1
|
El-Haitout B, Sardjono RE, Es-Sounni B, Chafiq M, Salghi R, Bakhouch M, Al-Moubaraki AH, Al-Ahmari JM, Al-Ghamdi AA, Fahim M, Hammouti B, Chaouiki A, Ko YG. Electrochemical and quantum chemical investigation on the adsorption behavior of a schiff base and its metal complex for corrosion protection of mild steel in 15 wt% HCl solution. Heliyon 2024; 10:e40662. [PMID: 39660179 PMCID: PMC11629228 DOI: 10.1016/j.heliyon.2024.e40662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 10/21/2024] [Accepted: 11/22/2024] [Indexed: 12/12/2024] Open
Abstract
This work evaluates the effectiveness of Schiff base derivatives, namely, 2,2'-((1E,1'E)-((2,2-dimethylpropane-1,3-diyl)bis(azaneylylidene))bis(methaneylylidene))diphenol (DAMD) and (2-((E)-((3-(((E)-2-hydroxybenzylidene)amino)-2,2dimethylpropyl)imino)methyl)phenoxy) zinc (HDMZ), as corrosion inhibitors for mild steel in a 15 % HCl solution. By employing a blend of experimental assessments and theoretical computations, such as electrochemical tests, morphological observations, and theoretical simulations, the study achieved an impressive up to 94.6 % inhibition efficiency. Notably, HDMZ exhibited significant protective properties. The results of PDP showed that both inhibitors act as mixed-type corrosion inhibitors. SEM surface analysis of the uninhibited and inhibited samples revealed the formation of a protective layer of inhibitor molecules on the mild steel surface to mitigate its corrosion. The Langmuir adsorption model verified the occurrence of dual adsorption, while theoretical simulations offered insights into the underlying interaction mechanisms. The identification of Schiff-based inhibitors reveals a pronounced synergistic effect in corrosion inhibition, marking a significant advancement in understanding corrosion control mechanisms. This study illuminates the process of forming covalent bonds between inhibitor molecules and iron atoms, presenting a hopeful path towards the advancement of corrosion inhibitors tailored for industrial use. The parallel adsorption configuration and mutual interactions form a stable structure, reinforcing the organic-metal bonds and enhancing both chemical and physical adhesion to the steel surface. These findings indicate that the synergistic effect of molecular interactions and polar-rich regions offers a promising strategy for designing functional hybrid materials.
Collapse
Affiliation(s)
- Badr El-Haitout
- Laboratory of Applied Chemistry and Environment, ENSA, University Ibn Zohr, PO Box 1136, Agadir, 80000, Morocco
| | | | - Bouchra Es-Sounni
- Laboratory of Innovative Material and Biotechnology of Naturel Resources, Faculty of Sciences of Meknes, Moulay Ismail University, Morocco
| | - Maryam Chafiq
- Integrated Materials Chemistry Laboratory, School of Materials Science and Engineering, Yeungnam University, Gyeongsan, 38541, Republic of Korea
| | - Rachid Salghi
- Laboratory of Applied Chemistry and Environment, ENSA, University Ibn Zohr, PO Box 1136, Agadir, 80000, Morocco
- Euromed University of Fes, UEMF, Morocco
| | - Mohamed Bakhouch
- Laboratory of Bioorganic Chemistry, Department of Chemistry, Faculty of Sciences, Chouaïb Doukkali University, P.O. Box 24, El Jadida M-24000, Morocco
| | - Aisha H. Al-Moubaraki
- Department of Chemistry, Faculty of Sciences–Alfaisaliah Campus, University of Jeddah, Jeddah, 21589, Saudi Arabia
| | - Jamilah M. Al-Ahmari
- Department of Chemistry, Faculty of Sciences–Alfaisaliah Campus, University of Jeddah, Jeddah, 21589, Saudi Arabia
| | - Azza A. Al-Ghamdi
- Department of Chemistry, Faculty of Sciences–Alfaisaliah Campus, University of Jeddah, Jeddah, 21589, Saudi Arabia
| | - Mohammed Fahim
- Laboratory of Innovative Material and Biotechnology of Naturel Resources, Faculty of Sciences of Meknes, Moulay Ismail University, Morocco
| | | | - Abdelkarim Chaouiki
- Integrated Materials Chemistry Laboratory, School of Materials Science and Engineering, Yeungnam University, Gyeongsan, 38541, Republic of Korea
| | - Young Gun Ko
- Integrated Materials Chemistry Laboratory, School of Materials Science and Engineering, Yeungnam University, Gyeongsan, 38541, Republic of Korea
| |
Collapse
|
2
|
Khan HW, Zailan AA, Bhaskar Reddy AV, Goto M, Moniruzzaman M. Ionic liquid-based dispersive liquid-liquid microextraction of succinic acid from aqueous streams: COSMO-RS screening and experimental verification. ENVIRONMENTAL TECHNOLOGY 2024; 45:3828-3839. [PMID: 37415504 DOI: 10.1080/09593330.2023.2234669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 06/12/2023] [Indexed: 07/08/2023]
Abstract
In the present investigation, a total of 108 combinations of ionic liquids (ILs) were screened using the conductor-like screening model for real solvents (COSMO-RS) with the aid of six cations and eighteen anions for the extraction of succinic acid (SA) from aqueous streams through dispersive liquid-liquid microextraction (DLLME). Using the screened ILs, an ionic liquid-based DLLME (IL-DLLME) was developed to extract SA and the role of different reaction parameters in the effectiveness of IL-DLLME approach was investigated. COSMO-RS results suggested that, quaternary ammonium and choline cations form effective IL combinations with [OH¯], [F¯], and [SO42¯] anions due to hydrogen bonding. In view of these results, one of the screened ILs, tetramethylammonium hydroxide [TMAm][OH] was chosen as the extractant in IL-DLLME process and acetonitrile was adopted as the dispersive solvent. The highest SA removal efficiency of 97.8% was achieved using 25 μL of IL [TMAm][OH] as a carrier and 500 μL of acetonitrile as dispersive solvent. The highest amount of SA was extracted with a stir time of 20 min at 300 rpm, followed by centrifugation for 5 min at 4500 rpm. Overall, the findings showed that IL-DLLME is efficient in extracting succinic acid from aqueous environments while adhering to the first-order kinetics.
Collapse
Affiliation(s)
- Huma Warsi Khan
- Department of Chemical Engineering, Universiti Teknologi PETRONAS, Seri Iskandar, Perak
| | - Anis Aina Zailan
- Department of Chemical Engineering, Universiti Teknologi PETRONAS, Seri Iskandar, Perak
| | | | - Masahiro Goto
- Department of Applied Chemistry, Graduate School of Engineering, Kyushu University, Fukuoka, Japan
| | - Muhammad Moniruzzaman
- Department of Chemical Engineering, Universiti Teknologi PETRONAS, Seri Iskandar, Perak
- Center of Research in Ionic Liquids (CORIL), Universiti Teknologi PETRONAS, Seri Iskandar, Perak
| |
Collapse
|
3
|
Asif M, Khan PA, Irfan F, Salim M, Jan A, Khan M. Is gender diversity is diversity washing or good governance for firm sustainable development goal performance: A scoping review. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:114690-114705. [PMID: 37848790 DOI: 10.1007/s11356-023-30211-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Accepted: 09/27/2023] [Indexed: 10/19/2023]
Abstract
In Industry 4.0, sustainability is the heart, and governance is the soul of the business, but diversity washing, greenwashing, and SDG washing are skeptical. This is due to the reactive/normative approach in dealing with sustainability and governance, which has created an amounting number of greenhouse gases, waste generation, and several business washing challenges. This study has explored the Scopus and Web of Science databases and searched for the keywords "Sustainable Development Goals" AND "Director," which provided 76 documents. However, when the authors added the third keyword, "ISO 37001-2021," along with the above two keywords, the database provided no study investigating the moderation role of ISO 37001-2021. Therefore, the study advocates the adoption of newly developed ISO 37000:2021 good governance standards for greenwashing, SDG washing, and diversity washing challenges without failing to contribute to the firm sustainable development goal performance and earning management. Secondly, the independent director attribute's role is vital due to the potential, power, position, and evidence to adopt ISO 37000:2021 standards. Thirdly, the scoping review study has proposed a conceptual model to extend the reporting discloser and transparency. It goes beyond mere compliance, contributes towards societal development, and promotes adopting sustainable development goal performance and reporting as a new non-financial parameter for evaluating the firm's performance. Lastly, this will boost firm sustainability and adopt the circular economic model, creating a unique competitive edge and green governance goodwill among the business's external stakeholders and attracting sustainably responsible investors.
Collapse
Affiliation(s)
- Mohammad Asif
- Department of Finance, College of Administrative and Financial Sciences, Saudi Electronic University, 11673, Riyadh, Saudi Arabia
| | - Parvez Alam Khan
- Department of Management and Humanities, Universiti Teknologi Petronas, Perak, Malaysia.
| | - Fatima Irfan
- Department of Commerce and Business Management, Integral University, Lucknow, India
| | - Mohd Salim
- Department of Commerce, Aligarh Muslim University, Aligarh, India
| | - Amin Jan
- School of Management and Marketing, College of Business and Public Management, Wenzhou-Kean University, Ouhai, China
| | - Mantasha Khan
- Faculty of Commerce, KMCL University, Lucknow, India
| |
Collapse
|
4
|
Warsi Khan H, Kaif Khan M, Moniruzzaman M, Al Mesfer MK, Danish M, Irshad K, Yusuf M, Kamyab H, Chelliapan S. Evaluating ionic liquids for its potential as eco-friendly solvents for naproxen removal from water sources using COSMO-RS: Computational and experimental validation. ENVIRONMENTAL RESEARCH 2023; 231:116058. [PMID: 37178749 DOI: 10.1016/j.envres.2023.116058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 05/02/2023] [Accepted: 05/03/2023] [Indexed: 05/15/2023]
Abstract
An emerging contaminant of concern in aqueous streams is naproxen. Due to its poor solubility, non-biodegradability, and pharmaceutically active nature, the separation is challenging. Conventional solvents employed for naproxen are toxic and harmful. Ionic liquids (ILs) have attracted great attention as greener solubilizing and separating agent for various pharmaceuticals. ILs have found extensive usage as solvents in nanotechnological processes involving enzymatic reactions and whole cells. The employment of ILs can enhance the effectiveness and productivity of such bioprocesses. To avoid cumbersome experimental screening, in this study, conductor like screening model for real solvents (COSMO-RS) was used to screen ILs. Thirty anions and eight cations from various families were chosen. Activity coefficient at infinite dilution, capacity, selectivity, performance index, molecular interactions using σ-profiles and interaction energies were used to make predictions about solubility. According to the findings, quaternary ammonium cations, highly electronegative, and food-grade anions will form excellent ionic liquid combinations for solubilizing naproxen and hence will be better separating agents. This research will contribute easy designing of ionic liquid-based separation technologies for naproxen. In different separation technologies, ionic liquids can be employed as extractants, carriers, adsorbents, and absorbents.
Collapse
Affiliation(s)
- Huma Warsi Khan
- Department of Chemical Engineering, Universiti Teknologi PETRONAS, Seri Iskandar, Perak, Malaysia.
| | | | - Muhammad Moniruzzaman
- Department of Chemical Engineering, Universiti Teknologi PETRONAS, Seri Iskandar, Perak, Malaysia; Center of Research in Ionic Liquids, Universiti Teknologi PETRONAS, Seri Iskandar, Perak, Malaysia
| | - Mohammed K Al Mesfer
- Chemical Engineering Department, College of Engineering, King Khalid University, Abha, Saudi Arabia
| | - Mohd Danish
- Chemical Engineering Department, College of Engineering, King Khalid University, Abha, Saudi Arabia
| | - Kashif Irshad
- Interdisciplinary Research Centre for Renewable Energy and Power Systems (IRC-REPS) Research Institute, King Fahd University of Petroleum & Minerals, Dhahran, 31261, Saudi Arabia
| | - Mohammad Yusuf
- Institute of Hydrocarbon Recovery, Department of Petroleum Engineering, Universiti Teknologi PETRONAS, Bandar Seri Iskandar, Perak, 32610, Malaysia.
| | - Hesam Kamyab
- Department of Biomaterials, Saveetha Dental College and Hospital, Saveetha Institute of Medical and Technical Sciences, Chennai, 600 077, India; Malaysia-Japan International Institute of Technology, Universiti Teknologi Malaysia, Jalan Sultan Yahya Petra, 54100, Kuala Lumpur, Malaysia
| | - Shreshivadasan Chelliapan
- Engineering Department, Razak Faculty of Technology & Informatics, Universiti Teknologi Malaysia, Jalan Sultan Yahya Petra, 54100, Kuala Lumpur, Malaysia
| |
Collapse
|
5
|
Khan PA, Johl SK, Kumar A, Luthra S. Hope-hype of green innovation, corporate governance index, and impact on firm financial performance: a comparative study of Southeast Asian countries. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:55237-55254. [PMID: 36882655 PMCID: PMC9991451 DOI: 10.1007/s11356-023-26262-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 02/26/2023] [Indexed: 06/18/2023]
Abstract
The current production and conception have impacted the environmental hazards. Green innovation (GI) is the ideal solution for sustainable production, consumption, and ecological conservation. The objective of the study is to compare comprehensive green innovation (green product, process, service, and organization) impact on firm financial performance in Malaysia and Indonesia, along with the first study to measure the moderation role of the corporate governance index. This study has addressed the gap by developing the green innovation and corporate governance index. Collected panel data from the top 188 publicly listed firms for 3 years and analyzed it using the general least square method. The empirical evidence demonstrates that the green innovation practice is better in Malaysia, and the outcome also shows that the significance level is higher in Indonesia. This study also provides empirical evidence that board composition has a positive moderation relationship betwixt GI and business performance in Malaysia but is insignificant in Indonesia. This comparative study provides new insights to the policymakers and practitioners of both countries to monitor and manage green innovation practices.
Collapse
Affiliation(s)
- Parvez Alam Khan
- Department of Finance, Woxsen Business School, Woxsen University, Hyderabad, Telangana 502345 India
- Department of Management and Humanities, Universiti Teknologi PETRONAS, Seri Iskandar 32610, Perak, Malaysia
| | - Satirenjit Kaur Johl
- Department of Management and Humanities, Universiti Teknologi PETRONAS, Seri Iskandar 32610, Perak, Malaysia
| | - Anil Kumar
- Guildhall School of Business and Law, London Metropolitan University, London, UK
| | - Sunil Luthra
- ATAL Cell, All India Council for Technical Education (AICTE), New Delhi, India
| |
Collapse
|
6
|
Ionic Liquid-Based Green Emulsion Liquid Membrane for the Extraction of the Poorly Soluble Drug Ibuprofen. Molecules 2023; 28:molecules28052345. [PMID: 36903590 PMCID: PMC10005223 DOI: 10.3390/molecules28052345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 01/27/2023] [Accepted: 01/30/2023] [Indexed: 03/08/2023] Open
Abstract
Ibuprofen (Ibf) is a biologically active drug (BADs) and an emerging contaminant of concern (CECs) in aqueous streams. Due to its adverse effects upon aquatic organisms and humans, the removal and recovery of Ibf are essential. Usually, conventional solvents are employed for the separation and recovery of ibuprofen. Due to environmental limitations, alternative green extracting agents need to be explored. Ionic liquids (ILs), emerging and greener alternatives, can also serve this purpose. It is essential to explore ILs that are effective for recovering ibuprofen, among millions of ILs. The conductor-like screening model for real solvents (COSMO-RS) is an efficient tool that can be used to screen ILs specifically for ibuprofen extraction. The main objective of this work was to identify the best IL for the extraction of ibuprofen. A total of 152 different cation-anion combinations consisting of eight aromatic and non-aromatic cations and nineteen anions were screened. The evaluation was based upon activity coefficients, capacity, and selectivity values. Furthermore, the effect of alkyl chain length was studied. The results suggest that quaternary ammonium (cation) and sulfate (anion) have better extraction ability for ibuprofen than the other combinations tested. An ionic liquid-based green emulsion liquid membrane (ILGELM) was developed using the selected ionic liquid as the extractant, sunflower oil as the diluent, Span 80 as the surfactant, and NaOH as the stripping agent. Experimental verification was carried out using the ILGELM. The experimental results indicated that the predicted COSMO-RS and the experimental results were in good agreement. The proposed IL-based GELM is highly effective for the removal and recovery of ibuprofen.
Collapse
|