1
|
Jin F, Lu J, Sun F, Yang F, Li Z. Application and development of sludge-based materials for environmental pollution remediation: a bibliometric review from 2004 to 2024. RSC Adv 2025; 15:8072-8087. [PMID: 40098695 PMCID: PMC11912348 DOI: 10.1039/d5ra00620a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2025] [Accepted: 03/07/2025] [Indexed: 03/19/2025] Open
Abstract
In recent years, considerable attention has been directed towards the development of high-value materials derived from various types of sewage sludge (SS) including adsorbents, catalysts, and soil amendments, for their potential in environmental pollution remediation. To investigate the current research status, hotspots, and development trends of sludge-based materials for environmental pollution remediation, this study adopted bibliometric tools, such as Bibliometrix, VOSviewer, and Citespace, to conduct a quantitative analysis of the related literature published between 2004 and 2024, collected from the Web of Science Core Collection (WOSCC) database. The results indicated a consistent annual increase in publication numbers, with a marked acceleration observed over the past six years. China significantly outperforms other countries in terms of publication quantity and institutions, and forming a country cooperation network centered around China. Keyword co-occurrence and burst analyses revealed that the current research hotspots in the field of sludge-based materials for environmental pollution remediation primarily focused on the preparation methods, particularly pyrolysis, and the performance and mechanisms studies of the sludge-based materials as adsorbents and catalysts. Future research should prioritize exploring modification methods and materials to develop further high-performance sludge-based materials, such as sludge-based electrode materials. Moreover, in-depth investigations into the impacts of sludge-based soil amendments on soil physical, chemical, and biological properties should be emphasized. By utilizing bibliometrics to evaluate the current state and future trends of sludge-based materials for environmental pollution remediation, this article provides valuable insights into the field's evolution for researchers.
Collapse
Affiliation(s)
- Fangyuan Jin
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences Beijing 100012 China
| | - Jinxia Lu
- Basin Research Center for Water Pollution Control, Chinese Research Academy of Environmental Sciences Beijing 100012 China
| | - Fei Sun
- Basin Research Center for Water Pollution Control, Chinese Research Academy of Environmental Sciences Beijing 100012 China
| | - Fang Yang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences Beijing 100012 China
| | - Zhonghong Li
- School of Environment and Energy Engineering, Beijing University of Civil Engineering and Architecture Beijing 100044 China
| |
Collapse
|
2
|
Proano CA, Liu R, Xu X, Meisler S, Hassanein A, Lansing S, Tian K, Li G. Impacts of free nitrous acid on stabilizing food waste and sewage sludge for anaerobic digestion. BIORESOURCE TECHNOLOGY 2024; 402:130819. [PMID: 38723728 DOI: 10.1016/j.biortech.2024.130819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 04/29/2024] [Accepted: 05/07/2024] [Indexed: 05/12/2024]
Abstract
This work investigated the effectiveness of free nitrous acid (FNA) in enhancing organic waste solubilization to improve biogas production in anaerobic digestion (AD). The results indicated that FNA pretreatment can enhance soluble organic content and control H2S odor in tested organic wastes, including food waste, sewage sludge, and their combination. However, a significant decrease (>50 %) in FNA concentration was found in the reactors, possibly due to denitrifier-driven NO2- consumption. Biochemical methane potential (BMP) tests showed a 25 ± 8 % enhancement in CH4 production in the reactors fed with mixed substrate pretreated with 2.9 mg FNA-N/L. However, the presence of NO2- (325.6-2368.0 mg N/L) in some BMP reactors, due to carryover from FNA pretreatment, adversely affected CH4 production (>55 %) and prolonged lag time (>4.2 times). These findings are valuable for researchers and practitioners in waste management, offering insights for implementing FNA pretreatment to enhance the biodegradability of organic wastes in AD.
Collapse
Affiliation(s)
- Camila A Proano
- Department of Civil and Environmental Engineering, University of Maryland, 4298 Campus Dr., College Park, MD 20742, USA
| | - Ruizhe Liu
- Department of Civil and Environmental Engineering, University of Maryland, 4298 Campus Dr., College Park, MD 20742, USA
| | - Xueming Xu
- Department of Civil and Environmental Engineering, Virginia Polytechnic Institute and State University, 200 Patton Hall, Blacksburg, VA 24061, USA
| | - Seth Meisler
- Department of Civil and Environmental Engineering, University of Maryland, 4298 Campus Dr., College Park, MD 20742, USA
| | - Amro Hassanein
- Department of Environmental Science & Technology, University of Maryland, 1429 Animal Sciences/Ag. Eng. Bldg, College Park, MD 20742, USA
| | - Stephanie Lansing
- Department of Environmental Science & Technology, University of Maryland, 1429 Animal Sciences/Ag. Eng. Bldg, College Park, MD 20742, USA
| | - Kuo Tian
- Department of Civil, Environmental, and Infrastructure Engineering, George Mason University, 4400 University Drive, Fairfax, VA 22030, USA
| | - Guangbin Li
- Department of Civil and Environmental Engineering, University of Maryland, 4298 Campus Dr., College Park, MD 20742, USA.
| |
Collapse
|
3
|
Liu H, He P, Chen Y, Wang X, Zou R, Xing T, Xu S, Wu C, Maurer C, Lichtfouse E. Coupling of biogas residue biochar and low-magnitude electric fields promotes anaerobic co-digestion of sewage sludge and food waste. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2024; 89:2118-2131. [PMID: 38678413 DOI: 10.2166/wst.2024.120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 04/02/2024] [Indexed: 04/30/2024]
Abstract
Biochar-assisted anaerobic digestion (AD) remains constrained due to the inefficient decomposition of complex organics, even with the direct interspecies electron transfer (DIET) pathway. The coupling of electrochemistry with the anaerobic biological treatment could shorten lengthy retention time in co-digestion by improving electron transfer rates and inducing functional microbial acclimation. Thus, this work investigated the potential of improving the performance of AD by coupling low-magnitude electric fields with biochar derived from the anaerobically digested biogas residue. Different voltages (0.3, 0.6, and 0.9 V) were applied at various stages to assess the impact on biochar-assisted AD. The results indicate that an external voltage of 0.3 V, coupled with 5 g/L of biochar, elevates CH4 yield by 45.5% compared to biogas residue biochar alone, and the coupled approach increased biogas production by up to 143% within 10 days. This finding may be partly explained by the enhanced utilization of substrates and the increased amounts of specific methanogens such as Methanobacterium and Methanosarcina. The abundance of the former increased from 4.0 to 11.3%, which enhances the DIET between microorganisms. Furthermore, the coupling method shows better potential for enhancing AD compared to preparing iron-based biochar, and these results present potential avenues for its broader applications.
Collapse
Affiliation(s)
- Hongbo Liu
- School of Environment and Architecture, University of Shanghai for Science and Technology, 516 Jungong Road, Shanghai, China
| | - Peng He
- School of Environment and Architecture, University of Shanghai for Science and Technology, 516 Jungong Road, Shanghai, China
| | - Yang Chen
- School of Environment and Architecture, University of Shanghai for Science and Technology, 516 Jungong Road, Shanghai, China
| | - Xingkang Wang
- School of Environment and Architecture, University of Shanghai for Science and Technology, 516 Jungong Road, Shanghai, China
| | - Ruixiang Zou
- School of Environment and Architecture, University of Shanghai for Science and Technology, 516 Jungong Road, Shanghai, China
| | - Tao Xing
- Jiangsu Lianxing Complete Equipment Manufacturing Co., Ltd, 96 Feiyue Road, Jingjiang, Jiangsu, China; Jiangsu Dingxin Environmental Protection Technology Co., Ltd, 95 Feiyue Road, Jingjiang, Jiangsu, China
| | - Suyun Xu
- School of Environment and Architecture, University of Shanghai for Science and Technology, 516 Jungong Road, Shanghai, China
| | - Chengyang Wu
- School of Environment and Architecture, University of Shanghai for Science and Technology, 516 Jungong Road, Shanghai, China E-mail:
| | - Claudia Maurer
- University of Stuttgart - Institute of Sanitary Engineering, Water Quality and 12 Waste Management, Bandtäle 2, Stuttgart 70569, Germany
| | - Eric Lichtfouse
- State Key Laboratory of Multiphase Flow in Power Engineering, Xi'an Jiaotong University, 28 Xianning West Rd, Xi'an, Shaanxi 710049, China
| |
Collapse
|
4
|
Chen P, Wang E, Zheng Y, Ran X, Ren Z, Guo J, Dong R. Synergistic effect of hydrothermal sludge and food waste in the anaerobic co-digestion process: microbial shift and dewaterability. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:18723-18736. [PMID: 38349498 DOI: 10.1007/s11356-024-32282-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 01/27/2024] [Indexed: 03/09/2024]
Abstract
While thermal hydrolysis technology is commonly employed for sewage sludge treatment in extensive wastewater treatment facilities, persistent challenges remain, including issues such as ammonia-induced digestive inhibition and reduced productivity stemming from nutrient deficiency within the hydrothermal sludge. In this study, the effects of hydrothermal sludge-to-food waste mixing ratios and fermentation temperatures on anaerobic co-digestion were systematically investigated through a semi-continuous experiment lasting approximately 100 days. The results indicated that anaerobic co-digestion of hydrothermal sludge and food waste proceeded synergistically at any mixing ratio, and the synergistic effect is mainly attributed to the improvement of carbohydrate removal and digestive system stability. However, thermophilic digestion did not improve the anaerobic performance and methane yield. On the contrary, mesophilic digestion performed better in terms of organic matter removal, especially in the utilization of soluble carbohydrates, soluble proteins, and VFAs. Microbial community analysis revealed that the transition from mesophilic to thermophilic anaerobic co-digestion prompts changes in the methane-producing pathways. Specifically, the transition entails a gradual shift from pathways involving acetoclastic and hydrogenotrophic methanogenesis to a singular hydrogenotrophic methanogenesis pathway. This shift is driven by thermodynamic tendencies, as reflected in Gibbs free energy, as well as environmental factors like ammonia nitrogen and volatile fatty acids. Lastly, it is worth noting that the introduction of food waste did lead to a reduction in cake solids following dewatering. Nevertheless, it was observed that thermophilic digestion had a positive impact on dewatering performance.
Collapse
Affiliation(s)
- Penghui Chen
- College of Engineering, China Agricultural University, Beijing, 100083, People's Republic of China
| | - Enzhen Wang
- College of Engineering, China Agricultural University, Beijing, 100083, People's Republic of China
| | - Yonghui Zheng
- College of Engineering, China Agricultural University, Beijing, 100083, People's Republic of China
| | - Xueling Ran
- College of Engineering, China Agricultural University, Beijing, 100083, People's Republic of China
| | - Zhengran Ren
- Beijing Drainage Group Co. Ltd, Beijing, 100022, China
| | - Jianbin Guo
- College of Engineering, China Agricultural University, Beijing, 100083, People's Republic of China.
| | - Renjie Dong
- College of Engineering, China Agricultural University, Beijing, 100083, People's Republic of China
- Yantai Institute, China Agricultural University, Yantai, 264032, Shandong, People's Republic of China
| |
Collapse
|
5
|
Kongthong O, Dokmaingam P, Chu CY. Fermentative Biohydrogen and Biomethane Production from High-Strength Industrial Food Waste Hydrolysate Using Suspended Cell Techniques. Mol Biotechnol 2023:10.1007/s12033-023-00939-0. [PMID: 37934388 DOI: 10.1007/s12033-023-00939-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 09/28/2023] [Indexed: 11/08/2023]
Abstract
The food waste was very difficult to treat in a proper way since its high-organic matter. The novel biohythane (H2 + CH4) production from high-strength industry food waste hydrolysate in two steps anaerobic well mixed batch bioreactor was carried out in this study using cultivated microflora. The temperature was controlled at 37 °C and initial substrate concentration of industrial food waste hydrolysate varied from 60, 80, 100, and 120 g COD/L, respectively. The pH, TS, VS, and SCOD were analyzed from the influent and effluent samples. These analytical parameters showed the correlations between the biogas production rates and yields in the batch fermentation system. This study was the first time to use the industry food waste hydrolysate which was collected from the subcritical water hydrolysis process. In this study, the optimal biohydrogen and biomethane yield production by using suspended cells were 0.65 mL H2/g COD and 203.72 mL CH4/g COD where the initial substrate concentrations of total COD and SCOD were 60 g/L and 39.80 g/L, respectively. The optimal of the biohydrogen and biomethane yields production by using suspended cells were 0.65 mL H2/g COD and 203.72 mL CH4/g COD where the initial substrate concentrations of total COD and SCOD were 60 g/L and 39.80 g/L, respectively. The results of this study supported that the cultivation of inoculum in a suspended cell type can have a higher tolerance for the biohydrogen and biomethane production in a high-strength initial substrate concentration of 60 g COD/L.
Collapse
Affiliation(s)
- Onjira Kongthong
- Environmental Health Program, School of Health Science, Mae Fah Luang University, 333 M.1 Tasud, Muang, Chiang Rai, 57100, Thailand
| | - Pannipha Dokmaingam
- Environmental Health Program, School of Health Science, Mae Fah Luang University, 333 M.1 Tasud, Muang, Chiang Rai, 57100, Thailand.
- Research Center of Circular Economy for Waste-Free Thailand, School of Science, Mae Fah Luang University, 333 M.1 Tasud, Muang, Chiang Rai, 57100, Thailand.
| | - Chen-Yeon Chu
- Institute of Green Products, Feng Chia University, 100, Wenhua Rd. Xitun Dist., Taichung City, 407102, Taiwan.
- Master's Program of Green Energy Science and Technology, Feng Chia University, 100, Wenhua Rd. Xitun Dist., Taichung City, 407102, Taiwan.
| |
Collapse
|
6
|
Potential and Restrictions of Food-Waste Valorization through Fermentation Processes. FERMENTATION-BASEL 2023. [DOI: 10.3390/fermentation9030274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/15/2023]
Abstract
Food losses (FL) and waste (FW) occur throughout the food supply chain. These residues are disposed of on landfills producing environmental issues due to pollutants released into the air, water, and soil. Several research efforts have focused on upgrading FL and FW in a portfolio of added-value products and energy vectors. Among the most relevant research advances, biotechnological upgrading of these residues via fermentation has been demonstrated to be a potential valorization alternative. Despite the multiple investigations performed on the conversion of FL and FW, a lack of comprehensive and systematic literature reviews evaluating the potential of fermentative processes to upgrade different food residues has been identified. Therefore, this article reviews the use of FL and FW in fermentative processes considering the composition, operating conditions, platforms, fermentation product application, and restrictions. This review provides the framework of food residue fermentation based on reported applications, experimental, and theoretical data. Moreover, this review provides future research ideas based on the analyzed information. Thus, potential applications and restrictions of the FL and FW used for fermentative processes are highlighted. In the end, food residues fermentation must be considered a mandatory step toward waste minimization, a circular economy, and the development of more sustainable production and consumption patterns.
Collapse
|
7
|
Bai S, Chen J, Guo M, Ren N, Zhao X. Vertical-scale spatial influence of radial oxygen loss on rhizosphere microbial community in constructed wetland. ENVIRONMENT INTERNATIONAL 2023; 171:107690. [PMID: 36516673 DOI: 10.1016/j.envint.2022.107690] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 12/04/2022] [Accepted: 12/08/2022] [Indexed: 06/17/2023]
Abstract
Complex interactions between plants and microorganisms form the basis of constructed wetlands (CWs) for pollutant removal. In the rhizosphere, radial oxygen loss (ROL) plays a key role in the activity and abundance of functional microorganisms. However, little has been done to explore how ROL would influence the niche differentiation of microbial communities at different vertical spatial scales. We demonstrate that ROL decreases with depth, promoting an oxidation-reduction rhizosphere microecosystem in CWs. The high level of ROL in the upper layer could support the oxygen supply for aerobic bacteria (Haliangium), facilitating the COD (60%) and NH4+-N (50%) removal, whereas the enrichment of denitrifiers (e.g., Hydrogenophaga and Ralstonia) and methanotrophs (Methanobaterium) in the lower layer could stimulate denitrification. The function prediction results further certified that the abundance of genes catalyzing nitrifying and denitrification processes were significantly enhanced in the upper and bottom layers, respectively, which was attributed to the oxygen concentration gradient in the rhizosphere. This study contributes to further unraveling the rhizosphere effect and enables an improved understanding of the decontamination mechanisms of CWs.
Collapse
Affiliation(s)
- Shunwen Bai
- School of Environment, State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Juntong Chen
- College of Resource and Environment, Northeast Agricultural University, Harbin 150030, China
| | - Mengran Guo
- College of Resource and Environment, Northeast Agricultural University, Harbin 150030, China
| | - Nanqi Ren
- School of Environment, State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Xinyue Zhao
- College of Resource and Environment, Northeast Agricultural University, Harbin 150030, China.
| |
Collapse
|