1
|
Liu X, Wang Z, Wang J, Xing L, Li J, Dong Z, Li M, Han Y, Cao J. Characteristics of PM 2.5 bounded carbonaceous aerosols, carbon dioxide and its stable carbon isotopes (δ 13C) in rural households in northwest China: Effect of different fuel combustion. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 359:121004. [PMID: 38710146 DOI: 10.1016/j.jenvman.2024.121004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 04/10/2024] [Accepted: 04/21/2024] [Indexed: 05/08/2024]
Abstract
In order to fully understand the carbon emission from different fuels in rural villages of China, especially in the typical atmospheric pollution areas. The characteristics of carbonaceous aerosols and carbon dioxide (CO2) with its stable carbon isotope (δ13C) were investigated in six households, which two households used coal, two households used wood as well as two households used biogas and liquefied petroleum gas (LPG), from two rural villages in Fenwei Plain from March to April 2021. It showed that the fine particulate matter (PM2.5) emitted from biogas and LPG couldn't be as lower as expected in this area. However, the clean fuels could relatively reduce the emissions of organic carbon (OC) and element carbon (EC) in PM2.5 compare to the solid fuels. The pyrolyzed carbon (OP) accounted more total carbon (TC) in coal than the other fuels use households, indicating that more water-soluble OC existed, and it still had the highest secondary organic carbon (SOC) than the other fuels. Meantime, the coal combustions in the two villages had the highest CO2 concentration of 527.6 ppm and 1120.6 ppm, respectively, while the clean fuels could effectively reduce it. The average δ13C values (-26.9‰) was much lighter than almost all the outdoor monitoring and similar to the δ13C values for coal combustion and vehicle emission, showing that they might be the main contributors of the regional atmospheric aerosol in this area. During the sandstorm, the indoor PM2.5 mass and CO2 were increasing obviously. The indoor cancer risk of PAHs for adults and children were greater than 1 × 10-6, exert a potential carcinogenic risk to human of solid fuels combustion in rural northern China. It is important to continue concern the solid fuel combustion and its health impact in rural areas.
Collapse
Affiliation(s)
- Xiuqun Liu
- National Demonstration Center for Experimental Geography Education, School of Geography and Tourism, Shaanxi Normal University, Xi'an, China
| | - Zedong Wang
- National Demonstration Center for Experimental Geography Education, School of Geography and Tourism, Shaanxi Normal University, Xi'an, China
| | - Jingzhi Wang
- National Demonstration Center for Experimental Geography Education, School of Geography and Tourism, Shaanxi Normal University, Xi'an, China; Key Lab of Aerosol Chemistry & Physics, State Key Lab of Loess and Quaternary Geology (SKLLQG), Key Laboratory of Aerosol Chemistry and Physics, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an, China.
| | - Li Xing
- National Demonstration Center for Experimental Geography Education, School of Geography and Tourism, Shaanxi Normal University, Xi'an, China
| | - Jiayu Li
- Mechanical and Aerospace Engineering, University of Miami, Coral Gables, USA; Center for Aerosol Science & Technology, University of Miami, Coral Gables, USA
| | - Zhibao Dong
- National Demonstration Center for Experimental Geography Education, School of Geography and Tourism, Shaanxi Normal University, Xi'an, China
| | - Minrui Li
- National Demonstration Center for Experimental Geography Education, School of Geography and Tourism, Shaanxi Normal University, Xi'an, China
| | - Yongming Han
- Key Lab of Aerosol Chemistry & Physics, State Key Lab of Loess and Quaternary Geology (SKLLQG), Key Laboratory of Aerosol Chemistry and Physics, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an, China
| | - Junji Cao
- Key Lab of Aerosol Chemistry & Physics, State Key Lab of Loess and Quaternary Geology (SKLLQG), Key Laboratory of Aerosol Chemistry and Physics, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an, China; Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
2
|
Yadav K, Bhardwaj A, Sunder Raman R. Chemical characterization, source identification and potential health effects of PM 2.5-bound non-polar organic compounds over a COALESCE network site - Bhopal, India. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 920:170957. [PMID: 38365037 DOI: 10.1016/j.scitotenv.2024.170957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 02/09/2024] [Accepted: 02/11/2024] [Indexed: 02/18/2024]
Abstract
Year-long (2019) measurements of carbonaceous aerosols were performed at Bhopal, a regionally representative site as a part of the COALESCE (Carbonaceous Aerosol Emissions, Source apportionment and Climate Impacts) campaign. Aerosol-associated non-polar organic compounds (NPOCs) were analysed using thermal desorption (TD) Gas chromatography/Mass spectrometry (TD-GC/MS). The annual average of the total organic carbon (OC), elemental carbon (EC), and analysed PAHs (Polycyclic Aromatic Hydrocarbons), and n-alkanes were, 9.74 ± 9.47 μg m-3, 2.13 ± 3.12 μg m-3, 10.43 ± 5.49 ng m-3, and 114.93 ± 49.24 ng m-3, respectively. PAHs diagnostic ratios suggested emissions from petroleum, grass, wood, and coal combustion. Combustion derived PAHs (CombPAHs) accounted for 72.5 % of the total measured PAHs. During wintertime, based on Pyr/BaP ratio (∼0.6), gasoline exhaust emissions were higher compared to diesel exhaust emissions. The weak correlations between PAHs and meteorological parameters suggested that variations in PAH levels are primarily driven by alterations in emission sources. Total PAHs were correlated moderately with BrC (r2 = 0.60). The estimated lifetime lung cancer risk (LLCR) values on exposure to 16 USEPA priority PAHs (5 × 10-5) demonstrated that PAH levels in this region pose moderate health risks. Given observations from only campaign mode short-term measurements of NPOCs over India, this work provides a more comprehensive understanding of the concentrations, seasonal variations, and sources of n-alkanes and health risk associated with particle bound PAHs over the data-poor central Indian region.
Collapse
Affiliation(s)
- Kajal Yadav
- Department of Earth and Environmental Sciences, Indian Institute of Science Education and Research Bhopal, Bhopal by-pass road, Bhauri, Bhopal 462066, Madhya Pradesh, India
| | - Ankur Bhardwaj
- Department of Earth and Environmental Sciences, Indian Institute of Science Education and Research Bhopal, Bhopal by-pass road, Bhauri, Bhopal 462066, Madhya Pradesh, India
| | - Ramya Sunder Raman
- Department of Earth and Environmental Sciences, Indian Institute of Science Education and Research Bhopal, Bhopal by-pass road, Bhauri, Bhopal 462066, Madhya Pradesh, India.
| |
Collapse
|
3
|
Singh GK, Qadri AM, Paul D, Gupta T, Mukherjee S, Chatterjee A. Investigation of sources and atmospheric transformation of carbonaceous aerosols from Shyamnagar, eastern Indo-Gangetic Plains: Insights from δ 13C and carbon fractions. CHEMOSPHERE 2023; 326:138422. [PMID: 36925018 DOI: 10.1016/j.chemosphere.2023.138422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 03/07/2023] [Accepted: 03/14/2023] [Indexed: 06/18/2023]
Abstract
This study reports the chemical characterization of the carbonaceous component of PM2.5 (particulate matter with aerodynamic diameter ≤2.5 μm) collected over a year-long campaign from a regional site in Shyamnagar, West Bengal, in the Indo-Gangetic Plains (IGP), India. The carbonaceous fractions (elemental and organic carbon), mass concentrations, and stable carbon isotopic composition (δ13C value) of aerosols were measured and utilized to characterize the sources and understand the atmospheric processing of aerosols. Cluster analysis, Potential Source Contribution Function (PSCF) modeling, and fire count data were analyzed to decipher the pattern of air masses, source contributions, and extent of burning activities. The PM2.5 mass concentrations were significantly higher during winter (168.3 ± 56.3 μg m-3) and post-monsoon (109.8 ± 59.1 μg m-3) compared to the monsoon (29.8 ± 10.7 μg m-3) and pre-monsoon (55.1 ± 23.0 μg m-3). Organic carbon (OC), elemental carbon (EC), and total carbon (TC) concentrations were also several factors higher during winter and post-monsoon compared to monsoon and pre-monsoon. The winter and post-monsoon experienced the impact of air masses from upwind IGP. On the other hand, long-range transported air masses from the South-West direction dominated during monsoon and pre-monsoon, which are also relatively cleaner periods. The average δ13C during post-monsoon and winter was ∼1‰ higher compared to monsoon and pre-monsoon. The vehicular exhaust and biomass/biofuel burning contributed dominantly in winter and post-monsoon. In comparison, lower δ13C in pre-monsoon and monsoon might be attributed to the dominance of biomass/biofuel combustion. Photochemical-induced aging of the anthropogenic aerosols resulted in a higher δ13C of TC in winter and post-monsoon, whereas the mixing of different local sources in pre-monsoon and monsoon resulted in lower δ13C values. These findings benefit policymakers in strategizing proper and effective management of biomass/biofuel burning in the IGP to minimize air pollution.
Collapse
Affiliation(s)
- Gyanesh Kumar Singh
- Department of Civil Engineering, Indian Institute of Technology Kanpur, Kanpur, 208016, India
| | - Adnan Mateen Qadri
- Department of Civil Engineering, Indian Institute of Technology Kanpur, Kanpur, 208016, India
| | - Debajyoti Paul
- Department of Earth Sciences, Indian Institute of Technology Kanpur, Kanpur, 208016, India.
| | - Tarun Gupta
- Department of Civil Engineering, Indian Institute of Technology Kanpur, Kanpur, 208016, India
| | - Sauryadeep Mukherjee
- Environmental Sciences Section, Bose Institute, P 1/12 CIT Scheme VIIM, Kolkata, 700054, India
| | - Abhijit Chatterjee
- Environmental Sciences Section, Bose Institute, P 1/12 CIT Scheme VIIM, Kolkata, 700054, India
| |
Collapse
|
4
|
Haswani D, Sunder Raman R, Yadav K, Dhandapani A, Iqbal J, Naresh Kumar R, Laxmi Prasad SV, Yogesh A, B M SM, Lokesh KS. Pollution characteristics and ecological risks of trace elements in PM 2.5 over three COALESCE network sites - Bhopal, Mesra, and Mysuru, India. CHEMOSPHERE 2023; 324:138203. [PMID: 36842561 DOI: 10.1016/j.chemosphere.2023.138203] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Revised: 02/19/2023] [Accepted: 02/20/2023] [Indexed: 06/18/2023]
Abstract
Time-synchronized, 24 h integrated PM2.5 trace element (TE) measurements made as a part of the COALESCE project (Venkataraman et al., 2020) at Bhopal, Mesra, and Mysore during all of 2019 were analyzed in this study. The concentrations of 15 key elements ranged between 0.05 ng m-3 and 50 μg m-3 across the study sites. Pronounced seasonal variation of elements from multiple source classes showed that the crustal origin elements (Al, Si, Fe, Ti, and Ca) peaked during the pre-monsoon season, while the anthropogenic activities driven element (P, S, K, V, Mn, Cu, Zn, and Pb) concentrations increased during the winter and post-monsoon seasons. Spearman correlation coupled with hierarchical clustering separated the matrix of elements into three common clusters at all sites, corresponding to crustal sources, combustion and biomass burning emissions, and industrial/non-exhaust vehicular emissions, respectively. Furthermore, episodes of metal pollution throughout the year were examined using characteristic radar charts of TEs to identify the association between TE sources and poor air quality. For example, maximum metal pollution in Bhopal occurred during the post-monsoon season, attributable to biomass burning, dust storms, industrial and non-exhaust vehicular emissions. Finally, an ecological risk assessment revealed that the risk index was higher than the threshold value of 600 for all heavy metals at all sites. Pb, Cu, and Zn were the top contributors to 'extremely high risk' amongst all heavy metals. Overall, the results show that although TE concentrations at all three locations were much lower than in other urban locations in India, the risk from heavy metals to the ecosystem (and likely to human health) cannot be ignored. The findings warrant a full source apportionment of fine PM to better identify TE-rich source contributions and future studies to examine the atmospheric processing and eco-system uptake of TEs.
Collapse
Affiliation(s)
- Diksha Haswani
- Department of Earth and Environmental Sciences, Indian Institute of Science Education and Research Bhopal, Bhopal, 462066, Madhya Pradesh, India
| | - Ramya Sunder Raman
- Department of Earth and Environmental Sciences, Indian Institute of Science Education and Research Bhopal, Bhopal, 462066, Madhya Pradesh, India
| | - Kajal Yadav
- Department of Earth and Environmental Sciences, Indian Institute of Science Education and Research Bhopal, Bhopal, 462066, Madhya Pradesh, India
| | - Abisheg Dhandapani
- Department of Civil and Environmental Engineering, Birla Institute of Technology, Mesra, Ranchi, Jharkhand, 835215, India
| | - Jawed Iqbal
- Department of Civil and Environmental Engineering, Birla Institute of Technology, Mesra, Ranchi, Jharkhand, 835215, India
| | - R Naresh Kumar
- Department of Civil and Environmental Engineering, Birla Institute of Technology, Mesra, Ranchi, Jharkhand, 835215, India
| | - S V Laxmi Prasad
- Department of Environmental Engineering, SJCE, JSS Science and Technology University, Mysuru, 570006, India
| | - Adi Yogesh
- Department of Chemical Engineering, Indian Institute of Technology Madras, Madras, 600036, India
| | - Sadashiva Murthy B M
- Department of Environmental Engineering, SJCE, JSS Science and Technology University, Mysuru, 570006, India
| | - K S Lokesh
- Department of Environmental Engineering, SJCE, JSS Science and Technology University, Mysuru, 570006, India
| |
Collapse
|