1
|
Bellot P, Brischoux F, Fritsch C, Lièvre L, Ribout C, Angelier F. Chronic exposure to tebuconazole impairs offspring growth and survival in farmland birds: An experiment in captive house sparrows. ENVIRONMENTAL RESEARCH 2025; 275:121321. [PMID: 40058553 DOI: 10.1016/j.envres.2025.121321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 03/04/2025] [Accepted: 03/05/2025] [Indexed: 04/01/2025]
Abstract
European farmland bird populations have declined by over 60% in 40 years, with the use of pesticides suspected to be one of the main causes of this decline. However, it remains difficult to test the impact of these pesticides in field studies due to confounding environmental variables that can also affect avian wildlife (e.g., food resources, habitat fragmentation and alteration). Triazoles are a family of fungicides that are ubiquitous in agro-ecosystems due to their use on a wide range of crops. Triazoles are suspected to affect non-target avian species by disrupting key physiological mechanisms and by detrimentally affecting their reproduction. In this captive study, we experimentally investigated the effect of the most commonly used triazole fungicides (i.e., tebuconazole) on the reproduction of an avian species representative of farmlands, the house sparrow (Passer domesticus). We examined the impacts of tebuconazole at realistic concentrations (550 μg.L-1 in drinking water to achieve ∼ 60 pg g-1 in plasma of sparrows) under controlled conditions on multiple indicators of breeding performance (clutch size, hatching success, chick growth and survival). We found that chronic exposure to tebuconazole (9 months, including the breeding period) significantly altered the reproduction of sparrows. Although clutch size and hatching success were not affected by tebuconazole, chicks from the exposed group showed reduced growth and a higher mortality rate. Interestingly, these effects were exacerbated in female chicks, highlighting a sex-dependent effect of tebuconazole on sparrow offspring. This study demonstrates that tebuconazole can be detrimental to the reproduction of farmland birds. Further studies are now required to distinguish the direct effects of tebuconazole (toxic and sublethal effects on the developing chick/embryo) from the indirect ones (alteration of egg quality and parental care).
Collapse
Affiliation(s)
- Pauline Bellot
- Centre d'Etudes Biologiques de Chizé, CNRS-La Rochelle Université, UMR 7372, 79360, Villiers en Bois, France.
| | - François Brischoux
- Centre d'Etudes Biologiques de Chizé, CNRS-La Rochelle Université, UMR 7372, 79360, Villiers en Bois, France
| | - Clémentine Fritsch
- Laboratoire Chrono-Environnement, UMR 6249 CNRS / Université Bourgone Franche-Comté, Université de Franche-Comté, F-25000, Besançon, France
| | - Loula Lièvre
- Centre d'Etudes Biologiques de Chizé, CNRS-La Rochelle Université, UMR 7372, 79360, Villiers en Bois, France
| | - Cécile Ribout
- Centre d'Etudes Biologiques de Chizé, CNRS-La Rochelle Université, UMR 7372, 79360, Villiers en Bois, France
| | - Frédéric Angelier
- Centre d'Etudes Biologiques de Chizé, CNRS-La Rochelle Université, UMR 7372, 79360, Villiers en Bois, France
| |
Collapse
|
2
|
Prouteau L, Dévier MH, Angelier F, Chastel O, Brischoux F, Pardon P, Menach KL, Budzinski H. Biomonitoring of azole fungicides in free-living blackbird plasma using on-line solid-phase extraction coupled to liquid chromatography-tandem mass spectrometry (SPE HPLC-MS/MS). J Chromatogr A 2025; 1748:465725. [PMID: 40112640 DOI: 10.1016/j.chroma.2025.465725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 12/20/2024] [Accepted: 01/24/2025] [Indexed: 03/22/2025]
Abstract
In this study, a rapid and sensitive method using on-line solid-phase extraction (SPE) coupled to liquid chromatography - tandem mass spectrometry (SPE HPLC-MS/MS) was developed to analyse 15 azole fungicides currently used in vineyards in blackbird plasma samples. The monitored fungicides included 13 triazoles (cyproconazole, difenoconazole, epoxiconazole, fenbuconazole, flusilazole, flutriafol, metconazole, penconazole, propiconazole, tebuconazole, tetraconazole, triadimefon, triadimenol) and 2 imidazoles (imazalil and prochloraz). After a rapid preparation step by protein precipitation with acetonitrile on 25 µL of plasma samples, final extracts diluted with Milli-Q water were analyzed by on-line SPE-LC-MS/MS in positive electrospray mode (ESI+) using the dynamic multi-reaction monitoring mode (dMRM). Following optimization, method validation was achieved through studies of linearity, sensitivity, accuracy, precision, and sample extract conservation. The limits of quantification (LOQs) obtained for a low volume of plasma (25 µL) ranged from 0.01 to 0.43 ng g-1 plasma, except for triadimenol (1.37 ng g-1). Finally, the validated method was successfully applied to 34 Eurasian blackbird plasma samples, with blackbirds from different habitats (city, forest, vineyards) submitted to contrasted azole pressures. Five of them were detected, tebuconazole and tetraconazole being the predominant ones. As expected, azoles concentrations were more elevated in blackbirds sampled in vineyards where most of these fungicides are used.
Collapse
Affiliation(s)
- Louise Prouteau
- Univ. Bordeaux, CNRS, Bordeaux INP, EPOC, UMR 5805, LPTC, F-33600 Pessac, France; Centre d'Etudes Biologiques de Chizé (CEBC), UMR 7372- CNRS-Université La Rochelle, Villiers-en-Bois F-79360, France
| | - Marie-Hélène Dévier
- Univ. Bordeaux, CNRS, Bordeaux INP, EPOC, UMR 5805, LPTC, F-33600 Pessac, France
| | - Frédéric Angelier
- Centre d'Etudes Biologiques de Chizé (CEBC), UMR 7372- CNRS-Université La Rochelle, Villiers-en-Bois F-79360, France
| | - Olivier Chastel
- Centre d'Etudes Biologiques de Chizé (CEBC), UMR 7372- CNRS-Université La Rochelle, Villiers-en-Bois F-79360, France
| | - François Brischoux
- Centre d'Etudes Biologiques de Chizé (CEBC), UMR 7372- CNRS-Université La Rochelle, Villiers-en-Bois F-79360, France
| | - Patrick Pardon
- Univ. Bordeaux, CNRS, Bordeaux INP, EPOC, UMR 5805, LPTC, F-33600 Pessac, France
| | - Karyn Le Menach
- Univ. Bordeaux, CNRS, Bordeaux INP, EPOC, UMR 5805, LPTC, F-33600 Pessac, France
| | - Hélène Budzinski
- Univ. Bordeaux, CNRS, Bordeaux INP, EPOC, UMR 5805, LPTC, F-33600 Pessac, France.
| |
Collapse
|
3
|
Fritsch C, Berny P, Crouzet O, Le Perchec S, Coeurdassier M. Wildlife ecotoxicology of plant protection products: knowns and unknowns about the impacts of currently used pesticides on terrestrial vertebrate biodiversity. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2025; 32:2893-2955. [PMID: 38639904 DOI: 10.1007/s11356-024-33026-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 03/17/2024] [Indexed: 04/20/2024]
Abstract
Agricultural practices are a major cause of the current loss of biodiversity. Among postwar agricultural intensification practices, the use of plant protection products (PPPs) might be one of the prominent drivers of the loss of wildlife diversity in agroecosystems. A collective scientific assessment was performed upon the request of the French Ministries responsible for the Environment, for Agriculture and for Research to review the impacts of PPPs on biodiversity and ecosystem services based on the scientific literature. While the effects of legacy banned PPPs on ecosystems and the underlying mechanisms are well documented, the impacts of current use pesticides (CUPs) on biodiversity have rarely been reviewed. Here, we provide an overview of the available knowledge related to the impacts of PPPs, including biopesticides, on terrestrial vertebrates (i.e. herptiles, birds including raptors, bats and small and large mammals). We focused essentially on CUPs and on endpoints at the subindividual, individual, population and community levels, which ultimately linked with effects on biodiversity. We address both direct toxic effects and indirect effects related to ecological processes and review the existing knowledge about wildlife exposure to PPPs. The effects of PPPs on ecological functions and ecosystem services are discussed, as are the aggravating or mitigating factors. Finally, a synthesis of knowns and unknowns is provided, and we identify priorities to fill gaps in knowledge and perspectives for research and wildlife conservation.
Collapse
Affiliation(s)
- Clémentine Fritsch
- Laboratoire Chrono-Environnement, UMR 6249 CNRS/Université de Franche-Comté, 16 Route de Gray, F-25000, Besançon, France
| | - Philippe Berny
- UR-ICE, Vetagro Sup, Campus Vétérinaire, 69280, Marcy L'étoile, France
| | - Olivier Crouzet
- Direction de La Recherche Et de L'Appui Scientifique, Office Français de La Biodiversité, Site de St-Benoist, 78610, Auffargis, France
| | | | - Michael Coeurdassier
- Laboratoire Chrono-Environnement, UMR 6249 CNRS/Université de Franche-Comté, 16 Route de Gray, F-25000, Besançon, France.
| |
Collapse
|
4
|
Fuentes E, Moreau J, Millet M, Bretagnolle V, Monceau K. First evidence of age-dependent decreases in non-persistent pesticide mixtures in nestlings of a farmland raptor. ENVIRONMENTAL RESEARCH 2024; 263:120179. [PMID: 39424037 DOI: 10.1016/j.envres.2024.120179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 09/27/2024] [Accepted: 10/15/2024] [Indexed: 10/21/2024]
Abstract
Intensive use of synthetic pesticides in conventional agriculture may harm non-target organisms through sublethal effects on life-history traits. Farmland birds are exposed throughout their life cycle, but the fate of non-persistent pesticide mixtures in wild birds remains unknown. In this study, we investigated changes in pesticide contamination levels in Montagu's harrier (Circus pygargus) nestlings during their growth. In total, 35 chicks were sampled twice during the rearing period, and blood was tested for 116 pesticides to assess pesticide load through two proxies; the number of pesticides detected and the sum of pesticide concentrations. Body mass and tarsus length were also measured to estimate body condition. Across the two sampling times, nine herbicides, five insecticides and four fungicides were detected. Contamination levels decreased significantly with nestling age irrespective of sampling date, and there was no relationship between pesticide load and body condition. Moreover, concentrations of chlorpyrifos-methyl, fenpropidin, metamitron, picloram and S-metolachlor, all detected throughout the rearing period, were unrelated to any of the explanatory variables. However, ethofumesate concentrations decreased significantly with chick age. This study provides the first evidence that non-persistent pesticide mixtures can decrease with age in wild nestlings. This has implications for understanding how chicks are contaminated and provides new insights on pesticide fate within organisms.
Collapse
Affiliation(s)
- Elva Fuentes
- UMR 7372, Centre D'Études Biologiques de Chizé, La Rochelle Université & CNRS, 79360, Villiers en Bois, France.
| | - Jérôme Moreau
- UMR 7372, Centre D'Études Biologiques de Chizé, La Rochelle Université & CNRS, 79360, Villiers en Bois, France; UMR CNRS 6282 Biogéosciences, Équipe Écologie Évolutive, Université de Bourgogne, 21000, Dijon, France
| | - Maurice Millet
- Université de Strasbourg, CNRS-UMR, 7515, ICPEES, 67087 Strasbourg Cedex 2, France
| | - Vincent Bretagnolle
- UMR 7372, Centre D'Études Biologiques de Chizé, La Rochelle Université & CNRS, 79360, Villiers en Bois, France; LTSER "Zone Atelier Plaine & Val de Sèvre", CNRS, 79360, Villiers-en-Bois, France
| | - Karine Monceau
- UMR 7372, Centre D'Études Biologiques de Chizé, La Rochelle Université & CNRS, 79360, Villiers en Bois, France
| |
Collapse
|
5
|
Zerdoug A, Le Vée M, Le Mentec H, Carteret J, Jouan E, Jamin A, Lopez B, Uehara S, Higuchi Y, Yoneda N, Chesné C, Suemizu H, Fardel O. Induction of drug metabolizing enzyme and drug transporter expression by antifungal triazole pesticides in human HepaSH hepatocytes. CHEMOSPHERE 2024; 366:143474. [PMID: 39369742 DOI: 10.1016/j.chemosphere.2024.143474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Revised: 08/27/2024] [Accepted: 10/03/2024] [Indexed: 10/08/2024]
Abstract
Triazole pesticides are widely used fungicides, to which humans are rather highly exposed. They are known to activate drug-sensing receptors regulating expression of hepatic drug metabolizing enzymes and drug transporters, thus suggesting that the hepatic drug detoxification system is modified by these agrochemicals. To investigate this hypothesis, the effects of 9 triazole fungicides towards expression of drug metabolizing enzymes and transporters were characterized in cultured human HepaSH cells, that are human hepatocytes deriving from chimeric humanized liver TK-NOG mice. Most of triazoles used at 10 μM were found to act as inducers of cytochrome P-450 (CYP) 1A1, CYP1A2, CYP2B6, CYP3A4 and UDP-glucuronosyltransferase 1A1 mRNA levels and of CYP3A4 protein; some triazoles also enhanced mRNA expression of the canalicular transporters P-glycoprotein/MDR1, multidrug resistance-associated protein 2 and breast cancer resistance protein. Triazoles however concomitantly inhibited CYP2B6 and CYP3A4 activities and thus appeared as dual regulators of these CYPs, being both inducers of their expression and inhibitors of their activity. The inducing effect however predominated, at least for bromuconazole, propiconazole and tebuconazole. Bromuconazole was moreover predicted to enhance CYP2B6 and CYP3A4 expression in humans exposed to this fungicide in a chronic, acute or occupational context. These data demonstrate that key-actors of the human hepatic detoxification system are impacted by triazole pesticides, which may have to be considered for the risk assessment of these agrochemicals. They additionally highlight that the use of human HepaSH cells as surrogates to primary human hepatocytes represents an attractive and promising way for studying hepatic effects of environmental chemicals.
Collapse
Affiliation(s)
- Anna Zerdoug
- Univ Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail) - UMR_S 1085, F-35000, Rennes, France; Biopredic International, F-35760, Saint Grégoire, France
| | - Marc Le Vée
- Univ Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail) - UMR_S 1085, F-35000, Rennes, France
| | - Hélène Le Mentec
- Univ Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail) - UMR_S 1085, F-35000, Rennes, France
| | - Jennifer Carteret
- Univ Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail) - UMR_S 1085, F-35000, Rennes, France
| | - Elodie Jouan
- Univ Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail) - UMR_S 1085, F-35000, Rennes, France
| | - Agnès Jamin
- Biopredic International, F-35760, Saint Grégoire, France
| | - Béatrice Lopez
- Biopredic International, F-35760, Saint Grégoire, France
| | - Shotaro Uehara
- Central Institute for Experimental Medicine and Life Science, 210-0821, Kawasaki, Japan
| | - Yuichiro Higuchi
- Central Institute for Experimental Medicine and Life Science, 210-0821, Kawasaki, Japan
| | - Nao Yoneda
- Central Institute for Experimental Medicine and Life Science, 210-0821, Kawasaki, Japan
| | | | - Hiroshi Suemizu
- Central Institute for Experimental Medicine and Life Science, 210-0821, Kawasaki, Japan
| | - Olivier Fardel
- Univ Rennes, CHU Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail) - UMR_S 1085, F-35000, Rennes, France.
| |
Collapse
|
6
|
Fernández-Vizcaíno E, Mateo R, Fernández de Mera IG, Mougeot F, Camarero PR, Ortiz-Santaliestra ME. Transgenerational effects of triazole fungicides on gene expression and egg compounds in non-exposed offspring: A case study using Red-Legged Partridges (Alectoris rufa). THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 926:171546. [PMID: 38479527 DOI: 10.1016/j.scitotenv.2024.171546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 03/04/2024] [Accepted: 03/04/2024] [Indexed: 03/26/2024]
Abstract
Triazole fungicides are widely used to treat cereal seeds before sowing. Granivorous birds like the Red-legged Partridge (Alectoris rufa) have high exposure risk because they ingest treated seeds that remain on the field surface. As triazole fungicides can act as endocrine disruptors, affecting sterol synthesis and reproduction in birds several months after exposure, we hypothesized that these effects could also impact subsequent generations of exposed birds. To test this hypothesis, we exposed adult partridges (F0) to seeds treated at commercial doses with four different formulations containing triazoles as active ingredients (flutriafol, prothioconazole, tebuconazole, and a mixture of the latter two), simulating field exposure during late autumn sowing. During the subsequent reproductive season, two to four months after exposure, we examined compound allocation of steroid hormones, cholesterol, vitamins, and carotenoids in eggs laid by exposed birds (F1), as well as the expression of genes encoding enzymes involved in sterol biosynthesis in one-day-old chicks of this F1. One year later, F1 animals were paired again to investigate the expression of the same genes in the F2 chicks. We found changes in the expression of some genes for all treatments and both generations. Additionally, we observed an increase in estrone levels in eggs from partridges treated with flutriafol compared to controls, a decrease in tocopherol levels in partridges exposed to the mixture of tebuconazole and prothioconazole, and an increase in retinol levels in partridges exposed to prothioconazole. Despite sample size limitations, this study provides novel insights into the mechanisms of action of the previously observed effects of triazole fungicide-treated seeds on avian reproduction with evidence that the effects can persist beyond the exposure windows, affecting unexposed offspring of partridges fed with treated seeds. The results highlight the importance of considering long-term chronic effects when assessing pesticide risks to wild birds.
Collapse
Affiliation(s)
- Elena Fernández-Vizcaíno
- Instituto de Investigación en Recursos Cinegéticos (IREC) CSIC-UCLM-JCCM, Ronda de Toledo 12, 13005 Ciudad Real, Spain.
| | - Rafael Mateo
- Instituto de Investigación en Recursos Cinegéticos (IREC) CSIC-UCLM-JCCM, Ronda de Toledo 12, 13005 Ciudad Real, Spain
| | - Isabel G Fernández de Mera
- Instituto de Investigación en Recursos Cinegéticos (IREC) CSIC-UCLM-JCCM, Ronda de Toledo 12, 13005 Ciudad Real, Spain
| | - François Mougeot
- Instituto de Investigación en Recursos Cinegéticos (IREC) CSIC-UCLM-JCCM, Ronda de Toledo 12, 13005 Ciudad Real, Spain
| | - Pablo R Camarero
- Instituto de Investigación en Recursos Cinegéticos (IREC) CSIC-UCLM-JCCM, Ronda de Toledo 12, 13005 Ciudad Real, Spain
| | - Manuel E Ortiz-Santaliestra
- Instituto de Investigación en Recursos Cinegéticos (IREC) CSIC-UCLM-JCCM, Ronda de Toledo 12, 13005 Ciudad Real, Spain
| |
Collapse
|
7
|
Dong B. A comprehensive review on toxicological mechanisms and transformation products of tebuconazole: Insights on pesticide management. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 908:168264. [PMID: 37918741 DOI: 10.1016/j.scitotenv.2023.168264] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 10/07/2023] [Accepted: 10/30/2023] [Indexed: 11/04/2023]
Abstract
Tebuconazole has been widely applied over three decades because of its high efficiency, low toxicity, and broad spectrum, and it is still one of the most popular fungicides worldwide. Tebuconazole residues have been frequently detected in environmental samples and food, posing potential hazards for humans. Understanding the toxicity of pesticides is crucial to ensuring human and ecosystem health, but the toxic mechanisms and toxicity of tebuconazole are still unclear. Moreover, pesticides could transform into transformation products (TPs) that may be more persistent and toxic than their parents. Herein, the toxicities of tebuconazole to humans, mammals, aquatic organisms, soil animals, amphibians, soil microorganisms, birds, honeybees, and plants were summarized, and its TPs were reviewed. In addition, the toxicity of tebuconazole TPs to aquatic organisms and mammals was predicted. Tebuconazole posed potential developmental toxicity, genotoxicity, reproductive toxicity, mutagenicity, hepatotoxicity, neurotoxicity, cardiotoxicity, and nephrotoxicity, which were induced via reactive oxygen species-mediated apoptosis, metabolism and hormone perturbation, DNA damage, and transcriptional abnormalities. In addition, tebuconazole exhibited apparent endocrine-disrupting effects by modulating hormone levels and gene transcription. The toxicity of some TPs was equivalent to and higher than tebuconazole. Therefore, further investigation is necessary into the toxicological mechanisms of tebuconazole and the combined toxicity of a mixture of tebuconazole and its TPs.
Collapse
Affiliation(s)
- Bizhang Dong
- School of Chemistry and Biological Engineering, University of Science and Technology Beijing, 30 Xueyuan Road, Haidian District, Beijing 100083, China.
| |
Collapse
|
8
|
Fernández-Vizcaíno E, Mougeot F, Mateo R, Camarero PR, Alcaide V, Ortiz-Santaliestra ME. A non-invasive method to monitor farmland bird exposure to triazole fungicides. CHEMOSPHERE 2023; 325:138316. [PMID: 36893863 DOI: 10.1016/j.chemosphere.2023.138316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 02/11/2023] [Accepted: 03/03/2023] [Indexed: 06/18/2023]
Abstract
The treatment of seeds with pesticides is an extended practice in current agriculture. There is a high risk of exposure in granivorous birds, such as the red-legged partridge (Alectoris rufa), that can consume those seeds remaining on the surface during sowing. Fungicide exposure could in turn affect bird reproductive capacity. To better understand to what extent triazole fungicides are a threat to granivorous birds, we need an easy and reliable method to quantify field exposure. In this study, we tested a novel non-invasive method to detect the presence of triazole fungicide residues in farmland bird faeces. We experimentally exposed captive red-legged partridges to validate the method, and then applied it in a real scenario to assess exposure of wild partridges. We exposed adult partridges to seeds treated with two formulations containing triazole fungicides as active ingredients: Vincit®Minima (flutriafol 2.5%) and Raxil®Plus (prothioconazole 25% and tebuconazole 15%). We collected two types of faeces (caecal and rectal samples) immediately after exposure and 7 days later and quantified the concentrations of the three triazoles and their common metabolite (1,2,4-triazole). The three active ingredients and 1,2,4-triazole were only detected in faeces collected immediately after exposure. Triazole fungicide detection rates in rectal stool were 28.6%, 73.3% and 80% for flutriafol, prothioconazole and tebuconazole, respectively. In caecal samples, detection rates were 40%, 93.3% and 33.3%, respectively. 1,2,4-triazole was detected in 53% of rectal samples. For an applied use of the method in the field, we collected 43 faecal samples from wild red-legged partridges during autumn cereal seed sowing and found detectable levels of tebuconazole in 18.6% of the analysed wild partridges. The results of the experiment were then used to estimate actual exposure levels from this prevalence value found in wild birds. Our study shows that faecal analysis can be a useful tool to assess farmland bird exposure to triazole fungicides, when samples are fresh and the method has been validated for the detection of target molecules.
Collapse
Affiliation(s)
- Elena Fernández-Vizcaíno
- Instituto de Investigación en Recursos Cinegéticos (IREC) CSIC-UCLM-JCCM, Ronda de Toledo 12, 13005, Ciudad Real, Spain.
| | - François Mougeot
- Instituto de Investigación en Recursos Cinegéticos (IREC) CSIC-UCLM-JCCM, Ronda de Toledo 12, 13005, Ciudad Real, Spain
| | - Rafael Mateo
- Instituto de Investigación en Recursos Cinegéticos (IREC) CSIC-UCLM-JCCM, Ronda de Toledo 12, 13005, Ciudad Real, Spain
| | - Pablo R Camarero
- Instituto de Investigación en Recursos Cinegéticos (IREC) CSIC-UCLM-JCCM, Ronda de Toledo 12, 13005, Ciudad Real, Spain
| | - Vicente Alcaide
- Instituto Regional de Investigación y Desarrollo Agroalimentario y Forestal de Castilla La Mancha (IRIAF), Centro de Investigación Agroambiental El Chaparrillo JCCM. Carretera de Porzuna S/n, 13071, Ciudad Real, Spain
| | - Manuel E Ortiz-Santaliestra
- Instituto de Investigación en Recursos Cinegéticos (IREC) CSIC-UCLM-JCCM, Ronda de Toledo 12, 13005, Ciudad Real, Spain
| |
Collapse
|
9
|
Angelier F, Prouteau L, Brischoux F, Chastel O, Devier MH, Le Menach K, Martin S, Mohring B, Pardon P, Budzinski H. High contamination of a sentinel vertebrate species by azoles in vineyards: a study of common blackbirds (Turdus merula) in multiple habitats in western France. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 316:120655. [PMID: 36410596 DOI: 10.1016/j.envpol.2022.120655] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 10/25/2022] [Accepted: 11/11/2022] [Indexed: 06/16/2023]
Abstract
Azoles represent the most used family of organic fungicides worldwide and they are used in agriculture to circumvent the detrimental impact of fungi on yields. Although it is known that these triazoles can contaminate the air, the soil, and the water, field data are currently and dramatically lacking to assess if, and to what extent, the use of triazoles could contaminate non-target wild vertebrate species, notably in agroecosystems. In this study, we aimed to document for the first time the degree of blood contamination of a generalist wild bird species by multiple azoles which are used for plant protection and fungi pest control in various habitats. We deployed passive air samplers and captured 118 Common blackbirds (Turdus merula) in an agroecosystem (vineyard), a protected forest, and a city in western France. We collected blood and analyzed the plasma levels of 13 triazoles and 2 imidazoles. We found that a significant percentage of blackbirds living in vineyards have extremely high plasma levels of multiple azoles (means (pg.g-1); tebuconazole: 149.23, difenoconazole: 44.27, fenbuconazole: 239.38, tetraconazole: 1194.16), while contamination was very limited in the blackbirds from the protected forest and absent in urban blackbirds. Interestingly, we also report that the contamination of blackbirds living in vineyard was especially high at the end of Spring and the beginning of Summer and this matches perfectly with the results from the passive air samplers (i.e., high levels of azoles in the air of vineyards during June and July). However, we did not find any correlation between the levels of plasma contamination by azoles and two simple integrative biomarkers of health (feather density and body condition) in this sentinel species. Future experimental studies are now needed to assess the potential sub-lethal effects of such levels of contamination on the physiology of non-target vertebrate species.
Collapse
Affiliation(s)
- Frédéric Angelier
- Centre D'Etudes Biologiques de Chizé, CNRS-LRU, UMR 7372, Villiers en Bois, 79360, France.
| | - Louise Prouteau
- Centre D'Etudes Biologiques de Chizé, CNRS-LRU, UMR 7372, Villiers en Bois, 79360, France; Université de Bordeaux, CNRS, EPOC, EPHE, UMR 5805, F-33600, Pessac, France
| | - François Brischoux
- Centre D'Etudes Biologiques de Chizé, CNRS-LRU, UMR 7372, Villiers en Bois, 79360, France
| | - Olivier Chastel
- Centre D'Etudes Biologiques de Chizé, CNRS-LRU, UMR 7372, Villiers en Bois, 79360, France
| | | | - Karyn Le Menach
- Université de Bordeaux, CNRS, EPOC, EPHE, UMR 5805, F-33600, Pessac, France
| | - Stéphan Martin
- Université de Bordeaux, CNRS, EPOC, EPHE, UMR 5805, F-33600, Pessac, France
| | - Bertille Mohring
- Centre D'Etudes Biologiques de Chizé, CNRS-LRU, UMR 7372, Villiers en Bois, 79360, France; Environmental and Marine Biology, Åbo Akademi University, FI-20250, Turku, Finland
| | - Patrick Pardon
- Université de Bordeaux, CNRS, EPOC, EPHE, UMR 5805, F-33600, Pessac, France
| | - Hélène Budzinski
- Université de Bordeaux, CNRS, EPOC, EPHE, UMR 5805, F-33600, Pessac, France
| |
Collapse
|
10
|
Gaffard A, Pays O, Monceau K, Teixeira M, Bretagnolle V, Moreau J. Feeding on grains containing pesticide residues is detrimental to offspring development through parental effects in grey partridge. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 312:120005. [PMID: 35998772 DOI: 10.1016/j.envpol.2022.120005] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 07/26/2022] [Accepted: 08/16/2022] [Indexed: 06/15/2023]
Abstract
Numerous toxicological studies have shown that ingestion of pesticides can induce physiological stress in breeding birds, with adverse consequences on egg laying parameters and offspring quality through parental effects. However, previous studies do not mimic current levels of pesticide residues in typical landscapes, and they do not consider potential cocktail effects of pesticides as they occur in the wild. Herein, we explored whether realistic pesticide exposure affected reproduction parameters and offspring condition through parental effects in Grey partridge. We fed 24 breeding pairs with either seeds from conventional agriculture crops treated with various pesticides during cropping, or organic grains without pesticide residues as controls. The conventional and organic grain diets mimicked food options potentially encountered by wild birds in the field. The results showed that ingesting low pesticide doses over a long period had consequences on reproduction and offspring quality without altering mortality in parents or chicks. Compared with organic pairs, conventional pairs yielded smaller chicks at hatching that had a lower body mass index at 24 days old. Additionally, these chicks displayed lower haematocrit when body mass index was higher. Therefore, ingestion of conventional grains by parents resulted in chronic exposure to pesticide residues, even at low doses, and this had detrimental consequences on offspring. These results demonstrate a sublethal effect of pesticide residues through parental effects. The consequences of parental exposure on chicks might partly explain the decline in wild Grey partridge populations, which raises questions for avian conservation and demography if current agrosystem approaches are continued.
Collapse
Affiliation(s)
- Agathe Gaffard
- Centre d'Etudes Biologiques de Chizé, UMR 7372, CNRS & La Rochelle Université, 79360, Villiers-en-Bois, France.
| | - Olivier Pays
- Univ Angers, BIODIVAG, 49000, Angers, France; REHABS International Research Laboratory, CNRS-Université Lyon 1-Nelson Mandela University, George Campus, Madiba Drive 6531, George, South Africa
| | - Karine Monceau
- Centre d'Etudes Biologiques de Chizé, UMR 7372, CNRS & La Rochelle Université, 79360, Villiers-en-Bois, France
| | - Maria Teixeira
- UMR CNRS 6282 Biogéosciences, Université Bourgogne Franche-Comté, 6 Boulevard Gabriel, 21000, Dijon, France
| | - Vincent Bretagnolle
- Centre d'Etudes Biologiques de Chizé, UMR 7372, CNRS & La Rochelle Université, 79360, Villiers-en-Bois, France; LTSER "Zone Atelier Plaine & Val de Sèvre", Villiers-en-Bois, 79360, France
| | - Jérôme Moreau
- Centre d'Etudes Biologiques de Chizé, UMR 7372, CNRS & La Rochelle Université, 79360, Villiers-en-Bois, France; UMR CNRS 6282 Biogéosciences, Université Bourgogne Franche-Comté, 6 Boulevard Gabriel, 21000, Dijon, France
| |
Collapse
|