1
|
Cohen S, Chajanovsky I, Suckeveriene RY. Recent Developments in Enzyme-Free PANI-Based Electrochemical Nanosensors for Pollutant Detection in Aqueous Environments. Polymers (Basel) 2025; 17:1320. [PMID: 40430616 PMCID: PMC12114906 DOI: 10.3390/polym17101320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2025] [Revised: 05/07/2025] [Accepted: 05/08/2025] [Indexed: 05/29/2025] Open
Abstract
Wastewater management has a direct impact on the supply of drinking water. New cutting-edge technologies are crucial to the ever-growing demand for tailored solutions for pollutant removal, but these pollutants first need to be detected. Traditional techniques are costly and are no longer competitive in the wastewater cleaning market. One sustainable and economically viable alternative is the fabrication of integrated nanosensors composed of conducting polymers. These include polyaniline doped with various types of nanomaterials such as nanocarbons (carbon nanotubes and graphene), metal oxide nanoparticles/nanostructures, and quantum dots. The synergistic properties of these components can endow sensing materials with enhanced surface reactivity, greater electrocatalytic activity, as well as tunable redox activity and electrical conductivity. This review covers key recent advances in the field of non-enzyme electrochemical conductive polymer nanosensors for pollutant detection in aqueous environments or simulated polluted samples. It provides an introduction to these sensors, their preparation, applications, the environmental and economic hurdles impeding the large-scale development of PANI-based nanomaterials in sensing applications, and future directions for research and real-world applications.
Collapse
Affiliation(s)
- Sarah Cohen
- Water Industry Engineering Department, Kinneret Academic College on the Sea of Galilee, Zemach 15132, Israel; (S.C.); (I.C.)
| | - Itamar Chajanovsky
- Water Industry Engineering Department, Kinneret Academic College on the Sea of Galilee, Zemach 15132, Israel; (S.C.); (I.C.)
| | - Ran Yosef Suckeveriene
- Faculty of Engineering, Kinneret Academic College on the Sea of Galilee, Zemach 15132, Israel
| |
Collapse
|
2
|
Leburu E, Qiao Y, Wang Y, Yang J, Liang S, Yu W, Yuan S, Duan H, Huang L, Hu J, Hou H. Flexible electronics for heavy metal ion detection in water: a comprehensive review. Biomed Microdevices 2024; 26:30. [PMID: 38913209 DOI: 10.1007/s10544-024-00710-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/05/2024] [Indexed: 06/25/2024]
Abstract
Flexible electronics offer a versatile, rapid, cost-effective and portable solution to monitor water contamination, which poses serious threat to the environment and human health. This review paper presents a comprehensive exploration of the versatile platforms of flexible electronics in the context of heavy metal ion detection in water systems. The review overviews of the fundamental principles of heavy metal ion detection, surveys the state-of-the-art materials and fabrication techniques for flexible sensors, analyses key performance metrics and limitations, and discusses future opportunities and challenges. By highlighting recent advances in nanomaterials, polymers, wireless integration, and sustainability, this review aims to serve as an essential resource for researchers, engineers, and policy makers seeking to address the critical challenge of heavy metal contamination in water resources. The versatile promise of flexible electronics is thoroughly elucidated to inspire continued innovation in this emerging technology arena.
Collapse
Affiliation(s)
- Ely Leburu
- School of Environmental Science and Engineering, Huazhong University of Science and Technology (HUST), 1037 Luoyu Road, Wuhan, 430074, P.R. China
- Hubei Provincial Engineering Laboratory of Solid Waste Treatment, Disposal and Recycling, 1037 Luoyu Road, Wuhan, 430074, P.R. China
- Hubei Key Laboratory of Multi-media Pollution Cooperative Control in Yangtze Basin, School of University of Science and Technology (HUST), 1037 Luoyu Road, Wuhan, 430074, China
| | - Yuting Qiao
- School of Environmental Science and Engineering, Huazhong University of Science and Technology (HUST), 1037 Luoyu Road, Wuhan, 430074, P.R. China
- Hubei Provincial Engineering Laboratory of Solid Waste Treatment, Disposal and Recycling, 1037 Luoyu Road, Wuhan, 430074, P.R. China
- Hubei Key Laboratory of Multi-media Pollution Cooperative Control in Yangtze Basin, School of University of Science and Technology (HUST), 1037 Luoyu Road, Wuhan, 430074, China
| | - Yanshen Wang
- School of Environmental Science and Engineering, Huazhong University of Science and Technology (HUST), 1037 Luoyu Road, Wuhan, 430074, P.R. China
- Hubei Provincial Engineering Laboratory of Solid Waste Treatment, Disposal and Recycling, 1037 Luoyu Road, Wuhan, 430074, P.R. China
- Hubei Key Laboratory of Multi-media Pollution Cooperative Control in Yangtze Basin, School of University of Science and Technology (HUST), 1037 Luoyu Road, Wuhan, 430074, China
| | - Jiakuan Yang
- School of Environmental Science and Engineering, Huazhong University of Science and Technology (HUST), 1037 Luoyu Road, Wuhan, 430074, P.R. China
- Hubei Provincial Engineering Laboratory of Solid Waste Treatment, Disposal and Recycling, 1037 Luoyu Road, Wuhan, 430074, P.R. China
- Hubei Key Laboratory of Multi-media Pollution Cooperative Control in Yangtze Basin, School of University of Science and Technology (HUST), 1037 Luoyu Road, Wuhan, 430074, China
- State Key Laboratory of Coal Combustion, Huazhong University of Science of and Technology (HUST), 1037 Luoyu Road, Wuhan, 430074, P.R. China
| | - Sha Liang
- School of Environmental Science and Engineering, Huazhong University of Science and Technology (HUST), 1037 Luoyu Road, Wuhan, 430074, P.R. China
- Hubei Provincial Engineering Laboratory of Solid Waste Treatment, Disposal and Recycling, 1037 Luoyu Road, Wuhan, 430074, P.R. China
- Hubei Key Laboratory of Multi-media Pollution Cooperative Control in Yangtze Basin, School of University of Science and Technology (HUST), 1037 Luoyu Road, Wuhan, 430074, China
| | - Wenbo Yu
- School of Environmental Science and Engineering, Huazhong University of Science and Technology (HUST), 1037 Luoyu Road, Wuhan, 430074, P.R. China
- Hubei Provincial Engineering Laboratory of Solid Waste Treatment, Disposal and Recycling, 1037 Luoyu Road, Wuhan, 430074, P.R. China
- Hubei Key Laboratory of Multi-media Pollution Cooperative Control in Yangtze Basin, School of University of Science and Technology (HUST), 1037 Luoyu Road, Wuhan, 430074, China
| | - Shushan Yuan
- School of Environmental Science and Engineering, Huazhong University of Science and Technology (HUST), 1037 Luoyu Road, Wuhan, 430074, P.R. China
- Hubei Provincial Engineering Laboratory of Solid Waste Treatment, Disposal and Recycling, 1037 Luoyu Road, Wuhan, 430074, P.R. China
- Hubei Key Laboratory of Multi-media Pollution Cooperative Control in Yangtze Basin, School of University of Science and Technology (HUST), 1037 Luoyu Road, Wuhan, 430074, China
| | - Huabo Duan
- School of Environmental Science and Engineering, Huazhong University of Science and Technology (HUST), 1037 Luoyu Road, Wuhan, 430074, P.R. China
- Hubei Provincial Engineering Laboratory of Solid Waste Treatment, Disposal and Recycling, 1037 Luoyu Road, Wuhan, 430074, P.R. China
- Hubei Key Laboratory of Multi-media Pollution Cooperative Control in Yangtze Basin, School of University of Science and Technology (HUST), 1037 Luoyu Road, Wuhan, 430074, China
| | - Liang Huang
- School of Environmental Science and Engineering, Huazhong University of Science and Technology (HUST), 1037 Luoyu Road, Wuhan, 430074, P.R. China
- Hubei Provincial Engineering Laboratory of Solid Waste Treatment, Disposal and Recycling, 1037 Luoyu Road, Wuhan, 430074, P.R. China
- Hubei Key Laboratory of Multi-media Pollution Cooperative Control in Yangtze Basin, School of University of Science and Technology (HUST), 1037 Luoyu Road, Wuhan, 430074, China
| | - Jingping Hu
- School of Environmental Science and Engineering, Huazhong University of Science and Technology (HUST), 1037 Luoyu Road, Wuhan, 430074, P.R. China.
- Hubei Provincial Engineering Laboratory of Solid Waste Treatment, Disposal and Recycling, 1037 Luoyu Road, Wuhan, 430074, P.R. China.
- Hubei Key Laboratory of Multi-media Pollution Cooperative Control in Yangtze Basin, School of University of Science and Technology (HUST), 1037 Luoyu Road, Wuhan, 430074, China.
- State Key Laboratory of Coal Combustion, Huazhong University of Science of and Technology (HUST), 1037 Luoyu Road, Wuhan, 430074, P.R. China.
| | - Huijie Hou
- School of Environmental Science and Engineering, Huazhong University of Science and Technology (HUST), 1037 Luoyu Road, Wuhan, 430074, P.R. China.
- Hubei Provincial Engineering Laboratory of Solid Waste Treatment, Disposal and Recycling, 1037 Luoyu Road, Wuhan, 430074, P.R. China.
- Hubei Key Laboratory of Multi-media Pollution Cooperative Control in Yangtze Basin, School of University of Science and Technology (HUST), 1037 Luoyu Road, Wuhan, 430074, China.
| |
Collapse
|
3
|
Hilda L, Mutlaq MS, Waleed I, Althomali RH, Mahdi MH, Abdullaev SS, Singh R, Nasser HA, Mustafa YF, Alawadi AHR. Genosensor on-chip paper for point of care detection: A review of biomedical analysis and food safety application. Talanta 2024; 268:125274. [PMID: 37839324 DOI: 10.1016/j.talanta.2023.125274] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 10/01/2023] [Accepted: 10/03/2023] [Indexed: 10/17/2023]
Abstract
Over the last decade, paper-based biosensing has attracted considerable attention in numerous fields due to several advantages of them. To elaborate, using paper as a substrate of sensing approaches can be considered an affordable sensing approach owing to low cost of paper, and alongside that, the ability to operate without requiring external equipment. In many cases, cost-effective fabrication techniques such as screen printed and drop casting can be supposed as other benefits of these platforms. Despite the portability and affordability of paper-based assay, two important limitations including sensitivity and selectivity can decrease the application of these sensing approaches. Initially, decoration of paper substrate with nanomaterials (NMs) can improve the properties of paper due to high surface area and conductivity of them. Secondly, the presence of bioreceptors can provide a selective detection platform. Among different bioreceptors, deoxyribonucleic acid (DNA) and ribonucleic acid (RNA) can play a significant role. From this perspective, paper-based biosensors can be used for the detection of various gens which related to biomedical or food safety. In this review, we attempted to summarize recent trends and applications of paper-based genosensor, along with critical arguments in terms of NMs role in signal amplification. Furthermore, the lack of paper-based genosensors in field the of biomedical and food safety will be discussed in the following.
Collapse
Affiliation(s)
- Lelya Hilda
- Department of Chemistry, Universitas Islam Negeri Syekh Ali Hasan Ahmad Addary Padangsidimpuan, Padangsidimpuan, Indonesia.
| | - Maysam Salih Mutlaq
- Department of Radiology & Sonar Techniques, AlNoor University College, Nineveh, Iraq
| | | | - Raed H Althomali
- Department of Chemistry, Prince Sattam Bin Abdulaziz University, College of Arts and Science, Wadi Al-Dawasir, 11991, Saudi Arabia
| | | | - Sherzod Shukhratovich Abdullaev
- Faculty of Chemical Engineering, New Uzbekistan University, Tashkent, Uzbekistan; Department of Chemical Engineering, Central Asian University, Tashkent, Uzbekistan; Scientific and Innovation Department, Tashkent State Pedagogical University named after Nizami, Tashkent, Uzbekistan
| | - Rajesh Singh
- Department of Electronics & Communication Engineering, Uttaranchal Institute of Technology, Uttaranchal University, Dehradun, 248007, India
| | | | - Yasser Fakri Mustafa
- Department of Pharmaceutical Chemistry, College of Pharmacy, University of Mosul, Mosul, 41001, Iraq
| | - Ahmed H R Alawadi
- Building and Construction Technical Engineering Department, College of Technical Engineering, The Islamic university, Najaf, Iraq
| |
Collapse
|
4
|
Ma C, Jiang N, Sun X, Kong L, Liang T, Wei X, Wang P. Progress in optical sensors-based uric acid detection. Biosens Bioelectron 2023; 237:115495. [PMID: 37442030 DOI: 10.1016/j.bios.2023.115495] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 06/20/2023] [Accepted: 06/21/2023] [Indexed: 07/15/2023]
Abstract
The escalating number of patients affected by various diseases, such as gout, attributed to abnormal uric acid (UA) concentrations in body fluids, has underscored the need for rapid, efficient, highly sensitive, and stable UA detection methods and sensors. Optical sensors have garnered significant attention due to their simplicity, cost-effectiveness, and resistance to electromagnetic interference. Notably, research efforts have been directed towards UA on-site detection, enabling daily monitoring at home and facilitating rapid disease screening in the community. This review aims to systematically categorize and provide detailed descriptions of the notable achievements and emerging technologies in UA optical sensors over the past five years. The review highlights the advantages of each sensor while also identifying their limitations in on-site applications. Furthermore, recent progress in instrumentation and the application of UA on-site detection in body fluids is discussed, along with the existing challenges and prospects for future development. The review serves as an informative resource, offering technical insights and promising directions for future research in the design and application of on-site optical sensors for UA detection.
Collapse
Affiliation(s)
- Chiyu Ma
- Biosensor National Special Laboratory, Key Laboratory for Biomedical Engineering of Ministry of Education, Department of Biomedical Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Nan Jiang
- Biosensor National Special Laboratory, Key Laboratory for Biomedical Engineering of Ministry of Education, Department of Biomedical Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Xianyou Sun
- Biosensor National Special Laboratory, Key Laboratory for Biomedical Engineering of Ministry of Education, Department of Biomedical Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Liubing Kong
- Biosensor National Special Laboratory, Key Laboratory for Biomedical Engineering of Ministry of Education, Department of Biomedical Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Tao Liang
- Research Center for Quantum Sensing, Zhejiang Lab, Hangzhou, 310000, China.
| | - Xinwei Wei
- Key Laboratory of Advanced Drug Delivery Systems of Zhejiang Province, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China.
| | - Ping Wang
- Biosensor National Special Laboratory, Key Laboratory for Biomedical Engineering of Ministry of Education, Department of Biomedical Engineering, Zhejiang University, Hangzhou, 310027, China.
| |
Collapse
|
5
|
Filippidou MK, Chatzandroulis S. Microfluidic Devices for Heavy Metal Ions Detection: A Review. MICROMACHINES 2023; 14:1520. [PMID: 37630055 PMCID: PMC10456312 DOI: 10.3390/mi14081520] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Revised: 07/20/2023] [Accepted: 07/27/2023] [Indexed: 08/27/2023]
Abstract
The contamination of air, water and soil by heavy metal ions is one of the most serious problems plaguing the environment. These metal ions are characterized by a low biodegradability and high chemical stability and can affect humans and animals, causing severe diseases. In addition to the typical analysis methods, i.e., liquid chromatography (LC) or spectrometric methods (i.e., atomic absorption spectroscopy, AAS), there is a need for the development of inexpensive, easy-to-use, sensitive and portable devices for the detection of heavy metal ions at the point of interest. To this direction, microfluidic and lab-on-chip (LOC) devices fabricated with novel materials and scalable microfabrication methods have been proposed as a promising approach to realize such systems. This review focuses on the recent advances of such devices used for the detection of the most important toxic metal ions, namely, lead (Pb), mercury (Hg), arsenic (As), cadmium (Cd) and chromium (Cr) ions. Particular emphasis is given to the materials, the fabrication methods and the detection methods proposed for the realization of such devices in order to provide a complete overview of the existing technology advances as well as the limitations and the challenges that should be addressed in order to improve the commercial uptake of microfluidic and LOC devices in environmental monitoring applications.
Collapse
Affiliation(s)
| | - Stavros Chatzandroulis
- Institute of Nanoscience and Nanotechnology, NCSR “Demokritos”, 15341 Aghia Paraskevi, Greece;
| |
Collapse
|
6
|
Gao Z, Wang Y, Wang H, Li X, Xu Y, Qiu J. Recent Aptamer-Based Biosensors for Cd 2+ Detection. BIOSENSORS 2023; 13:612. [PMID: 37366977 DOI: 10.3390/bios13060612] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 05/25/2023] [Accepted: 05/29/2023] [Indexed: 06/28/2023]
Abstract
Cd2+, a major environmental pollutant, is heavily toxic to human health. Many traditional techniques are high-cost and complicated; thus, developing a simple, sensitive, convenient, and cheap monitoring approach is necessary. The aptamer can be obtained from a novel method called SELEX, which is widely used as a DNA biosensor for its easy acquisition and high affinity of the target, especially for heavy metal ions detection, such as Cd2+. In recent years, highly stable Cd2+ aptamer oligonucleotides (CAOs) were observed, and electrochemical, fluorescent, and colorimetric biosensors based on aptamers have been designed to monitor Cd2+. In addition, the monitoring sensitivity of aptamer-based biosensors is improved with signal amplification mechanisms such as hybridization chain reactions and enzyme-free methods. This paper reviews approaches to building biosensors for inspecting Cd2+ by electrochemical, fluorescent, and colorimetric methods. Finally, many practical applications of sensors and their implications for humans and the environment are discussed.
Collapse
Affiliation(s)
- Zihan Gao
- Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Yin Wang
- Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Haijian Wang
- Hangzhou Alltest Biotech Co., Ltd., Hangzhou 310000, China
| | - Xiangxiang Li
- Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Youyang Xu
- Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Jieqiong Qiu
- Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China
| |
Collapse
|
7
|
Manikandan R, Pugal Mani S, Selvan KS, Yoon JH, Chang SC. Fabrication of S and O-incorporated graphitic carbon nitride linked poly(1,3,4-thiadiazole-2,5-dithiol) film for selective sensing of Hg 2+ ions in water, fish, and crab samples. Food Chem 2023; 425:136483. [PMID: 37269636 DOI: 10.1016/j.foodchem.2023.136483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 05/13/2023] [Accepted: 05/26/2023] [Indexed: 06/05/2023]
Abstract
Screen-printed carbon electrodes (SPCE) were modified with sulfur and oxygen-incorporated graphitic carbon nitride (S, O-GCN) linked poly(1,3,4-thiadiazole-2,5-dithiol) film (PTD) through thioester linkage. The promising interaction between the Hg2+ and modified materials containing sulfur as well as oxygen through strong affinity was studied. This study was utilized for the electrochemical selective sensing of Hg2+ ions by differential pulse anodic stripping voltammetry (DPASV). After, optimizing the different experimental parameters, S, O-GCN@PTD-SPCE was used to improve the electrochemical signal of Hg2+ ions and achieved a concentration range of 0.05-390 nM with a detection limit of 13 pM. The real-world application of the electrode was studied in different water, fish, and crab samples and their obtained results were confirmed with Inductive Coupled Plasma - Optical Emission Spectroscopy (ICP-OES) studies. Additionally, this work established a facile and consistent technique for enhancing the electrochemical sensing of Hg2+ ions and discusses various promising applications in water and food quality analysis.
Collapse
Affiliation(s)
- Ramalingam Manikandan
- Department of Cogno-Mechatronics Engineering, College of Nanoscience and Nanotechnology, Pusan National University, Busan 46241, Republic of Korea.
| | - S Pugal Mani
- Department of Orthodontics, Saveetha Dental College, and Hospitals, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha University, Chennai 600 077, Tamil Nadu, India
| | - Kumar Sangeetha Selvan
- Department of Chemistry, Anna Adarsh College for Women, Anna Nagar, Chennai 600 040, Tamil Nadu, India
| | - Jang-Hee Yoon
- Busan Centre, Korea Basic Science Institute, Busan 46742, Republic of Korea
| | - Seung-Cheol Chang
- Department of Cogno-Mechatronics Engineering, College of Nanoscience and Nanotechnology, Pusan National University, Busan 46241, Republic of Korea.
| |
Collapse
|
8
|
Naha A, Antony S, Nath S, Sharma D, Mishra A, Biju DT, Madhavan A, Binod P, Varjani S, Sindhu R. A hypothetical model of multi-layered cost-effective wastewater treatment plant integrating microbial fuel cell and nanofiltration technology: A comprehensive review on wastewater treatment and sustainable remediation. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 323:121274. [PMID: 36804140 DOI: 10.1016/j.envpol.2023.121274] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 02/05/2023] [Accepted: 02/10/2023] [Indexed: 06/18/2023]
Abstract
Wastewater management has emerged as an uprising concern that demands immediate attention from environmentalists worldwide. Indiscriminate and irrational release of industrial and poultry wastes, sewage, pharmaceuticals, mining, pesticides, fertilizers, dyes and radioactive wastes, contribute immensely to water pollution. This has led to the aggravation of critical health concerns as evident from the uprising trends of antimicrobial resistance, and the presence of xenobiotics and pollutant traces in humans and animals due to the process of biomagnification. Therefore, the development of reliable, affordable and sustainable technologies for the supply of fresh water is the need of the hour. Conventional wastewater treatment often involves physical, chemical, and biological processes to remove solids from the effluent, including colloids, organic matter, nutrients, and soluble pollutants (metals, organics). Synthetic biology has been explored in recent years, incorporating both biological and engineering concepts to refine existing wastewater treatment technologies. In addition to outlining the benefits and drawbacks of the current technologies, this review addresses novel wastewater treatment techniques, especially those using dedicated rational design and engineering of organisms and their constituent parts. Furthermore, the review hypothesizes designing a multi-bedded wastewater treatment plant that is highly cost-efficient, sustainable and requires easy installation and handling. The novel setup envisages removing all the major wastewater pollutants, providing water fit for household, irrigation and storage purposes.
Collapse
Affiliation(s)
- Aniket Naha
- Pushpagiri Research Centre, Pushpagiri Institute of Medical Sciences and Research Centre, Thriuvalla-689 101, Kerala, India
| | - Sherly Antony
- Department of Microbiology, Pushpagiri Institute of Medical Sciences and Research Centre, Thiruvalla-689 101, Kerala, India
| | - Soumitra Nath
- Department of Biotechnology, Gurucharan College, Silchar-788004, India
| | - Dhrubjyoti Sharma
- Biological Engineering, Indian Institute of Technology, Gandhinagar, Palaj, Gandhinagar, 382 355 India
| | - Anamika Mishra
- Department of Biotechnology, Vellore Institute of Technology, Vellore, 632 014, India
| | - Devika T Biju
- Department of Biomedical Science, University of Salford, England, M5 4WT, United Kingdom
| | - Aravind Madhavan
- School of Biotechnology, Amrita Vishwa Vidyapeetham, Amritapuri, Kollam-690525, Kerala, India
| | - Parameswaran Binod
- Microbial Processes and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST), Thiruvananthapuram 695 019, Kerala, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad - 201 002, India
| | - Sunita Varjani
- Gujarat Pollution Control Board, Gandhinagar, Gujarat 382 010, India
| | - Raveendran Sindhu
- Department of Food Technology, T K M Institute of Technology, Kollam-691 505, Kerala, India.
| |
Collapse
|
9
|
Utsu PM, Gber TE, Nwosa DO, Nwagu AD, Benjamin I, Ikot IJ, Eno EA, Offiong OE, Adeyinka A, Louis H. Modeling of Anthranilhydrazide (HL1) Salicylhydrazone and Its Copper Complexes Cu(I) and Cu(II) as a Potential Antimicrobial and Antituberculosis Therapeutic Candidate. Polycycl Aromat Compd 2023. [DOI: 10.1080/10406638.2023.2186444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/22/2023]
Affiliation(s)
- Patrick M. Utsu
- Computational and Bio-Simulation Research Group, University of Calabar, Calabar, Nigeria
- Department of Pure and Applied Chemistry, Faculty of Physical Sciences, University of Calabar, Calabar, Nigeria
| | - Terkumbur E. Gber
- Computational and Bio-Simulation Research Group, University of Calabar, Calabar, Nigeria
- Department of Pure and Applied Chemistry, Faculty of Physical Sciences, University of Calabar, Calabar, Nigeria
| | - Deborah O. Nwosa
- Department of Pure and Applied Chemistry, Faculty of Physical Sciences, University of Calabar, Calabar, Nigeria
| | - Adanna D. Nwagu
- Computational and Bio-Simulation Research Group, University of Calabar, Calabar, Nigeria
- Department of Pure and Applied Chemistry, Faculty of Physical Sciences, University of Calabar, Calabar, Nigeria
| | - Innocent Benjamin
- Computational and Bio-Simulation Research Group, University of Calabar, Calabar, Nigeria
| | - Immaculata J. Ikot
- Computational and Bio-Simulation Research Group, University of Calabar, Calabar, Nigeria
- Department of Pure and Applied Chemistry, Faculty of Physical Sciences, University of Calabar, Calabar, Nigeria
| | - Ededet A. Eno
- Computational and Bio-Simulation Research Group, University of Calabar, Calabar, Nigeria
- Department of Pure and Applied Chemistry, Faculty of Physical Sciences, University of Calabar, Calabar, Nigeria
| | - Offiong E. Offiong
- Department of Pure and Applied Chemistry, Faculty of Physical Sciences, University of Calabar, Calabar, Nigeria
| | - Adedabo Adeyinka
- Research Centre for Synthesis and Catalysis, Department of Chemical Sciences, University of Johannesburg, South Africa
| | - Hitler Louis
- Computational and Bio-Simulation Research Group, University of Calabar, Calabar, Nigeria
- Department of Pure and Applied Chemistry, Faculty of Physical Sciences, University of Calabar, Calabar, Nigeria
| |
Collapse
|
10
|
Ramírez-Coronel AA, Alameri AA, Altalbawy F, Sanaan Jabbar H, Lateef Al-Awsi GR, Iswanto AH, Altamimi AS, Shareef Mohsen K, Almulla AF, Mustafa YF. Smartphone-Facilitated Mobile Colorimetric Probes for Rapid Monitoring of Chemical Contaminations in Food: Advances and Outlook. Crit Rev Anal Chem 2023; 54:2290-2308. [PMID: 36598426 DOI: 10.1080/10408347.2022.2164173] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Smartphone-derived colorimetric tools have the potential to revolutionize food safety control by enabling citizens to carry out monitoring assays. To realize this, it is of paramount significance to recognize recent study efforts and figure out important technology gaps in terms of food security. Driven by international connectivity and the extensive distribution of smartphones, along with their built-in probes and powerful computing abilities, smartphone-based sensors have shown enormous potential as cost-effective and portable diagnostic scaffolds for point-of-need tests. Meantime, the colorimetric technique is of particular notice because of its benefits of rapidity, simplicity, and high universality. In this study, we tried to outline various colorimetric platforms using smartphone technology, elucidate their principles, and explore their applications in detecting target analytes (pesticide residues, antibiotic residues, metal ions, pathogenic bacteria, toxins, and mycotoxins) considering their sensitivity and multiplexing capability. Challenges and desired future perspectives for cost-effective, accurate, reliable, and multi-functions smartphone-based colorimetric tools have also been debated.
Collapse
Affiliation(s)
- Andrés Alexis Ramírez-Coronel
- Laboratory of Psychometrics, Comparative Psychology and Ethology (LABPPCE), Universidad Católica de Cuenca, Ecuador and Universidad CES, Medellín, Colombia, Cuenca, Ecuador
| | - Ameer A Alameri
- Department of Chemistry, Faculty of Science, University of Babylon, Babylon, Iraq
| | - Farag Altalbawy
- Department of Chemistry, University College of Duba, Tabuk University, Duba, Saudi Arabia
| | - Hijran Sanaan Jabbar
- Department of Chemistry, College of Science, Salahaddin University, Erbil, Kurdistan Region, Iraq
- Department of Medical Laboratory Science, College of Health Sciences, Lebanese French University, Erbil, Kurdistan Region, Iraq
| | | | - Acim Heri Iswanto
- Department of Public Health, Faculty of Health Science, University of Pembangunan Nasional Veteran Jakarta, Jakarta, Indonesia
| | - Abdulmalik S Altamimi
- Department of Pharmaceutical Chemistry, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Alkharj, Saudi Arabia
| | - Karrar Shareef Mohsen
- Information and Communication Technology Research Group, Scientific Research Center, Al-Ayen University, Thi-Qar, Iraq
| | - Abbas F Almulla
- Medical Laboratory Technology Department, College of Medical Technology, The Islamic University, Najaf, Iraq
| | - Yasser Fakri Mustafa
- Department of Pharmaceutical Chemistry, College of Pharmacy, University of Mosul, Mosul, Iraq
| |
Collapse
|
11
|
Yu H, Zhao Q. A Sensitive Aptamer Fluorescence Anisotropy Sensor for Cd 2+ Using Affinity-Enhanced Aptamers with Phosphorothioate Modification. BIOSENSORS 2022; 12:887. [PMID: 36291024 PMCID: PMC9599812 DOI: 10.3390/bios12100887] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 10/07/2022] [Accepted: 10/14/2022] [Indexed: 05/31/2023]
Abstract
Rapid and sensitive detection of heavy metal cadmium ions (Cd2+) is of great significance to food safety and environmental monitoring, as Cd2+ contamination and exposure cause serious health risk. In this study we demonstrated an aptamer-based fluorescence anisotropy (FA) sensor for Cd2+ with a single tetramethylrhodamine (TMR)-labeled 15-mer Cd2+ binding aptamer (CBA15), integrating the strengths of aptamers as affinity recognition elements for preparation, stability, and modification, and the advantages of FA for signaling in terms of sensitivity, simplicity, reproducibility, and high throughput. In this sensor, the Cd2+-binding-induced aptamer structure change provoked significant alteration of FA responses. To acquire better sensing performance, we further introduced single phosphorothioate (PS) modification of CBA15 at a specific phosphate backbone position, to enhance aptamer affinity by possible strong interaction between sulfur and Cd2+. The aptamer with PS modification at the third guanine (G) nucleotide (CBA15-G3S) had four times higher affinity than CBA15. Using as an aptamer probe CBA15-G3S with a TMR label at the 12th T, we achieved sensitive selective FA detection of Cd2+, with a detection limit of 6.1 nM Cd2+. This aptamer-based FA sensor works in a direct format for detection without need for labeling Cd2+, overcoming the limitations of traditional competitive immuno-FA assay using antibodies and fluorescently labeled Cd2+. This FA method enabled the detection of Cd2+ in real water samples, showing broad application potential.
Collapse
Affiliation(s)
- Hao Yu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qiang Zhao
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310000, China
| |
Collapse
|