1
|
Manickavasagam G, He C, Lin KYA, Saaid M, Oh WD. Recent advances in catalyst design, performance, and challenges of metal-heteroatom-co-doped biochar as peroxymonosulfate activator for environmental remediation. ENVIRONMENTAL RESEARCH 2024; 252:118919. [PMID: 38631468 DOI: 10.1016/j.envres.2024.118919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 04/02/2024] [Accepted: 04/10/2024] [Indexed: 04/19/2024]
Abstract
The escalation of global water pollution due to emerging pollutants has gained significant attention. To address this issue, catalytic peroxymonosulfate (PMS) activation technology has emerged as a promising treatment approach for effectively decontaminating a wide range of pollutants. Recently, modified biochar has become an increasingly attractive as PMS activator. Metal-heteroatom-co-doped biochar (MH-BC) has emerged as a promising catalyst that can provide enhanced performance over heteroatom-doped and metal-doped biochar due to the synergism between metal and heteroatom in promoting PMS activation. Therefore, this review aims to discuss the fabrication pathways (i.e., internal vs external doping and pre-vs post-modification) and key parameters (i.e., source of precursors, synthesis methods, and synthesis conditions) affecting the performance of MH-BC as PMS activator. Subsequently, an overview of all the possible PMS activation pathways by MH-BC is provided. Subsequently, Also, the detection, identification, and quantification of several reactive species (such as, •OH, SO4•-, O2•-, 1O2, and high valent oxo species) generated in the catalytic PMS system by MH-BC are also evaluated. Lastly, the underlying challenges associated with poor stability, the lack of understanding regarding the interaction between metal and heteroatom during PMS activation and quantification of radicals in multi-ROS system are also deliberated.
Collapse
Affiliation(s)
| | - Chao He
- Faculty of Engineering and Natural Sciences, Tampere University, Tampere, Finland
| | - Kun-Yi Andrew Lin
- Department of Environmental Engineering & Innovation and Development Center of Sustainable Agriculture, National Chung Hsing University, 250, Kuo-Kuang Road, Taichung, Taiwan; Institute of Analytical and Environmental Sciences, National Tsing Hua University, Hsinchu, Taiwan
| | - Mardiana Saaid
- School of Chemical Sciences, Universiti Sains Malaysia, 11800, Penang, Malaysia
| | - Wen-Da Oh
- School of Chemical Sciences, Universiti Sains Malaysia, 11800, Penang, Malaysia.
| |
Collapse
|
2
|
Liu X, Wang L, Dou J, Qian F, Qing Z, Xie X, Song Y. Nitrogen-doped carbon materials prepared using different organic precursors as catalysts of peroxymonosulfate to degrade sulfamethoxazole: First-time performance leading to the incorrect selection of the best catalyst. CHEMOSPHERE 2023; 326:138442. [PMID: 36963571 DOI: 10.1016/j.chemosphere.2023.138442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 02/28/2023] [Accepted: 03/17/2023] [Indexed: 06/18/2023]
Abstract
Nitrogen-doped carbon materials are effective catalysts for peroxymonosulfate (PMS) activation to eliminate organic contaminants. In this research, the activity of nitrogen-doped carbon materials was significantly improved by optimizing the carbon source, and the reusability of the catalyst is used to select the best catalyst instead of depending on the performance in the first use, for avoiding the "short-life" catalyst with great initial activity. Fixing ferric nitrate nonahydrate and melamine as the metal and nitrogen sources, four catalysts were prepared using glucose, glucosamine hydrochloride, dopamine, and trimesic acid as the carbon sources, respectively. Based on the performance in PMS activation for sulfamethoxazole (SMX) removal, in the first use, the activity was Fe-DA-CN (carbon source: dopamine) > Fe-BTC-CN (carbon source: trimesic acid) > Fe-GLU-CN (carbon source: glucosamine) > Fe-DGLU-CN (carbon source: glucose). With no washing for the second time use, the activity was Fe-BTC-CN (0.135 min-1) ≫ Fe-DA-CN (0.037 min-1) > Fe-GLU-CN (0.032 min-1) > Fe-DGLU-CN (0.017 min-1). The large specific surface area, superior graphitization, and high CO/C-N group content endow Fe-BTC-CN with high ability in PMS activity. Surface-bound radicals are responsible for SMX elimination, and most of the SMX degradation intermediates have lower ecotoxicity than SMX.
Collapse
Affiliation(s)
- Xinyao Liu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China; College of Water Sciences, Beijing Normal University, Beijing, 100875, China
| | - Liangjie Wang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China; Water Science and Environmental Engineering Research Center, College of Chemical and Environmental Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Junfeng Dou
- College of Water Sciences, Beijing Normal University, Beijing, 100875, China
| | - Feng Qian
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China.
| | - Zhuolin Qing
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Xiaolin Xie
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Yonghui Song
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China; College of Water Sciences, Beijing Normal University, Beijing, 100875, China.
| |
Collapse
|
3
|
Wang L, Xiao K, Zhao H. The debatable role of singlet oxygen in persulfate-based advanced oxidation processes. WATER RESEARCH 2023; 235:119925. [PMID: 37028213 DOI: 10.1016/j.watres.2023.119925] [Citation(s) in RCA: 58] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 03/06/2023] [Accepted: 03/26/2023] [Indexed: 06/19/2023]
Abstract
Singlet oxygen (1O2) attracts much attention in persulfate-based advanced oxidation processes (PS-AOPs), because of its wide pH tolerance and high selectivity toward electron-rich organics. However, there are conflicts about the 1O2 role in PS-AOPs on several aspects, including the formation of different key reactive oxygen species (ROS) at similar active sites, pH dependence, broad-spectrum activity, and selectivity in the elimination of organic pollutants. To a large degree, these conflicts root in the drawbacks of the methods to identify and evaluate the role of 1O2. For example, the quenchers of 1O2 have high reactivity to other ROS and persulfate as well. In addition, electron transfer process (ETP) also selectively oxidizes organics, having a misleading effect on the identification of 1O2. Therefore, in this review, we summarized and discussed some basic properties of 1O2, the debatable role of 1O2 in PS-AOPs on multiple aspects, and the methods and their drawbacks to identify and evaluate the role of 1O2. On the whole, this review aims to better understand the role of 1O2 in PS-AOPs and further help with its reasonable utilization.
Collapse
Affiliation(s)
- Liangjie Wang
- Water Science and Environmental Engineering Research Center, College of Chemical and Environmental Engineering, Shenzhen University, Shenzhen, 518060, China; The Key Laboratory of Water and Sediment Sciences (Ministry of Education), College of Environmental Sciences and Engineering, Peking University, Beijing, 100871, China
| | - Ke Xiao
- Water Science and Environmental Engineering Research Center, College of Chemical and Environmental Engineering, Shenzhen University, Shenzhen, 518060, China.
| | - Huazhang Zhao
- The Key Laboratory of Water and Sediment Sciences (Ministry of Education), College of Environmental Sciences and Engineering, Peking University, Beijing, 100871, China; Shanxi Laboratory for Yellow River, Shanxi University, Taiyuan, 030006, China.
| |
Collapse
|
4
|
Ramanathan S, Kasemchainan J, Chuang HC, Sobral AJFN, Poompradub S. Rhodamine B dye degradation using used face masks-derived carbon coupled with peroxymonosulfate. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 324:121386. [PMID: 36868547 DOI: 10.1016/j.envpol.2023.121386] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 02/25/2023] [Accepted: 02/28/2023] [Indexed: 06/18/2023]
Abstract
Catalytic carbon materials from used face masks (UFM) activated by peroxymonosulfate (PMS) were developed for the degradation of rhodamine B (RhB) dye in aqueous solution. The UFM-derived carbon (UFMC) catalyst had a relatively large surface area as well as active functional groups and promoted the generation of singlet 1O2 and radicals from PMS, giving a high RhB degradation performance (98.1% after 3 h) in the presence of 3 mM PMS. The UFMC could degrade only 13.7% at a minimal RhB dose of 10-5 M. The principal reactive oxygen species of sulphate (SO4•), hydroxyl radicals (•OH), and singlet 1O2 were discovered using electron paramagnetic resonance and radical scavenger studies. Finally, a toxicological plant and bacterial study was performed to demonstrate the potential non-toxicity of the degraded RhB water sample.
Collapse
Affiliation(s)
- Subramaninan Ramanathan
- Department of Chemical Technology, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Jitti Kasemchainan
- Department of Chemical Technology, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Ho-Chiao Chuang
- Department of Mechanical Engineering, National Taipei University of Technology, Taipei, 10608, Taiwan
| | | | - Sirilux Poompradub
- Department of Chemical Technology, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand; Center of Excellence in Green Materials for Industrial Application, Faculty of Science, Chulanongkorn University, Bangkok, 10330, Thailand.
| |
Collapse
|