1
|
Gao E, Xu J, Liu F, Wu Z, Zhu J, Wang W, Li J, Yao S, Wu Z. Highly efficient mineralization of phenol through catalytic ozonation using urchin-like Cu xCe 1O y-BTC catalysts derived from metal-organic frameworks. J Environ Sci (China) 2025; 154:575-589. [PMID: 40049898 DOI: 10.1016/j.jes.2024.10.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 10/11/2024] [Accepted: 10/11/2024] [Indexed: 05/13/2025]
Abstract
The efficient mineralization of phenol and its derivatives in wastewater remains a great challenge. In this study, the bimetallic CuCeO2-BTC was screened from a series of MOFs-derived MCeO2-BTC (M = La, Cu, Co, Fe, and Mn) catalysts, and the influence of the Cu/Ce ratio on phenol removal by catalytic ozonation was carefully examined. The results indicate that Cu2Ce1Oy-BTC was the best among the CuxCe1Oy-BTC (x = 0, 1, 2, and 3) catalysts, with a phenol mineralization efficiency reaching close to 100 % within 200 min, approximately 30.1 % higher than CeO2-BTC/O3 and 70.3 % higher than O3 alone. The order of mineralization efficiency of phenol was Cu2Ce1Oy-BTC > Cu3Ce1Oy-BTC > Cu1Ce1Oy-BTC > CeO2-BTC. CeO2-BTC exhibited a broccoli-like morphology, and CuxCe1Oy-BTC (x = 1, 2, and 3) exhibited an urchin-like morphology. Compared with CuxCe1Oy-BTC (x = 0, 1, and 3), Cu2Ce1Oy-BTC exhibited a larger specific surface area and pore volume. This characteristic contributed to the availability of more active sites for phenol degradation. The redox ability was greatly enhanced as well. Besides, the surface of Cu2Ce1Oy-BTC exhibited a higher concentration of Ce3+ species and hydroxyl groups, which facilitated the dissociation of ozone and the generation of active radicals. Based on the results of radical quenching experiments and the intermediates detected by LC-MS, a potential mechanism for phenol degradation in the Cu2Ce1Oy-BTC/O3 system was postulated. This study offers novel perspectives on the advancement of MOFs-derived catalysts for achieving the complete mineralization of phenol in wastewater through catalytic ozonation.
Collapse
Affiliation(s)
- Erhao Gao
- School of Environmental Science and Engineering, Changzhou University, Changzhou 213164, China.
| | - Jiacheng Xu
- School of Environmental Science and Engineering, Changzhou University, Changzhou 213164, China; School of Ceramics, Wuxi Vocational Institute of Arts & Technology, Yixing 214206, China
| | - Fangyi Liu
- Zhejiang Qiushi Environmental Monitoring Co., Ltd., Hangzhou 311121, China
| | - Zhenzhen Wu
- Zhejiang Qiushi Environmental Monitoring Co., Ltd., Hangzhou 311121, China
| | - Jiali Zhu
- School of Environmental Science and Engineering, Changzhou University, Changzhou 213164, China
| | - Wei Wang
- School of Environmental Science and Engineering, Changzhou University, Changzhou 213164, China
| | - Jing Li
- School of Environmental Science and Engineering, Changzhou University, Changzhou 213164, China
| | - Shuiliang Yao
- School of Environmental Science and Engineering, Changzhou University, Changzhou 213164, China
| | - Zuliang Wu
- School of Environmental Science and Engineering, Changzhou University, Changzhou 213164, China.
| |
Collapse
|
2
|
Yin Y, Zhang J, Ji C, Tao H, Yang Y. Rare [Cu 4I 2] 2+ cationic cluster-based metal-organic framework and hierarchical porous composites design for effective detection and removal of roxarsone and antibiotics. J Colloid Interface Sci 2024; 664:551-560. [PMID: 38484524 DOI: 10.1016/j.jcis.2024.03.042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 03/06/2024] [Accepted: 03/06/2024] [Indexed: 04/07/2024]
Abstract
Fluorescence quenching induced by photoinduced electron transfer (PET) stands as an effective strategy for identifying water pollutants. Herein, a novel (4, 8)-connected three-dimensional framework Cu(I)-MOF ([Cu2I(tpt)]n) with unique 8-connected [Cu4I2]2+ cationic clusters is designed by employing the nitrogen-rich ligand (Htpt = 5-[4(1H-1,2,4-triazol-1-yl)]phenyl-2H-tetrazole). Water-stabilized Cu(I)-MOF exhibits outstanding fluorescence properties, facilitating its application in detecting organic pollutants in water. Benefiting from the fact that the Cu(I)-MOF possesses a higher lowest unoccupied molecular orbitals (LUMO) energy level than that of the analyte, the rapid d-PET can occur, entitling Cu(I)-MOF to a sensitive fluorescence quenching response to roxarsone (ROX), nitrofurazone (NFZ) and nitrofurantoin (NFT) (with detection limits as low as 0.13 µM, 0.15 µM, and 0.13 µM, respectively). The nitrogen-containing sites of melamine foam (MF) are utilized to facilitate the anchoring and growth of Cu-MOF crystals, which enables the preparation of hierarchical microporous - macroporous Cu(I)-MOF/MF composites. The ordered porous structure of Cu(I)-MOF/MF provides cavities and open sites for the efficient removal of ROX (qmax = 210.6 mg∙g-1), NFZ (qmax = 111.5 mg∙g-1) and NFT (qmax = 238.9 mg∙g-1) from water. This characteristic endows the Cu(I)-MOF/MF with rapid and recyclable adsorption capacity. Therefore, this work provides valuable insights to address the problem of detection and removal of pollutants in the aquatic environment.
Collapse
Affiliation(s)
- Yuanyuan Yin
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, PR China
| | - Jian Zhang
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, PR China.
| | - Chengshan Ji
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, PR China
| | - He Tao
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, PR China
| | - Yulin Yang
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, PR China.
| |
Collapse
|
3
|
Chen R, Zhang H, Shao S, Xu H, Zhou K, Jiang Y, Sun P. Degradation of Sodium Acetate by Catalytic Ozonation Coupled with MnOx/NiOOH-Modified Fly Ash. TOXICS 2024; 12:412. [PMID: 38922092 PMCID: PMC11209378 DOI: 10.3390/toxics12060412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 05/28/2024] [Accepted: 05/30/2024] [Indexed: 06/27/2024]
Abstract
Fly ash, a type of solid waste generated in power plants, can be utilized as a catalyst carrier to enhance its value-added potential. Common methods often involve using a large amount of alkali for preprocessing, resulting in stable quartz and mullite forming silicate dissolution. This leads to an increased specific surface area and pore structure. In this study, we produced a catalyst composed of MnOx/NiOOH supported on fly ash by directly employing nickel hydroxide and potassium permanganate to generate metal active sites over the fly ash surface while simultaneously creating a larger specific surface area and pore structure. The ozone catalytic oxidation performance of this catalyst was evaluated using sodium acetate as the target organic matter. The experimental results demonstrated that an optimal removal efficiency of 57.5% for sodium acetate was achieved, surpassing even that of MnOx/NiOOH supported catalyst by using γ-Al2O3. After loading of MnOx/NiOOH, an oxygen vacancy is formed on the surface of fly ash, which plays an indirect oxidation effect on sodium acetate due to the transformation of ozone to •O2- and •OH over this oxygen vacancy. The reaction process parameters, including varying concentrations of ozone, sodium acetate, and catalyst dosage, as well as pH value and the quantitative analysis of formed free radicals, were examined in detail. This work demonstrated that fly ash could be used as a viable catalytic material for wastewater treatment and provided a new solution to the added value of fly ash.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Pengfei Sun
- Key Laboratory of Surface & Interface Science of Polymer Materials of Zhejiang Province, School of Chemistry and Chemical Engineering, Zhejiang Sci-Tech University, 928 Second Avenue, Xiasha Higher Education Zone, Hangzhou 310018, China
| |
Collapse
|
4
|
Jinachandran A, Kokulnathan T, Wang TJ, Kumar KMA, Kumar J, Panneerselvam R. Silver nanopopcorns decorated on flexible membrane for SERS detection of nitrofurazone. Mikrochim Acta 2024; 191:347. [PMID: 38802574 DOI: 10.1007/s00604-024-06421-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Accepted: 05/06/2024] [Indexed: 05/29/2024]
Abstract
The synthesis of three-dimensional silver nanopopcorns (Ag NPCs) onto a flexible polycarbonate membrane (PCM) for the detection of nitrofurazone (NFZ) on the fish surface by surface-enhanced Raman spectroscopy (SERS) is presented. The proposed flexible Ag-NPCs/PCM SERS substrate exhibits significant Raman signal intensity enhancement with the measured enhancement factor of 2.36 × 106. This is primarily attributed to the hotspots created on Ag NPCs, including numerous nanoscale protrusions and internal crevices distributed across the surface of Ag NPCs. The detection of NFZ by this flexible SERS substrate demonstrates a low limit of detection (LOD) of 3.7 × 10-9 M and uniform and reproducible Raman signal intensities with a relative standard deviation below 8.34%. It also exhibits excellent stability, retaining 70% of its efficacy even after 10 days of storage. Notably, the practical detection of NFZ in tap water, honey water, and fish surfaces achieves LOD values of 1.35 × 10-8 M, 5.76 × 10-7 M, and 3.61 × 10-8 M, respectively, which highlights its effectiveness across different sample types. The developed Ag-NPCs/PCM SERS substrate presents promising potential for sensitive SERS detection of toxic substances in real-world samples.
Collapse
Affiliation(s)
- Arunima Jinachandran
- Raman Research Laboratory, Department of Chemistry, SRM University-AP, Andhra Pradesh, Amaravati, 522503, India
| | - Thangavelu Kokulnathan
- Department of Electro-Optical Engineering, National Taipei University of Technology, Taipei, 10608, Taiwan
| | - Tzyy-Jiann Wang
- Department of Electro-Optical Engineering, National Taipei University of Technology, Taipei, 10608, Taiwan.
| | | | - Jayasree Kumar
- Raman Research Laboratory, Department of Chemistry, SRM University-AP, Andhra Pradesh, Amaravati, 522503, India
| | - Rajapandiyan Panneerselvam
- Raman Research Laboratory, Department of Chemistry, SRM University-AP, Andhra Pradesh, Amaravati, 522503, India.
| |
Collapse
|
5
|
Ru Y, Gong X, Lu W, Chen L, Wei L, Dai Q. Enhanced ozonation of vanillin catalyzed by highly efficient magnetic MnFe 2O 4/ZIF-67 catalysts: Synergistic effects and mechanism insights. WATER ENVIRONMENT RESEARCH : A RESEARCH PUBLICATION OF THE WATER ENVIRONMENT FEDERATION 2024; 96:e11027. [PMID: 38659148 DOI: 10.1002/wer.11027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 02/16/2024] [Accepted: 03/23/2024] [Indexed: 04/26/2024]
Abstract
In this study, we synthesized magnetic MnFe2O4/ZIF-67 composite catalysts using a straightforward method, yielding catalysts that exhibited outstanding performance in catalyzing the ozonation of vanillin. This exceptional catalytic efficiency arose from the synergistic interplay between MnFe2O4 and ZIF-67. Comprehensive characterization via x-ray photoelectron spectroscopy (XPS), x-ray diffraction (XRD), Fourier transform infrared spectrometer (FT-IR), Brunauer-Emmett-Teller (BET), field emission scanning electron microscopy (FE-SEM), and energy dispersive spectroscopy (EDS) confirmed that the incorporation of MnFe2O4 promoted the creation of oxygen vacancies, resulting in an increased presence of l adsorbed oxygen (Oads) and the generation of additional ·OH groups on the catalyst surface. Utilizing ZIF-67 as the carrier markedly enhanced the specific surface area of the catalyst, augmenting the exposure of active sites, thus improving the degradation efficiency and reducing the energy consumption. The effects of different experimental parameters (catalyst type, initial vanillin concentration, ozone dosage, initial pH value, and catalyst dosage) were also investigated, and the optimal experimental parameters (300 mg/L1.0-MnFe2O4/ZIF-67, vanillin concentration = 250 mg/L, O3 concentration = 12 mg/min, pH = 7) were obtained. The vanillin removal efficiency of MnFe2O4/ZIF-67 was increased from 74.95% to 99.54% after 30 min of reaction, and the magnetic separation of MnFe2O4/ZIF-67 was easy to be recycled and stable, and the vanillin removal efficiency of MnFe2O4/ZIF-67 was only decreased by about 8.92% after 5 cycles. Additionally, we delved into the synergistic effects and catalytic mechanism of the catalysts through kinetic fitting, reactive oxygen quenching experiments, and electron transfer analysis. This multifaceted approach provides a comprehensive understanding of the enhanced ozonation process catalyzed by MnFe2O4/ZIF-67 composite catalysts, shedding light on their potential applications in advanced oxidation processes. PRACTITIONER POINTS: A stable and recyclable magnetic composite MnFe2O4/ZIF-67 catalyst was synthesized through a simple method. The synergistic effect and catalytic mechanism of the MnFe2O4/ZIF-67 catalyst were comprehensively analyzed and discussed. A kinetic model for the catalytic ozone oxidation of vanillin was introduced, providing valuable insights into the reaction dynamics.
Collapse
Affiliation(s)
- Yifan Ru
- College of Environment, Zhejiang University of Technology, Hangzhou, China
| | | | - Wangyang Lu
- Zhejiang Yiwu Water Supply Company Limited, Yiwu, China
| | - Lu Chen
- College of Environment, Zhejiang University of Technology, Hangzhou, China
| | - Lanlan Wei
- College of Environment, Zhejiang University of Technology, Hangzhou, China
| | - Qizhou Dai
- College of Environment, Zhejiang University of Technology, Hangzhou, China
| |
Collapse
|
6
|
Cao Z, Long Y, Yang P, Liu W, Xue C, Wu W, Liu D, Huang W. Catalytic ozonation of bisphenol A by Cu/Mn@γ-Al 2O 3: Performance evaluation and mechanism insight. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 349:119403. [PMID: 37890293 DOI: 10.1016/j.jenvman.2023.119403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 10/08/2023] [Accepted: 10/11/2023] [Indexed: 10/29/2023]
Abstract
Herein, an alumina-based bimetallic catalyst (Cu1Mn7@γ-Al2O3) was synthesized for bisphenol A (BPA) degradation in the catalytic ozonation process. The catalytic ozonation system could degrade 93.9% of BPA within 30 min under the conditions of pH = 7.0, 10 mg L-1 O3 concentration, and 24 g L-1 catalyst dosage compared to ozone alone (21.0%). The enhanced BPA degradation efficiency was attributed to the abundant catalytic sites and synergistic effects of Cu and Mn. The results revealed that the synergistic interaction between Cu and Mn effectively accelerated the electron transfer process on the catalyst surface, thus promoting the generation of reactive oxygen species (ROS). Further studies indicated that the BPA degradation in Cu1Mn7@γ-Al2O3/O3 system predominantly followed the ·OH and O2·- oxidation pathway. Based on the density functional theory (DFT) calculations and intermediates detected by LC-MS analysis, two pathways for BPA degradation in the Cu1Mn7@γ-Al2O3/O3 system were proposed. The toxicity estimation illustrated that the toxicity of BPA and its byproducts was effectively reduced in the Cu1Mn7@γ-Al2O3/O3 system. This work provides a new protocol for O3 activation and pollutant elimination through a novel bimetallic catalyst during water purification.
Collapse
Affiliation(s)
- Zhenhua Cao
- Tianjin Key Laboratory of Environmental Technology for Complex Trans-Media Pollution, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China
| | - Yuhan Long
- Tianjin Key Laboratory of Environmental Technology for Complex Trans-Media Pollution, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China
| | - Peizhen Yang
- School of Environment, Tsinghua University, Beijing, 100084, China
| | - Wenhao Liu
- Tianjin Key Laboratory of Environmental Technology for Complex Trans-Media Pollution, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China
| | - Cheng Xue
- Tianjin Key Laboratory of Environmental Technology for Complex Trans-Media Pollution, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China
| | - Weiran Wu
- Tianjin Key Laboratory of Environmental Technology for Complex Trans-Media Pollution, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China
| | - Dongfang Liu
- Tianjin Key Laboratory of Environmental Technology for Complex Trans-Media Pollution, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China.
| | - Wenli Huang
- Tianjin Key Laboratory of Environmental Technology for Complex Trans-Media Pollution, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China.
| |
Collapse
|
7
|
Zhang J, Liu J, Gao B, Sillanpää M, Han J. The efficiency and mechanism of excess sludge-based biochar catalyst in catalytic ozonation of landfill leachate. JOURNAL OF HAZARDOUS MATERIALS 2023; 459:132118. [PMID: 37494792 DOI: 10.1016/j.jhazmat.2023.132118] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 06/27/2023] [Accepted: 07/20/2023] [Indexed: 07/28/2023]
Abstract
In this study, biochar was produced based on dehydrated excess sludge from the municipal wastewater treatment plant, which was used for catalytic ozonation of pollutants derived from landfill leachate. The necessary catalytic sites in the structure of biochar were originated from the inorganic metals and organic matters in the sludge, which included a large number of functional groups (e.g., C-C, CO, etc.), adsorbed oxygen (Oads accounted for 44.82%) and electron defects (ID/IG=1.01). These active sites could promote the generation of reactive oxygen species (ROS) (e.g., ·OH,·O2-, etc.). The synergistic interaction between the microorganisms in the activated sludge also facilitated the removal rates of pollutants. Proteobacteria, Bacteroidetes, and Deinococcu-Thermus were crucial in the bioreactor. In 16 days of reaction, the removal ratios of NH+4-N and COD were 98.95 ± 0.11% and 90.89 ± 0.47%, respectively. This study not only explains the mechanism of catalytic ozonation of biochar, but also provides a new way of the practical treatment of landfill leachate.
Collapse
Affiliation(s)
- Jingyao Zhang
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China; Key Laboratory of Membrane Separation of Shaanxi Province, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Jiadong Liu
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China; Key Laboratory of Membrane Separation of Shaanxi Province, Xi'an University of Architecture and Technology, Xi'an 710055, China.
| | - Bo Gao
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China; Key Laboratory of Membrane Separation of Shaanxi Province, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Mika Sillanpää
- Department of Biological and Chemical Engineering, Aarhus University, Nørrebrogade 44, 8000 Aarhus C, Denmark
| | - Jin Han
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China
| |
Collapse
|
8
|
Yan C, Cheng Z, Zhang X, Zhang Y, Chen X, Zeng G, Xu H. Highly efficient catalytic ozonation degradation of levofloxacin by facile hydrogenation-modified red mud wastes. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 334:122149. [PMID: 37433366 DOI: 10.1016/j.envpol.2023.122149] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 06/05/2023] [Accepted: 07/03/2023] [Indexed: 07/13/2023]
Abstract
Iron-rich red mud (RM) is a potential catalyst. However, as industrial waste, is strongly alkaline, low effectiveness, and safety concerns are problems that cannot be ignored, it is urgent to mine out a reasonable disposal and utilization technology for the waste. In this study, an effective catalyst (H-RM) was obtained by facile hydrogenation heating modification of red mud. Then above-prepared H-RM was applied in the catalytic ozonation degradation of levofloxacin (LEV). The H-RM exhibited more remarkable catalytic activities than the RM in terms of LEV degradation, and the optimal efficiency can reach over 90% within 50 min. The mechanism experiment proved that the concentration of dissolved ozone and hydroxyl radical (•OH) significantly increased, which enhanced the oxidation effect. Hydroxyl radical played a dominant role in the degradation of LEV. In the safety test, it is concluded that the concentration of total hexavalent chromium (total Cr(Ⅵ)) in the H-RM catalyst decreases and the leaching concentration of water-soluble Cr(Ⅵ) in aqueous solution is low. The results indicated that the hydrogenation technique is an available Cr (Ⅵ) detoxification method for RM. Moreover, the H-RM has excellent catalytic stability, which is beneficial to recycling and maintains high activity. This research provides an effective means to fulfill the reuse of industrial waste as an alternative to standard raw materials, and comprehensive utilization of the waste to attain the purpose of treating pollution with wastes.
Collapse
Affiliation(s)
- Chaoqun Yan
- Key Laboratory of Bio-resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, Sichuan, PR China; School of Chemistry and Chemical Engineering, Chongqing University of Technology, Chongqing, 400054, PR China
| | - Zhiliang Cheng
- School of Chemistry and Chemical Engineering, Chongqing University of Technology, Chongqing, 400054, PR China
| | - Xuan Zhang
- School of Chemistry and Chemical Engineering, Chongqing University of Technology, Chongqing, 400054, PR China
| | - Yumei Zhang
- Key Laboratory of Bio-resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, Sichuan, PR China
| | - Xianghan Chen
- Key Laboratory of Bio-resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, Sichuan, PR China
| | - Guoquan Zeng
- Key Laboratory of Bio-resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, Sichuan, PR China
| | - Heng Xu
- Key Laboratory of Bio-resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, Sichuan, PR China.
| |
Collapse
|
9
|
Chen Y, Chen R, Chang X, Yan J, Gu Y, Xi S, Sun P, Dong X. Degradation of Sodium Acetate by Catalytic Ozonation Coupled with a Mn-Functionalized Fly Ash: Reaction Parameters and Mechanism. TOXICS 2023; 11:700. [PMID: 37624205 PMCID: PMC10457793 DOI: 10.3390/toxics11080700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 08/04/2023] [Accepted: 08/09/2023] [Indexed: 08/26/2023]
Abstract
Supported ozone catalysts usually take alumina, activated carbon, mesoporous molecular sieve, graphene, etc. as the carrier for loading metal oxide via the impregnation method, sol-gel method and precipitation method. In this work, a Mn-modified fly ash catalyst was synthesized to reduce the consumption and high unit price of traditional catalyst carriers like alumina. As a solid waste discharged from coal-fired power plants fueled by coal, fly ash also has porous spherical fine particles with constant surface area and activity, abd is expected to be applied as the main component in the synthesis of ozone catalyst. After the pretreatment process and modification with MnOx, the obtained Mn-modified fly ash exhibited stronger specific surface area and porosity combined with considerable ozone catalytic performance. We used sodium acetate as the contaminant probe, which is difficult to directly decompose with ozone as the end product of ozone oxidation, to evaluate the performance of this Mn-modified fly. It was found that ozone molecules can be transformed to generate ·OH, ·O2- and 1O2 for the further oxidation of sodium acetate. The oxygen vacancy produced via Mn modification plays a crucial role in the adsorption and excitation of ozone. This work demonstrates that fly ash, as an industrial waste, can be synthesized as a potential industrial catalyst with stable physical and chemical properties, a simple preparation method and low costs.
Collapse
Affiliation(s)
- Yaoji Chen
- Zhejiang Tiandi Environmental Protection Technology Co., Ltd., 2159-1 Yuhangtang Road, Hangzhou 311199, China; (Y.C.)
| | - Ruifu Chen
- Key Laboratory of Surface & Interface Science of Polymer Materials of Zhejiang Province, School of Chemistry and Chemical Engineering, Zhejiang Sci-Tech University, 928 Second Avenue, Xiasha Higher Education Zone, Hangzhou 310018, China
| | - Xinglan Chang
- Zhejiang Tiandi Environmental Protection Technology Co., Ltd., 2159-1 Yuhangtang Road, Hangzhou 311199, China; (Y.C.)
| | - Jingying Yan
- Zhejiang Tiandi Environmental Protection Technology Co., Ltd., 2159-1 Yuhangtang Road, Hangzhou 311199, China; (Y.C.)
| | - Yajie Gu
- Zhejiang Tiandi Environmental Protection Technology Co., Ltd., 2159-1 Yuhangtang Road, Hangzhou 311199, China; (Y.C.)
| | - Shuang Xi
- Zhejiang Tiandi Environmental Protection Technology Co., Ltd., 2159-1 Yuhangtang Road, Hangzhou 311199, China; (Y.C.)
| | - Pengfei Sun
- Key Laboratory of Surface & Interface Science of Polymer Materials of Zhejiang Province, School of Chemistry and Chemical Engineering, Zhejiang Sci-Tech University, 928 Second Avenue, Xiasha Higher Education Zone, Hangzhou 310018, China
| | - Xiaoping Dong
- Key Laboratory of Surface & Interface Science of Polymer Materials of Zhejiang Province, School of Chemistry and Chemical Engineering, Zhejiang Sci-Tech University, 928 Second Avenue, Xiasha Higher Education Zone, Hangzhou 310018, China
| |
Collapse
|
10
|
Yang D, Meng F, Zhang Z, Liu X. Enhanced Catalytic Ozonation by Mn-Ce Oxide-Loaded Al 2O 3 Catalyst for Ciprofloxacin Degradation. ACS OMEGA 2023; 8:21823-21829. [PMID: 37360444 PMCID: PMC10286253 DOI: 10.1021/acsomega.3c01302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 05/16/2023] [Indexed: 06/28/2023]
Abstract
Catalytic ozonation is an effective and promising advanced oxidation technology for organic pollutant removal. Herein, CexMn1-xO2 metal oxides loaded on Al2O3 catalysts (Mn-Ce/Al2O3) were synthesized for catalytic ozonation of the wastewater containing ciprofloxacin. The morphology, crystal structure, and specific surface area of the prepared catalyst were characterized. The characteristics of the Mn-Ce/Al2O3 catalyst revealed that the loaded MnO2 could interfere with the formed CeO2 crystals and then produced complex CexMn1-xO2 oxides. Compared with an ozone-alone system (47.4%), the ciprofloxacin degradation efficiency in the Mn-Ce/Al2O3 catalytic ozonation system elevated to 85.1% within 60 min. The ciprofloxacin degradation kinetic rate over the Mn-Ce/Al2O3 catalyst is 3.0 times that of the ozone-alone system. The synergetic corporation of redox pairs between Mn(III)/Mn(IV) and Ce(III)/Ce(IV) in the Mn-Ce/Al2O3 catalyst could accelerate ozone decomposition to generate active oxygen species and further significantly improve the mineralization efficiency of ciprofloxacin. The work demonstrates the great potential of developing dual-site ozone catalysts for advanced treatment of wastewater.
Collapse
Affiliation(s)
- Dajie Yang
- School
of Environment, Tsinghua University, Beijing 10084, China
- Ministry
of Water Resources, Beijing 10053, China
| | - Fanbin Meng
- SINOPEC
Research Institute of Petroleum Processing Co., Ltd., Beijing 100083, China
| | - Zhuoran Zhang
- School
of Environment, Tsinghua University, Beijing 10084, China
| | - Xiang Liu
- School
of Environment, Tsinghua University, Beijing 10084, China
| |
Collapse
|