1
|
Parati M, Philip C, Allinson SL, Mendrek B, Khalil I, Tchuenbou-Magaia F, Kowalczuk M, Adamus G, Radecka I. Brown Algae as a Valuable Substrate for the Cost-Effective Production of Poly-γ-Glutamic Acid for Applications in Cream Formulations. Polymers (Basel) 2024; 16:2091. [PMID: 39065408 PMCID: PMC11281067 DOI: 10.3390/polym16142091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 07/15/2024] [Accepted: 07/17/2024] [Indexed: 07/28/2024] Open
Abstract
Poly-γ-glutamic acid (γ-PGA) is a carboxylic-acid-rich, bio-derived, water-soluble, edible, hydrating, non-immunogenic polymer produced naturally by several microorganisms. Here, we re-emphasise the ability of Bacillus subtilis natto to naturally produce γ-PGA on whole seaweed, as well as for the yields and chemical properties of the material to be affected by the presence of Mn(2+). Hyaluronic acid (HA) is an extracellular glycosaminoglycan which presents a high concentration of carboxylic acid and hydroxyl groups, being key in fulfilling numerous applications. Currently, there are strong environmental (solvent use), social (non-vegan extraction), and economic factors pushing for the biosynthesis of this material through prokaryotic microorganisms, which is not yet scalable or sustainable. Our study aimed to investigate an innovative raw material which can combine both superior hygroscopicity and UV protection to the cosmetic industry. Comparable hydration effect of commercially available γ-PGA to conventional moisturising agents (HA and glycerol) was observed; however, greater hydration capacity was observed from seaweed-derived γ-PGA. Herewith, successful incorporation of seaweed-derived γ-PGA (0.2-2 w/v%) was achieved for several model cream systems with absorbances reported at 300 and 400 nm. All γ-PGA-based creams displayed shear thinning behaviour as the viscosity decreased, following increasing shear rates. Although the use of commercial γ-PGA within creams did not suggest a significant effect in rheological behaviour, this was confirmed to be a result of the similar molecular weight. Seaweed-derived γ-PGA cream systems did not display any negative effect on model HaCaT keratinocytes by means of in vitro MTT analysis.
Collapse
Affiliation(s)
- Mattia Parati
- Faculty of Science and Engineering, University of Wolverhampton, Wolverhampton WV1 1 LY, UK (I.K.); (F.T.-M.)
- Research Institute in Healthcare Science, Faculty of Science and Engineering, University of Wolverhampton, Wulfruna Street, Wolverhampton WV1 1LY, UK
| | - Catherine Philip
- Faculty of Science and Engineering, University of Wolverhampton, Wolverhampton WV1 1 LY, UK (I.K.); (F.T.-M.)
| | - Sarah L. Allinson
- Biomedical and Life Sciences, Lancaster University, Furness Building, Lancaster LA1 4YG, UK;
| | - Barbara Mendrek
- Centre of Polymer and Carbon Materials, Polish Academy of Sciences, M. Curie-Sklodowskiej 34, 41-819 Zabrze, Poland; (B.M.); (G.A.); (M.K.)
| | - Ibrahim Khalil
- Faculty of Science and Engineering, University of Wolverhampton, Wolverhampton WV1 1 LY, UK (I.K.); (F.T.-M.)
| | - Fideline Tchuenbou-Magaia
- Faculty of Science and Engineering, University of Wolverhampton, Wolverhampton WV1 1 LY, UK (I.K.); (F.T.-M.)
- Research Institute in Healthcare Science, Faculty of Science and Engineering, University of Wolverhampton, Wulfruna Street, Wolverhampton WV1 1LY, UK
| | - Marek Kowalczuk
- Centre of Polymer and Carbon Materials, Polish Academy of Sciences, M. Curie-Sklodowskiej 34, 41-819 Zabrze, Poland; (B.M.); (G.A.); (M.K.)
| | - Grazyna Adamus
- Centre of Polymer and Carbon Materials, Polish Academy of Sciences, M. Curie-Sklodowskiej 34, 41-819 Zabrze, Poland; (B.M.); (G.A.); (M.K.)
| | - Iza Radecka
- Faculty of Science and Engineering, University of Wolverhampton, Wolverhampton WV1 1 LY, UK (I.K.); (F.T.-M.)
- Research Institute in Healthcare Science, Faculty of Science and Engineering, University of Wolverhampton, Wulfruna Street, Wolverhampton WV1 1LY, UK
| |
Collapse
|
2
|
Zhang S, Yi X, He D, Tang X, Chen Y, Zheng H. Recent progress and perspectives of typical renewable bio-based flocculants: characteristics and application in wastewater treatment. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:46877-46897. [PMID: 38980480 DOI: 10.1007/s11356-024-34199-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Accepted: 06/27/2024] [Indexed: 07/10/2024]
Abstract
The research on bio-based flocculants for waste resource utilization and environmental protection has garnered significant attention. Bio-based flocculants encompass plant-based, animal-based, and microbial variants that are prepared and modified through biological, chemical, and physical methods. These flocculants possess abundant functional groups, unique structures, and distinctive characteristics. This review comprehensively discussed the removal rates of conventional pollutants and emerging pollutants by bio-based flocculants, the interaction between these flocculants and pollutants, their impact on flocculation performance in wastewater treatment, as well as their application cost. Furthermore, it described the common challenges faced by bio-based flocculants in practical applications along with various improvement strategies to address them. With their safety profile, environmental friendliness, efficiency, renewability, and wide availability from diverse sources, bio-based flocculants hold great potential for widespread use in wastewater treatment.
Collapse
Affiliation(s)
- Shixin Zhang
- School of River and Ocean Engineering, Chongqing Jiaotong University, Chongqing, 400074, People's Republic of China
- Key Laboratory of Hydraulic and Waterway Engineering of the Ministry of Education, Chongqing Jiaotong University, Chongqing, 400074, People's Republic of China
| | - Xiaohui Yi
- School of River and Ocean Engineering, Chongqing Jiaotong University, Chongqing, 400074, People's Republic of China
| | - Dilin He
- School of River and Ocean Engineering, Chongqing Jiaotong University, Chongqing, 400074, People's Republic of China
| | - Xiaomin Tang
- Chongqing Key Laboratory of Catalysis & Functional Organic Molecules, College of Environment and Resources, Chongqing Technology and Business University, Chongqing, 400067, People's Republic of China
| | - Yao Chen
- School of River and Ocean Engineering, Chongqing Jiaotong University, Chongqing, 400074, People's Republic of China.
- Key Laboratory of Hydraulic and Waterway Engineering of the Ministry of Education, Chongqing Jiaotong University, Chongqing, 400074, People's Republic of China.
| | - Huaili Zheng
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, State Ministry of Education, Chongqing University, Chongqing, 400045, People's Republic of China
| |
Collapse
|
3
|
Ren Y, Wang G, Su Y, Li J, Zhang H, Han J. Response of antioxidant activity, active constituent and rhizosphere microorganisms of Salvia miltiorrhiza to combined application of microbial inoculant, microalgae and biochar under Cu stress. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 925:171812. [PMID: 38508267 DOI: 10.1016/j.scitotenv.2024.171812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 03/15/2024] [Accepted: 03/16/2024] [Indexed: 03/22/2024]
Abstract
Salvia miltiorrhiza, a widely used medicinal herb renowned for its properties in promoting blood circulation, removing blood stasis and alleviating pain, is currently facing quality degradation due to excessive heavy metal levels, posing a threat to medication safety. In order to investigate the effects of microbial inoculant, microalgae and biochar on the growth of Salvia miltiorrhiza under copper (Cu) stress, as well as its Cu absorption, antioxidant activity, active component contents and rhizosphere microbial community, a pot experiment was conducted. Salvia miltiorrhiza plants were cultivated in the soil containing 400 mg/kg of Cu for six months and treated with microbial inoculant, microalgae and biochar, either individually or in combination. Almost all soil amendment treatments led to an increase in root biomass. Notably, co-application of microbial inoculant and microalgae had the optimal effect with a 63.07 % increase compared to the group treated solely with Cu. Moreover, when microbial inoculant was applied alone or in combination with microalgae, the Cu content in plant roots was reduced by 19.29 % and 25.37 %, respectively, whereas other treatments failed to show a decreasing trend. Intriguingly, Cu stress increased the active component contents in plant roots, and they could also be enhanced beyond non-stress levels when microbial inoculant and microalgae were applied together or in combination with biochar. Analyses of plant antioxidant activity, soil properties and rhizosphere microorganisms indicated that these amendments may alleviate Cu stress by enhancing peroxidase activity, facilitating plant nutrient absorption, and enriching beneficial microorganisms capable of promoting plant growth and mitigating heavy metal-induced damage. This study suggests that the combined application of microbial inoculant and microalgae can reduce Cu levels in Salvia miltiorrhiza while enhancing its quality under Cu stress.
Collapse
Affiliation(s)
- Ying Ren
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
| | - Gang Wang
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
| | - Yuying Su
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
| | - Jinfeng Li
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
| | - Hui Zhang
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
| | - Jianping Han
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China.
| |
Collapse
|
4
|
Tsai SY, Chang CK, Wei PY, Huang SY, Gavahian M, Santoso SP, Hsieh CW. Effective Removal of Different Heavy Metals Ion (Cu, Pb, and Cd) from Aqueous Solutions by Various Molecular Weight and Salt Types of Poly-γ-Glutamic Acid. Molecules 2024; 29:1054. [PMID: 38474566 PMCID: PMC10935036 DOI: 10.3390/molecules29051054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 02/21/2024] [Accepted: 02/27/2024] [Indexed: 03/14/2024] Open
Abstract
In light of industrial developments, water pollution by heavy metals as hazardous chemicals has garnered attention. Addressing the urgent need for efficient heavy metal removal from aqueous environments, this study delves into using poly-γ-glutamic acid (γ-PGA) for the bioflocculation of heavy metals. Utilizing γ-PGA variants from Bacillus subtilis with different molecular weights and salt forms (Na-bonded and Ca-bonded), the research evaluates their adsorption capacities for copper (Cu), lead (Pb), and cadmium (Cd) ions. It was found that Na-bonded γ-PGA with a high molecular weight showed the highest heavy metal adsorption (92.2-98.3%), particularly at a 0.5% concentration which exhibited the highest adsorption efficiency. Additionally, the study investigated the interaction of γ-PGA in mixed heavy metal environments, and it was discovered that Na-γ-PGA-HM at a 0.5% concentration showed a superior adsorption efficiency for Pb ions (85.4%), highlighting its selectivity as a potential effective biosorbent for wastewater treatment. This research not only enlightens the understanding of γ-PGA's role in heavy metal remediation but also underscores its potential as a biodegradable and non-toxic alternative for environmental cleanup. The findings pave the way for further exploration into the mechanisms and kinetics of γ-PGA's adsorption properties.
Collapse
Affiliation(s)
- Sheng-Yen Tsai
- Department of Food Science and Biotechnology, National Chung Hsing University, South Dist., Taichung City 402202, Taiwan; (S.-Y.T.); (C.-K.C.); (P.-Y.W.)
| | - Chao-Kai Chang
- Department of Food Science and Biotechnology, National Chung Hsing University, South Dist., Taichung City 402202, Taiwan; (S.-Y.T.); (C.-K.C.); (P.-Y.W.)
| | - Pei-Yu Wei
- Department of Food Science and Biotechnology, National Chung Hsing University, South Dist., Taichung City 402202, Taiwan; (S.-Y.T.); (C.-K.C.); (P.-Y.W.)
| | - Shi-Ying Huang
- College of Ocean Food and Biological Engineering, Jimei University, No. 43 Yindou Rd., Xiamen 361021, China;
| | - Mohsen Gavahian
- Department of Food Science, National Pingtung University of Science and Technology, Pingtung 912301, Taiwan;
| | - Shella Permatasari Santoso
- Department of Chemical Engineering, Widya Mandala Surabaya Catholic University, Surabaya 60114, Indonesia;
- Department of Chemical Engineering, National Taiwan University of Science and Technology, Daan Dist., Taipei 106221, Taiwan
| | - Chang-Wei Hsieh
- Department of Food Science and Biotechnology, National Chung Hsing University, South Dist., Taichung City 402202, Taiwan; (S.-Y.T.); (C.-K.C.); (P.-Y.W.)
- Department of Medical Research, China Medical University Hospital, Taichung City 404333, Taiwan
| |
Collapse
|