1
|
Filimonenko E, Vatutin G, Zherebyatyeva N, Uporova M, Milyaev I, Chausоva E, Gershelis E, Alharbi SA, Samokhina N, Matus F, Soromotin A, Kuzyakov Y. Wildfire effects on mercury fate in soils of North-Western Siberia. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 951:175572. [PMID: 39153628 DOI: 10.1016/j.scitotenv.2024.175572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Revised: 07/19/2024] [Accepted: 08/14/2024] [Indexed: 08/19/2024]
Abstract
Arctic soils store 49 Gg mercury (Hg) - an extremely toxic heavy metal, whereas soil Hg can be released to the atmosphere by wildfires. For the first time we investigated the effects of wildfires on the fate of soil Hg in North-Western (NW) Siberia based on GIS maps of areas burned during the last 38 years and a field paired comparison of unburned and burned areas in tundra (mosses, lichens, some grasses, and shrubs) and forest-tundra (multi-layered canopy of larch trees, shrubs, mosses, and lichens). These field surveys were deepened by soil controlled burning to assess the Hg losses from organic horizon and mineral soil. The soil Hg stocks in the organic horizon and in the top 10 cm of the mineral soil were 3.3 ± 0.6 and 16 ± 3 mg Hg m-2 for unburned tundra and forest-tundra, respectively. After the burning by wildfires, the soil Hg stocks decreased to 2.4 ± 0.1 and 6.6 ± 0.2 mg Hg m-2 for tundra and forest-tundra, respectively. By the averages annual burned areas in NW Siberia 527 km2, wildfires in tundra and forest-tundra released 0.19 and 2.9 Mg soil Hg per year, respectively, corresponding to 28 % and 59 % of the initial soil Hg stocks. These direct effects of wildfires on Hg volatilization are raised by indirect post-pyrogenic consequences on Hg fate triggered by the vegetation succession and adsorption of atmospheric Hg on the surface of charred biomass. Charred lichens and trees accumulated 4-16 times more Hg compared to the living biomass. Blackened burned vegetation and soil reduced surface albedo and slowly increased soil temperatures in Arctic after wildfires. This created favorable conditions for seeding grasses and shrubs after wildfire and transformed burned high-latitude ecosystems into greener areas, increasing their capacity to trap atmospheric Hg by vegetation, which partly compensate the burning losses of soil Hg.
Collapse
Affiliation(s)
- Ekaterina Filimonenko
- University of Tyumen, Volodarskogo str., 6, Tyumen 625003, Russia; Sirius University of Science and Technology, Sirius Federal Area, Olympiysky pr., 1, Russia.
| | - Georgy Vatutin
- University of Tyumen, Volodarskogo str., 6, Tyumen 625003, Russia
| | | | - Maria Uporova
- University of Tyumen, Volodarskogo str., 6, Tyumen 625003, Russia
| | - Ivan Milyaev
- University of Tyumen, Volodarskogo str., 6, Tyumen 625003, Russia
| | | | - Elena Gershelis
- Sirius University of Science and Technology, Sirius Federal Area, Olympiysky pr., 1, Russia
| | - Sulaiman Almwarai Alharbi
- Department of Botany & Microbiology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Natalia Samokhina
- University of Tyumen, Volodarskogo str., 6, Tyumen 625003, Russia; Sirius University of Science and Technology, Sirius Federal Area, Olympiysky pr., 1, Russia
| | - Francisco Matus
- Laboratory of Conservation and Dynamic of Volcanic Soils, Department of Chemical Sciences and Natural Resources, Universidad de La Frontera, Temuco, Chile; Network for Extreme Environmental Research, Universidad de la Frontera, Temuco, Chile
| | - Andrey Soromotin
- University of Tyumen, Volodarskogo str., 6, Tyumen 625003, Russia
| | - Yakov Kuzyakov
- Department of Soil Science of Temperate Ecosystems, Department of Agricultural Soil Science, University of Gottingen, 37077, Gottingen, Germany; Peoples Friendship University of Russia (RUDN University), 117198 Moscow, Russia.
| |
Collapse
|
2
|
Monteiro LC, Vieira LCG, Bernardi JVE, Recktenvald MCNDN, Nery AFDC, Fernandes IO, de Miranda VL, da Rocha DMS, de Almeida R, Bastos WR. Mercury distribution, bioaccumulation, and biomagnification in riparian ecosystems from a neotropical savanna floodplain, Araguaia River, central Brazil. ENVIRONMENTAL RESEARCH 2024; 252:118906. [PMID: 38609069 DOI: 10.1016/j.envres.2024.118906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 04/01/2024] [Accepted: 04/08/2024] [Indexed: 04/14/2024]
Abstract
Litterfall is the main source of dry deposition of mercury (Hg) into the soil in forest ecosystems. The accumulation of Hg in soil and litter suggests the possibility of transfer to terrestrial invertebrates through environmental exposure or ingestion of plant tissues. We quantified total mercury (THg) concentrations in two soil layers (organic: 0-0.2 m; mineral: 0.8-1 m), litter, fresh leaves, and terrestrial invertebrates of the Araguaia River floodplain, aiming to evaluate the THg distribution among terrestrial compartments, bioaccumulation in invertebrates, and the factors influencing THg concentrations in soil and invertebrates. The mean THg concentrations were significantly different between the compartments evaluated, being higher in organic soil compared to mineral soil, and higher in litter compared to mineral soil and fresh leaves. Soil organic matter content was positively related to THg concentration in this compartment. The order Araneae showed significantly higher Hg concentrations among the most abundant invertebrate taxa. The higher Hg concentrations in Araneae were positively influenced by the concentrations determined in litter and individuals of the order Hymenoptera, confirming the process of biomagnification in the terrestrial trophic chain. In contrast, the THg concentrations in Coleoptera, Orthoptera and Hymenoptera were not significantly related to the concentrations determined in the soil, litter and fresh leaves. Our results showed the importance of organic matter for the immobilization of THg in the soil and indicated the process of biomagnification in the terrestrial food web, providing insights for future studies on the environmental distribution of Hg in floodplains.
Collapse
Affiliation(s)
- Lucas Cabrera Monteiro
- Programa de Pós-Graduação em Ecologia, Instituto de Ciências Biológicas, Universidade de Brasília, Brasília, DF, Brazil; Núcleo de Estudos e Pesquisas Ambientais e Limnológicas, Faculdade UnB Planaltina, Universidade de Brasília, Planaltina, DF, Brazil; Laboratório de Geoestatística e Geodésia, Faculdade UnB Planaltina, Universidade de Brasília, Planaltina, DF, Brazil.
| | - Ludgero Cardoso Galli Vieira
- Núcleo de Estudos e Pesquisas Ambientais e Limnológicas, Faculdade UnB Planaltina, Universidade de Brasília, Planaltina, DF, Brazil
| | - José Vicente Elias Bernardi
- Laboratório de Geoestatística e Geodésia, Faculdade UnB Planaltina, Universidade de Brasília, Planaltina, DF, Brazil
| | | | | | - Iara Oliveira Fernandes
- Programa de Pós-Graduação em Ciências Ambientais, Faculdade UnB Planaltina, Universidade de Brasília, Planaltina, DF, Brazil
| | - Vinicius Lima de Miranda
- Programa de Pós-Graduação em Zoologia, Instituto de Ciências Biológicas, Universidade de Brasília, Brasília, DF, Brazil
| | | | - Ronaldo de Almeida
- Laboratório de Biogeoquímica Ambiental, Universidade Federal de Rondônia, Porto Velho, RO, Brazil
| | | |
Collapse
|
3
|
Pérez‐Pazos E, Beidler KV, Narayanan A, Beatty BH, Maillard F, Bancos A, Heckman KA, Kennedy PG. Fungi rather than bacteria drive early mass loss from fungal necromass regardless of particle size. ENVIRONMENTAL MICROBIOLOGY REPORTS 2024; 16:e13280. [PMID: 38922748 PMCID: PMC11194057 DOI: 10.1111/1758-2229.13280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 04/30/2024] [Indexed: 06/28/2024]
Abstract
Microbial necromass is increasingly recognized as an important fast-cycling component of the long-term carbon present in soils. To better understand how fungi and bacteria individually contribute to the decomposition of fungal necromass, three particle sizes (>500, 250-500, and <250 μm) of Hyaloscypha bicolor necromass were incubated in laboratory microcosms inoculated with individual strains of two fungi and two bacteria. Decomposition was assessed after 15 and 28 days via necromass loss, microbial respiration, and changes in necromass pH, water content, and chemistry. To examine how fungal-bacterial interactions impact microbial growth on necromass, single and paired cultures of bacteria and fungi were grown in microplates containing necromass-infused media. Microbial growth was measured after 5 days through quantitative PCR. Regardless of particle size, necromass colonized by fungi had higher mass loss and respiration than both bacteria and uninoculated controls. Fungal colonization increased necromass pH, water content, and altered chemistry, while necromass colonized by bacteria remained mostly unaltered. Bacteria grew significantly more when co-cultured with a fungus, while fungal growth was not significantly affected by bacteria. Collectively, our results suggest that fungi act as key early decomposers of fungal necromass and that bacteria may require the presence of fungi to actively participate in necromass decomposition.
Collapse
Affiliation(s)
- Eduardo Pérez‐Pazos
- Ecology, Evolution, and Behavior Graduate ProgramUniversity of MinnesotaSt. PaulMinnesotaUSA
- Department of Plant and Microbial BiologyUniversity of MinnesotaSt. PaulMinnesotaUSA
| | - Katilyn V. Beidler
- Department of Plant and Microbial BiologyUniversity of MinnesotaSt. PaulMinnesotaUSA
| | - Achala Narayanan
- Department of Plant and Microbial BiologyUniversity of MinnesotaSt. PaulMinnesotaUSA
| | - Briana H. Beatty
- Department of Plant and Microbial BiologyUniversity of MinnesotaSt. PaulMinnesotaUSA
| | - François Maillard
- Microbial Ecology Group, Department of BiologyLund UniversityLundSweden
| | - Alexandra Bancos
- Department of Plant and Microbial BiologyUniversity of MinnesotaSt. PaulMinnesotaUSA
| | | | - Peter G. Kennedy
- Department of Plant and Microbial BiologyUniversity of MinnesotaSt. PaulMinnesotaUSA
| |
Collapse
|
4
|
Fernandes IO, Monteiro LC, de Miranda VL, Rodrigues YOS, de Freitas Muniz DH, de Castro Paes É, Bernardi JVE. Mercury distribution in organisms, litter, and soils of the Middle Araguaia floodplain in Brazil. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:20925-20940. [PMID: 38379047 DOI: 10.1007/s11356-024-32317-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Accepted: 01/29/2024] [Indexed: 02/22/2024]
Abstract
Mercury (Hg) is a chemical element that, depending on its concentration, may become toxic to living organisms due to the ability of Hg to bioaccumulate in food chains. In this study, we collected samples of soil, litter, and organisms in the Middle Araguaia floodplain, Brazil. Total mercury (THg) concentrations in litter were significantly higher (p < 0.0001) than that in soil, ranging from 10.68 ± 0.55 to 48.94 ± 0.13 and 20.80 ± 1.07 to 55 .19 ± 1.59 ng g-1, respectively. Total mercury concentration levels in soil showed a linear, inversely proportional relationship with soil organic matter (SOM) contents and soil pH, consistent with the geochemical behavior of chemical elements in flooded environments. Ten orders of organisms were identified, and the average THg concentrations determined in their bodies were up to 20 times higher than those in soil and litter. We found a significant linear relationship between the levels of THg in litter and those found in soil organisms, thereby allowing the prediction of THg concentration levels in soil organisms through the analysis of litter at the sample units. The different dynamics and feeding habits of soil organisms and the concentration of THg in these organisms may be influenced by the river's course. This study provides evidence of the bioaccumulation of THg in soil organisms in the floodplain of the Middle Araguaia River, an important river basin in the Brazilian savanna.
Collapse
Affiliation(s)
- Iara Oliveira Fernandes
- Graduate Program in Environmental Sciences, Faculty UnB Planaltina, University of Brasília, Planaltina, Distrito Federal, 73345-010, Brazil.
| | - Lucas Cabrera Monteiro
- Graduate Program in Ecology, Institute of Biological Sciences, University of Brasília, Brasília, Distrito Federal, 70910-900, Brazil
| | - Vinícius Lima de Miranda
- Graduate Program in Zoology, Institute of Biological Sciences, University of Brasília, Brasília, Distrito Federal, 70910-900, Brazil
| | - Ygor Oliveira Sarmento Rodrigues
- Graduate Program in Environmental Sciences, Faculty UnB Planaltina, University of Brasília, Planaltina, Distrito Federal, 73345-010, Brazil
| | - Daphne Heloisa de Freitas Muniz
- Graduate Program in Environmental Sciences, Faculty UnB Planaltina, University of Brasília, Planaltina, Distrito Federal, 73345-010, Brazil
| | - Ésio de Castro Paes
- Graduate Program in Soils and Plant Nutrition, Federal University of Viçosa, Viçosa, Minas Gerais, Brazil
| | - José Vicente Elias Bernardi
- Graduate Program in Environmental Sciences, Faculty UnB Planaltina, University of Brasília, Planaltina, Distrito Federal, 73345-010, Brazil
| |
Collapse
|
5
|
Meyer L, Guyot S, Chalot M, Capelli N. The potential of microorganisms as biomonitoring and bioremediation tools for mercury-contaminated soils. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 262:115185. [PMID: 37385017 DOI: 10.1016/j.ecoenv.2023.115185] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 06/20/2023] [Accepted: 06/24/2023] [Indexed: 07/01/2023]
Abstract
Mercury (Hg) pollution is a global issue due to the high toxicity and wide dispersion of Hg around the world. Whether due to anthropogenic activities or natural processes, Hg emissions are steadily increasing, with very high levels in some regions, directly threatening human and ecosystem health. However, bacteria and fungi have evolved and adapted in response to Hg-induced stress and have developed tolerance mechanisms, notably based on the mer operon system that is involved in Hg uptake and biovolatilization via Hg reduction reactions. Other processes, such as bioaccumulation or extracellular sequestration, are involved in Hg resistance, and the study of contaminated soils has allowed the isolation of a number of microorganisms capable of these mechanisms, with strong potential for the implementation of bioremediation approaches. In addition to playing an important role in determining the fate of Hg in the biogeochemical cycle, these microorganisms can indeed be applied to reduce Hg concentrations or at least stabilize Hg for the remediation of polluted soils. Moreover, thanks to the development of biotechnological tools, bioremediation based on Hg-tolerant microorganisms can be optimized. Finally, these microorganisms are relevant candidates for biomonitoring, for example, through the engineering of biosensors, because the detection of Hg is a major issue in preserving the health of living beings.
Collapse
Affiliation(s)
- Lorraine Meyer
- Chrono-environnement UMR 6249, Université de Franche-Comté CNRS, F-25000 Besançon, France
| | - Stéphane Guyot
- Université de Bourgogne, Institut Agro, PAM UMR A 02.102, F-21000 Dijon, France
| | - Michel Chalot
- Chrono-environnement UMR 6249, Université de Franche-Comté CNRS, F-25000 Besançon, France; Université de Lorraine, F-54000 Nancy, France
| | - Nicolas Capelli
- Chrono-environnement UMR 6249, Université de Franche-Comté CNRS, F-25000 Besançon, France.
| |
Collapse
|