1
|
Guo X, Zhou Y, Li S, Li Z, Liu W, Zhang Y, Du H, Xiong W, Li Q, Zhong Y, Qin T, Wu M, Chen Z, Chen Z, Abakumov E, Xie X. Simple synthesis and excellent performance of the cow dung-based biodegradable liquid mulch for sustainable agriculture. ENVIRONMENTAL RESEARCH 2025; 274:121270. [PMID: 40049350 DOI: 10.1016/j.envres.2025.121270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2025] [Revised: 02/12/2025] [Accepted: 02/28/2025] [Indexed: 05/04/2025]
Abstract
The environmental pollution caused by the extensive use of plastic films in farmland and the discharge of large amounts of manure from animal husbandry has seriously affected the sustainable development of global agriculture and environment. In this study, using cow manure as raw material, a cow dung-based biodegradable liquid mulch (CD-BA) was synthesized through grafting polymerization and as an eco-friendly alternative to the traditional agricultural plastic film. By studying the effects of the proportion of cow manure raw materials and additives on the performance of liquid plastic film, the optimal CD-BA was synthesized with 48.36 wt% of cow dung, 26.77 wt% of glycerol and 2.08 wt% of quartz sand (red soil), respectively. The soil test results indicate that CD-BA has the capability to reduce soil water evaporation by 15%-42%, which is marginally lower than the 67% reduction observed with plastic mulch. Its temperature-increasing capacity ranges from 0.63 °C to 1.21 °C, which is comparable to the capacity of plastic mulch. Moreover, CD-BA achieves a soil degradation rate of 41.2%-69.5% within 120 days, significantly addressing the persistent non-degradability issue associated with traditional plastic mulch. In plant experiments, CD-BA demonstrated a 97.5% inhibition rate on weed seed germination, whereas CD-BA positively influenced crop growth and its drought resistance. This study provides a feasible resource utilization method for simultaneously solving the environmental pollution problems of animal breeding waste and farmland plastic film.
Collapse
Affiliation(s)
- Xiaohao Guo
- Key Laboratory of Poyang Lake Environment and Resource Utilization, Ministry of Education, School of Resource and Environment, Nanchang University, Nanchang 330031, China
| | - Yuankai Zhou
- Key Laboratory of Poyang Lake Environment and Resource Utilization, Ministry of Education, School of Resource and Environment, Nanchang University, Nanchang 330031, China
| | - Simin Li
- Key Laboratory of Poyang Lake Environment and Resource Utilization, Ministry of Education, School of Resource and Environment, Nanchang University, Nanchang 330031, China
| | - Zhiwen Li
- Key Laboratory of Poyang Lake Environment and Resource Utilization, Ministry of Education, School of Resource and Environment, Nanchang University, Nanchang 330031, China
| | - Wei Liu
- Key Laboratory of Poyang Lake Environment and Resource Utilization, Ministry of Education, School of Resource and Environment, Nanchang University, Nanchang 330031, China; Department of Applied Ecology, Saint Petersburg State University, Saint Petersburg 199178, Russian Federation
| | - Yalan Zhang
- Key Laboratory of Poyang Lake Environment and Resource Utilization, Ministry of Education, School of Resource and Environment, Nanchang University, Nanchang 330031, China
| | - Hu Du
- Key Laboratory of Poyang Lake Environment and Resource Utilization, Ministry of Education, School of Resource and Environment, Nanchang University, Nanchang 330031, China
| | - Wenrong Xiong
- Key Laboratory of Poyang Lake Environment and Resource Utilization, Ministry of Education, School of Resource and Environment, Nanchang University, Nanchang 330031, China
| | - Qi Li
- Key Laboratory of Poyang Lake Environment and Resource Utilization, Ministry of Education, School of Resource and Environment, Nanchang University, Nanchang 330031, China
| | - Yanyan Zhong
- Key Laboratory of Poyang Lake Environment and Resource Utilization, Ministry of Education, School of Resource and Environment, Nanchang University, Nanchang 330031, China
| | - Tian Qin
- Key Laboratory of Poyang Lake Environment and Resource Utilization, Ministry of Education, School of Resource and Environment, Nanchang University, Nanchang 330031, China
| | - Mengting Wu
- Key Laboratory of Poyang Lake Environment and Resource Utilization, Ministry of Education, School of Resource and Environment, Nanchang University, Nanchang 330031, China
| | - Zhiqin Chen
- Key Laboratory of Poyang Lake Environment and Resource Utilization, Ministry of Education, School of Resource and Environment, Nanchang University, Nanchang 330031, China
| | - Zanxu Chen
- Key Laboratory of Poyang Lake Environment and Resource Utilization, Ministry of Education, School of Resource and Environment, Nanchang University, Nanchang 330031, China
| | - Evgeny Abakumov
- Department of Applied Ecology, Saint Petersburg State University, Saint Petersburg 199178, Russian Federation
| | - Xianchuan Xie
- Key Laboratory of Poyang Lake Environment and Resource Utilization, Ministry of Education, School of Resource and Environment, Nanchang University, Nanchang 330031, China.
| |
Collapse
|
2
|
Ojo AB, Agbeye OD, Ogwa TO, Adedoyin D, Rotimi DE, Ojo OA. Implications of plastic-derived endocrine disruptors on human health. Toxicol Mech Methods 2025:1-25. [PMID: 40433801 DOI: 10.1080/15376516.2025.2510525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2025] [Revised: 05/16/2025] [Accepted: 05/17/2025] [Indexed: 05/29/2025]
Abstract
Endocrine-disrupting chemicals (EDCs), such as bisphenol A (BPA), bisphenol S (BPS), phthalates, and micro- and nanoplastics, present substantial environmental and health hazards because of their potential to disrupt hormonal systems. Micro- and nanoplastics can release EDCs that disrupt reproductive and developmental processes, potentially affecting future generations. BPA, a common plasticizer and resin component, mimics estrogen and disrupts thyroid hormone metabolism, contributing to obesity, diabetes, and cardiovascular issues. BPS, a BPA substitute, exhibits similar endocrine-disrupting properties and persists longer in the environment. Phthalates, which are widely used as plasticizers, are associated with reproductive issues, metabolic conditions, and developmental issues in children. Combined exposure to multiple EDCs can amplify health risks, underscoring the need for further research on the synergistic impacts of these chemicals. This review underscores the urgent need for effective regulatory measures and further investigations into the health impacts of EDCs to mitigate their harmful impacts on the health of humans and the environment.
Collapse
Affiliation(s)
- Adebola Busola Ojo
- Department of Environmental Management and Toxicology, University of Ilesa, Ilesa, Nigeria
| | | | | | | | | | - Oluwafemi Adeleke Ojo
- Research Centre for Integrative Physiology and Pharmacology and Turku Center for Disease Modeling, Institute of Biomedicine, University of Turku, Turku, Finland
| |
Collapse
|
3
|
Romanelli AM, Montefusco A, Sposito S, Scafuri B, Caputo I, Paolella G. In Vitro Investigation of Biological and Toxic Effects of 4-Octylphenol on Human Cells. Int J Mol Sci 2024; 25:13032. [PMID: 39684746 DOI: 10.3390/ijms252313032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 11/27/2024] [Accepted: 11/28/2024] [Indexed: 12/18/2024] Open
Abstract
Alkylphenols are byproducts of anthropogenic activities that widely contaminate waters, soils and air; among them, the most represented are 4-nonylphenol (4-NP) and 4-octylphenol (4-OP). These compounds tend to bioaccumulate in animal and plant tissues and also represent a risk to human health. Indeed, humans are constantly exposed to alkylphenols through ingestion of contaminated water and food, inhalation and dermal absorption. In the present work, we characterized the cytotoxic ability of 4-OP towards several human cell lines, representing the potential main targets in the human body, also comparing its effect with that of 4-NP and of a mixture of both 4-OP and 4-NP in a range of concentrations between 1 and 100 μM. Viability assays demonstrated that each cell type had a peculiar sensitivity to 4-OP and that, in some cases, a combination of the two alkylphenols displayed a higher cytotoxic activity with respect to the single compound. Then, we focused our attention on a liver cell line (HepG2) in which we observed that 4-OP increased cell death and also caused interference with protective physiological cell processes, such as the unfolded protein response, autophagy and the antioxidant response. Finally, our experimental data were compared and correlated with ADMET properties originating from an in silico analysis. Altogether, our findings highlight a possible contribution of this pollutant to deregulation of the normal homeostasis in human liver cells.
Collapse
Affiliation(s)
| | - Antonio Montefusco
- Department of Chemistry and Biology, University of Salerno, 84084 Fisciano, Italy
| | - Silvia Sposito
- Department of Medicine, Surgery and Dentistry "Scuola Medica Salernitana", University of Salerno, 84084 Fisciano, Italy
| | - Bernardina Scafuri
- Department of Chemistry and Biology, University of Salerno, 84084 Fisciano, Italy
| | - Ivana Caputo
- Department of Chemistry and Biology, University of Salerno, 84084 Fisciano, Italy
- European Laboratory for the Investigation of Food-Induced Diseases (ELFID), University of Salerno, 84084 Fisciano, Italy
| | - Gaetana Paolella
- Department of Chemistry and Biology, University of Salerno, 84084 Fisciano, Italy
| |
Collapse
|
4
|
Li Z, Li M, Li D, Chen Y, Feng W, Zhao T, Yang L, Mao G, Wu X. A review of cumulative toxic effects of environmental endocrine disruptors on the zebrafish immune system: Characterization methods, toxic effects and mechanisms. ENVIRONMENTAL RESEARCH 2024; 246:118010. [PMID: 38157964 DOI: 10.1016/j.envres.2023.118010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 12/19/2023] [Accepted: 12/20/2023] [Indexed: 01/03/2024]
Abstract
Environmental endocrine disrupting chemicals (EDCs), are a type of exogenous organic pollutants, are ubiquitous in natural aquatic environments. Currently, in addition to neurological, endocrine, developmental and reproductive toxicity, ecotoxicology studies on immunotoxicity are receiving increasing attention. In this review, the composition of immune system of zebrafish, the common indicators of immunotoxicity, the immunotoxicity of EDCs and their molecular mechanism were summarized. We reviewed the immunotoxicity of EDCs on zebrafish mainly in terms of immune organs, immunocytes, immune molecules and immune functions, meanwhile, the possible molecular mechanisms driving these effects were elucidated in terms of endocrine disruption, dysregulation of signaling pathways, and oxidative damage. Hopefully, this review will provide a reference for further investigation of the immunotoxicity of EDCs.
Collapse
Affiliation(s)
- Zixu Li
- School of the Environment and Safety Engineering, School of Emergency Management, Jiangsu University, 301 Xuefu Rd, Zhenjiang, 212013, China
| | - Muge Li
- School of the Environment and Safety Engineering, School of Emergency Management, Jiangsu University, 301 Xuefu Rd, Zhenjiang, 212013, China
| | - Dan Li
- School of the Environment and Safety Engineering, School of Emergency Management, Jiangsu University, 301 Xuefu Rd, Zhenjiang, 212013, China
| | - Yao Chen
- School of the Environment and Safety Engineering, School of Emergency Management, Jiangsu University, 301 Xuefu Rd, Zhenjiang, 212013, China; Institute of Environmental Health and Ecological Safety, Jiangsu University, 301 Xuefu Rd, Zhenjiang, 212013, China
| | - Weiwei Feng
- School of the Environment and Safety Engineering, School of Emergency Management, Jiangsu University, 301 Xuefu Rd, Zhenjiang, 212013, China; Institute of Environmental Health and Ecological Safety, Jiangsu University, 301 Xuefu Rd, Zhenjiang, 212013, China
| | - Ting Zhao
- School of Chemistry and Chemical Engineering, Jiangsu University, 301 Xuefu Rd, Zhenjiang, 212013, China
| | - Liuqing Yang
- School of Chemistry and Chemical Engineering, Jiangsu University, 301 Xuefu Rd, Zhenjiang, 212013, China
| | - Guanghua Mao
- School of the Environment and Safety Engineering, School of Emergency Management, Jiangsu University, 301 Xuefu Rd, Zhenjiang, 212013, China.
| | - Xiangyang Wu
- School of the Environment and Safety Engineering, School of Emergency Management, Jiangsu University, 301 Xuefu Rd, Zhenjiang, 212013, China.
| |
Collapse
|
5
|
Domínguez-Liste A, de Haro-Romero T, Quesada-Jiménez R, Pérez-Cantero A, Peinado FM, Ballesteros Ó, Vela-Soria F. Multiclass Determination of Endocrine-Disrupting Chemicals in Meconium: First Evidence of Perfluoroalkyl Substances in This Biological Compartment. TOXICS 2024; 12:75. [PMID: 38251030 PMCID: PMC10819471 DOI: 10.3390/toxics12010075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 01/12/2024] [Accepted: 01/13/2024] [Indexed: 01/23/2024]
Abstract
Major concerns have been raised about human exposure to endocrine-disrupting chemicals (EDCs) during pregnancy. Effective methodologies for the assessment of this exposure are needed to support the implementation of preventive measures and the prediction of negative health effects. Meconium has proven a valuable non-invasive matrix for evaluating cumulative exposure to xenobiotics during the last two trimesters of pregnancy. The study objective was to develop a novel method to determine the presence in meconium of perfluoroalkyl substances (PFASs), bisphenols, parabens, and benzophenones, EDCs that are widely used in the manufacture of numerous consumer goods and personal care products, including cosmetics. Ten PFASs, two bisphenols, four parabens, and four benzophenones were measured in meconium samples prepared by using a combination of Captiva Enhanced Matrix Removal (EMR) lipid cartridges with salt-assisted liquid-liquid extraction (SALLE) and dispersive liquid-liquid microextraction (DLLME) before the application of liquid chromatography-tandem mass spectrometry (LC-MS/MS). Experimental parameters were optimized by applying different chemometric techniques. Limits of detection ranged from 0.05 to 0.1 ng g-1, and between-day variabilities (relative standard deviations) ranged from 6.5% to 14.5%. The method was validated by matrix-matched standard calibration followed by a recovery assay with spiked samples, obtaining percentage recoveries of 89.9% to 114.8%. The method was then employed to measure compounds not previously studied in this matrix in 20 meconium samples. The proposed analytical procedure yields information on cumulative in utero exposure to selected EDCs.
Collapse
Affiliation(s)
- Aritz Domínguez-Liste
- Analytical Chemistry and Life Sciences Research Group, Department of Analytical Chemistry, University of Granada, E-18071 Granada, Spain; (A.D.-L.); (Ó.B.)
| | - Teresa de Haro-Romero
- Instituto de Investigación Biosanitaria (ibs.GRANADA), E-18016 Granada, Spain; (T.d.H.-R.); (R.Q.-J.); (F.V.-S.)
- Clinical Laboratory Management Unit, Hospital Universitario Clínico San Cecilio, E-18016 Granada, Spain
| | - Raquel Quesada-Jiménez
- Instituto de Investigación Biosanitaria (ibs.GRANADA), E-18016 Granada, Spain; (T.d.H.-R.); (R.Q.-J.); (F.V.-S.)
- Centre for Biomedical Research, University of Granada, E-18016 Granada, Spain
- Radiology and Physical Medicine Department, University of Granada, E-18016 Granada, Spain;
| | - Ainhoa Pérez-Cantero
- Radiology and Physical Medicine Department, University of Granada, E-18016 Granada, Spain;
| | - Francisco Manuel Peinado
- Instituto de Investigación Biosanitaria (ibs.GRANADA), E-18016 Granada, Spain; (T.d.H.-R.); (R.Q.-J.); (F.V.-S.)
- Centre for Biomedical Research, University of Granada, E-18016 Granada, Spain
- Radiology and Physical Medicine Department, University of Granada, E-18016 Granada, Spain;
| | - Óscar Ballesteros
- Analytical Chemistry and Life Sciences Research Group, Department of Analytical Chemistry, University of Granada, E-18071 Granada, Spain; (A.D.-L.); (Ó.B.)
| | - Fernando Vela-Soria
- Instituto de Investigación Biosanitaria (ibs.GRANADA), E-18016 Granada, Spain; (T.d.H.-R.); (R.Q.-J.); (F.V.-S.)
- Clinical Laboratory Management Unit, Hospital Universitario Clínico San Cecilio, E-18016 Granada, Spain
| |
Collapse
|
6
|
Rodríguez-Ramos R, Herrera-Herrera AV, Díaz-Romero C, Socas-Rodríguez B, Rodríguez-Delgado MÁ. Eco-friendly approach developed for the microextraction of xenobiotic contaminants from tropical beverages using a camphor-based natural hydrophobic deep eutectic solvent. Talanta 2024; 266:124932. [PMID: 37499359 DOI: 10.1016/j.talanta.2023.124932] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 05/18/2023] [Accepted: 07/09/2023] [Indexed: 07/29/2023]
Abstract
In this work, an innovative green strategy has been developed for the analysis of twenty-seven endocrine disruptors, including bisphenols, alkylphenols and alkylphenol ethoxylates, phthalic acid esters and one adipate in tropical beverages. For this purpose, nine natural hydrophobic deep eutectic solvents based on the terpenoids camphor, thymol and menthol at different molar ratios were investigated for the first time as extractants for the liquid-liquid microextraction of the target analytes from coconut waters and Aloe Vera drinks. A mixture of camphor:thymol at molar ratio 1:2 (n/n) was selected as extraction solvent. Determination of the target analytes was carried out by ultra-high performance liquid chromatography coupled to tandem mass spectrometry. After optimisation of the determination and extraction conditions, the methodology was validated achieving good results in terms of linearity, as well as recovery values in the range 75-111% and limits of quantification from 0.137 to 10.08 μg/L. Finally, the developed methodology was applied to the analysis of commercially available samples, finding the presence of diethyl phthalate.
Collapse
Affiliation(s)
- Ruth Rodríguez-Ramos
- Departamento de Química, Unidad Departamental de Química Analítica, Facultad de Ciencias, Universidad de La Laguna (ULL), Avda. Astrofísico Fco. Sánchez, s/nº, 38206, San Cristóbal de La Laguna, España
| | - Antonio V Herrera-Herrera
- Departamento de Química, Unidad Departamental de Química Analítica, Facultad de Ciencias, Universidad de La Laguna (ULL), Avda. Astrofísico Fco. Sánchez, s/nº, 38206, San Cristóbal de La Laguna, España; Instituto Universitario de Bio-Orgánica Antonio González, Universidad de La Laguna (ULL), Avda. Astrofísico Fco. Sánchez, 2, 38206, San Cristóbal de La Laguna, España
| | - Carlos Díaz-Romero
- Departamento de Ingeniería Química y Tecnología Farmacéutica, Universidad de La Laguna, Tenerife, España
| | - Bárbara Socas-Rodríguez
- Departamento de Química, Unidad Departamental de Química Analítica, Facultad de Ciencias, Universidad de La Laguna (ULL), Avda. Astrofísico Fco. Sánchez, s/nº, 38206, San Cristóbal de La Laguna, España.
| | - Miguel Ángel Rodríguez-Delgado
- Departamento de Química, Unidad Departamental de Química Analítica, Facultad de Ciencias, Universidad de La Laguna (ULL), Avda. Astrofísico Fco. Sánchez, s/nº, 38206, San Cristóbal de La Laguna, España.
| |
Collapse
|