1
|
Li S, Ma X, Zhang X, Bai S, Li X, Huang Y, Yu J, Fan Y, Lu C, Du G, Qin Y. Bisphenol S exposure induces intestinal inflammation via altering gut microbiome. Food Chem Toxicol 2024; 190:114830. [PMID: 38908815 DOI: 10.1016/j.fct.2024.114830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 06/03/2024] [Accepted: 06/18/2024] [Indexed: 06/24/2024]
Abstract
Bisphenol S (BPS), a substitute for bisphenol A, is widely used in the manufacture of food packaging materials, raising concern over its toxicity. However, evidence is still lacking on whether gut microbiota involved in BPS induced intestinal inflammation in mammals, as well as its underlying mechanism. Using mouse BPS exposure model, we found intestinal inflammation characterized by shortened colon length, crypt distortion, macrophage accumulation and increased apoptosis. As for gut microbiota, 16s rRNA gene amplicon sequencing showed BPS exposure induced gut dysbiosis, including increased pro-inflammatory microbes such as Ileibacterium, and decreased anti-inflammatory genera such as Lactobacillus, Blautia and Romboutsia. Besides, LC-MS/MS-based untargeted metabolomic analysis indicated BPS impaired both bacteria and host metabolism. Additionally, transcriptome analysis of the intestine revealed abnormal gene expression in intestinal mucosal barrier and inflammation. More importantly, treating mice with antibiotics significantly attenuated BPS-induced gut inflammation via the regulation of both bacterial and host metabolites, indicating the role of gut microbiota. Collectively, BPS exposure induces intestinal inflammation via altering gut microbiota in mouse. This study provides the possibility of madecassic acid, an anti-inflammatory metabolite, to prevent BPS-induced intestinal inflammation and also new insights in understanding host-microbiota interaction in BPS toxicity.
Collapse
Affiliation(s)
- Shiqi Li
- Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, China; Department of Microbiology and Infection, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Xuan Ma
- Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, China; Department of Microbiology and Infection, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Xueer Zhang
- Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, China; Department of Microbiology and Infection, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Shengjun Bai
- Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, China; Department of Microbiology and Infection, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Xinyu Li
- Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, China; Department of Microbiology and Infection, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Yue Huang
- Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, China; Department of Microbiology and Infection, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Jiao Yu
- Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, China; Department of Microbiology and Infection, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Yun Fan
- Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, China; Department of Microbiology and Infection, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Chuncheng Lu
- Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Guizhen Du
- Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Yufeng Qin
- Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, China; Department of Microbiology and Infection, School of Public Health, Nanjing Medical University, Nanjing, China.
| |
Collapse
|
2
|
Zhao X, Pei W, Qi Y, Li Y, Kong X. Enhanced aerobic granular sludge with micro-electric field for sulfamethoxazole degradation: Efficiency, mechanism, and microbial community. CHEMOSPHERE 2024; 354:141741. [PMID: 38499071 DOI: 10.1016/j.chemosphere.2024.141741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 03/15/2024] [Accepted: 03/16/2024] [Indexed: 03/20/2024]
Abstract
In this study, an aerobic granular sludge electrochemical system (AGES) was established by applying the micro-electric field to an aerobic granular sludge (AGS) reactor for the degradation of sulfamethoxazole (SMZ). Under the stimulation of the micro-electric field, the granulation of sludge was improved and the degradation rate of SMZ was enhanced. The features of granular sludge were characterized by scanning electron microscopy and X-ray diffraction. The optimal degradation rate of SMZ (88%) was obtained at the voltage of 3 V and the effective electrode area of 800 mm2. The results of kinetics analyses revealed that the degradation of SMZ by AGES can be fitted with the second-order kinetic equation, showing a degradation rate constant (k) of 0.001 L mol-1·min-1. The degradation products of SMZ in the AGES system were detected by LC-MS and their possible degradation routes were elucidated. The micro-electric field in the AGES system played a selective role in microbes' enrichment and growth, changing the diversity of the microbial community. Pseudomonas, Tolumonas, and Acidovorax were the dominant bacteria in the AGES system, which is accountable for the abatement of SMZ and nutrients. This work provides a green means for improving AGS and paves the way for applying the AGS process to real-world wastewater treatment.
Collapse
Affiliation(s)
- Xia Zhao
- College of Petrochemical Engineering, Lanzhou University of Technology, Lanzhou 730050, PR China
| | - Weina Pei
- College of Petrochemical Engineering, Lanzhou University of Technology, Lanzhou 730050, PR China
| | - Yihan Qi
- College of Petrochemical Engineering, Lanzhou University of Technology, Lanzhou 730050, PR China.
| | - Yabin Li
- College of Petrochemical Engineering, Lanzhou University of Technology, Lanzhou 730050, PR China.
| | - Xiuqin Kong
- College of Petrochemical Engineering, Lanzhou University of Technology, Lanzhou 730050, PR China
| |
Collapse
|