016/j.chemosphere.2023.138919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Affiliation(s)
- Pankaj Bhatt
- Agricultural & Biological Engineering, Purdue University, United States.
| | - Dhanushka Udayanga
- Department of Biosystems Technology, Faculty of Technology, University of Sri Jayewardenepura, Nugegoda, Sri Lanka
| | - Shaohua Chen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, China.
| |
Collapse
|
13
|
Thacharodi A, Hassan S, Singh T, Mandal R, Chinnadurai J, Khan HA, Hussain MA, Brindhadevi K, Pugazhendhi A. Bioremediation of polycyclic aromatic hydrocarbons: An updated microbiological review. CHEMOSPHERE 2023; 328:138498. [PMID: 36996919 DOI: 10.1016/j.chemosphere.2023.138498] [Citation(s) in RCA: 56] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 03/08/2023] [Accepted: 03/21/2023] [Indexed: 06/19/2023]
Abstract
A class of organic priority pollutants known as PAHs is of critical public health and environmental concern due to its carcinogenic properties as well as its genotoxic, mutagenic, and cytotoxic properties. Research to eliminate PAHs from the environment has increased significantly due to awareness about their negative effects on the environment and human health. Various environmental factors, including nutrients, microorganisms present and their abundance, and the nature and chemical properties of the PAH affect the biodegradation of PAHs. A large spectrum of bacteria, fungi, and algae have ability to degrade PAHs with the biodegradation capacity of bacteria and fungi receiving the most attention. A considerable amount of research has been conducted in the last few decades on analyzing microbial communities for their genomic organization, enzymatic and biochemical properties capable of degrading PAH. While it is true that PAH degrading microorganisms offer potential for recovering damaged ecosystems in a cost-efficient way, new advances are needed to make these microbes more robust and successful at eliminating toxic chemicals. By optimizing some factors like adsorption, bioavailability and mass transfer of PAHs, microorganisms in their natural habitat could be greatly improved to biodegrade PAHs. This review aims to comprehensively discuss the latest findings and address the current wealth of knowledge in the microbial bioremediation of PAHs. Additionally, recent breakthroughs in PAH degradation are discussed in order to facilitate a broader understanding of the bioremediation of PAHs in the environment.
Collapse
Affiliation(s)
- Aswin Thacharodi
- Department of Biochemistry, University of Otago, Dunedin, 9054, New Zealand
| | - Saqib Hassan
- Division of Non-Communicable Diseases, Indian Council of Medical Research (ICMR), New Delhi, 110029, India; Department of Microbiology, School of Life Sciences, Pondicherry University, Puducherry, 605014, India
| | - Tripti Singh
- Department of Biotechnology, Jaypee Institute of Information Technology, Noida, Uttar Pradesh, 201309, India
| | - Ramkrishna Mandal
- Department of Chemistry, University of Otago, Dunedin, 9054, New Zealand
| | - Jeganathan Chinnadurai
- Department of Research and Development, Dr. Thacharodi's Laboratories, No. 24, 5th Cross, Thanthaiperiyar Nagar, Ellapillaichavadi, Puducherry, 605005, India
| | - Hilal Ahmad Khan
- Department of Chemistry, Pondicherry University, Puducherry, 605014, India
| | - Mir Ashiq Hussain
- Department of Chemistry, Pondicherry University, Puducherry, 605014, India
| | - Kathirvel Brindhadevi
- Center for Transdisciplinary Research (CFTR), Department of Pharmacology, Saveetha Dental College, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India
| | - Arivalagan Pugazhendhi
- School of Engineering, Lebanese American University, Byblos, Lebanon; University Centre for Research & Development, Department of Civil Engineering, Chandigarh University, Mohali,140103, India.
| |
Collapse
|
14
|
Ghosh S, Rusyn I, Dmytruk OV, Dmytruk KV, Onyeaka H, Gryzenhout M, Gafforov Y. Filamentous fungi for sustainable remediation of pharmaceutical compounds, heavy metal and oil hydrocarbons. Front Bioeng Biotechnol 2023; 11:1106973. [PMID: 36865030 PMCID: PMC9971017 DOI: 10.3389/fbioe.2023.1106973] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Accepted: 01/31/2023] [Indexed: 02/16/2023] Open
Abstract
This review presents a comprehensive summary of the latest research in the field of bioremediation with filamentous fungi. The main focus is on the issue of recent progress in remediation of pharmaceutical compounds, heavy metal treatment and oil hydrocarbons mycoremediation that are usually insufficiently represented in other reviews. It encompasses a variety of cellular mechanisms involved in bioremediation used by filamentous fungi, including bio-adsorption, bio-surfactant production, bio-mineralization, bio-precipitation, as well as extracellular and intracellular enzymatic processes. Processes for wastewater treatment accomplished through physical, biological, and chemical processes are briefly described. The species diversity of filamentous fungi used in pollutant removal, including widely studied species of Aspergillus, Penicillium, Fusarium, Verticillium, Phanerochaete and other species of Basidiomycota and Zygomycota are summarized. The removal efficiency of filamentous fungi and time of elimination of a wide variety of pollutant compounds and their easy handling make them excellent tools for the bioremediation of emerging contaminants. Various types of beneficial byproducts made by filamentous fungi, such as raw material for feed and food production, chitosan, ethanol, lignocellulolytic enzymes, organic acids, as well as nanoparticles, are discussed. Finally, challenges faced, future prospects, and how innovative technologies can be used to further exploit and enhance the abilities of fungi in wastewater remediation, are mentioned.
Collapse
Affiliation(s)
- Soumya Ghosh
- Department of Genetics, Faculty of Natural and Agricultural Sciences, University of the Free State, Bloemfontein, South Africa,*Correspondence: Soumya Ghosh, ,
| | - Iryna Rusyn
- Department of Ecology and Sustainaible Environmental Management, Viacheslav Chornovil Institute of Sustainable Development, Lviv Polytechnic National University, Lviv, Ukraine
| | - Olena V. Dmytruk
- Institute of Cell Biology NAS of Ukraine, Lviv, Ukraine,Institute of Biology and Biotechnology, University of Rzeszow, Rzeszow, Poland
| | - Kostyantyn V. Dmytruk
- Institute of Cell Biology NAS of Ukraine, Lviv, Ukraine,Institute of Biology and Biotechnology, University of Rzeszow, Rzeszow, Poland
| | - Helen Onyeaka
- School of Chemical Engineering, University of Birmingham, Birmingham, United Kingdom
| | - Marieka Gryzenhout
- Department of Genetics, Faculty of Natural and Agricultural Sciences, University of the Free State, Bloemfontein, South Africa
| | - Yusufjon Gafforov
- Mycology Laboratory, Institute of Botany, Academy of Sciences of Republic of Uzbekistan, Tashkent, Uzbekistan,AKFA University, Tashkent, Uzbekistan
| |
Collapse
|
15
|
Muralidharan M, Gayathri KV, Kumar PS, Preethi DS, Kavitha R, Rajagopal R, Rangasamy G. Mixed polyaromatic hydrocarbon degradation by halotolerant bacterial strains from marine environment and its metabolic pathway. ENVIRONMENTAL RESEARCH 2023; 216:114464. [PMID: 36208785 DOI: 10.1016/j.envres.2022.114464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Revised: 09/10/2022] [Accepted: 09/27/2022] [Indexed: 06/16/2023]
Abstract
Accidents involving diesel oil spills are prevalent in sea- and coastal regions. Polycyclic aromatic hydrocarbons (PAHs) can be adsorbed in soil and constitute a persistent contaminant due to their poor water solubility and complex breakdown. PAHs pollution is a pervasive environmental concern that poses serious risks to human life and ecosystems. Thus, it is the need of the hour to degrade and decontaminate the toxic pollutant to save the environment. Among all the available techniques, microbial degradation of the PAHs is proving to be greatly beneficial and effective. Bioremediation overcomes the drawbacks of most physicochemical procedures by eliminating numerous organic pollutants at a lower cost in ambient circumstances and has therefore become a prominent remedial option for pollutant removal, including PAHs. In the present study, we have studied the degradation of Low molecular Weight and High Molecular Weight PAH in combination by bacterial strains isolated from a marine environment. Optimum pH, temperature, carbon, and nitrogen sources, NaCl concentrations were found for efficient degradation using the isolated bacterial strains. At 250 mg/L concentration of the PAH mixture an 89.5% degradation was observed. Vibrio algiolytcus strains were found to be potent halotolerant bacteria to degrade complex PAH into less toxic simple molecules. GC-MS and FTIR data were used to probe the pathway of degradation of PAH.
Collapse
Affiliation(s)
- Manasa Muralidharan
- Department of Biotechnology, Stella Maris College (Autonomous), Chennai, India
| | - K Veena Gayathri
- Department of Biotechnology, Stella Maris College (Autonomous), Chennai, India.
| | - P Senthil Kumar
- Department of Chemical Engineering, Sri Sivasubramaniya Nadar College of Engineering, Kalavakkam-603110, Tamil Nadu, India; Centre of Excellence in Water Research (CEWAR), Sri Sivasubramaniya Nadar College of Engineering, Kalavakkam-603110, Tamil Nadu, India; School of Engineering, Lebanese American University, Byblos, Lebanon; Department of Biotechnology Engineering and Food Technology, Chandigarh University, Mohali, 140413, India.
| | - D S Preethi
- Department of Biotechnology, Stella Maris College (Autonomous), Chennai, India
| | - R Kavitha
- Department of Chemistry, Stella Maris College (Autonomous), Chennai, India; Department of Chemistry, Madras Christian College (Autonomous), Chennai, India
| | - Revathy Rajagopal
- Department of Chemistry, Stella Maris College (Autonomous), Chennai, India
| | - Gayathri Rangasamy
- Department of Sustainable Engineering, Institute of Biotechnology, Saveetha School of Engineering, SIMATS, Chennai 602105, India
| |
Collapse
|