1
|
Liu C, Zhang W, Zhao Z, Wang Y, Qi P, Liu X. Directional Freeze-Drying-Mediated Chitosan Aerogel with Ordered Structure Allowing High-Efficient Removal of Se(IV) from Wastewater. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:19116-19124. [PMID: 39177968 DOI: 10.1021/acs.langmuir.4c02229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/24/2024]
Abstract
The progress of industrialization has led to a notable elevation in selenium (Se) levels within aquatic environments, surpassing established thresholds and posing significant risks to both human health and ecological equilibrium. Chitosan (CS) exhibits considerable potential in mitigating waterborne pollutants owing to its nontoxic nature, cost-effectiveness, and the presence of abundant hydroxyl and amino functional groups along its backbone. However, its subpar mechanical and thermal stability, susceptibility to acidic dissolution, and challenges in recycling impede its widespread use in water pollution mitigation. To address the aforementioned issues, this study employs a liquid nitrogen-directed freezing process to synthesize chitosan aerogel, aiming to enhance the adsorption efficiency of Se(IV). Morphological and adsorption tests demonstrate that the compact and closely interconnected porous structure facilitates diffusion of Se(IV) into the aerogel, thereby enhancing its adsorption efficiency. The theoretical adsorption capacity of the CS aerogel for Se(IV) is 56.45 mg/g, surpassing that of numerous natural and composite adsorbents, with adsorption equilibrium achieved within 2.5 h. Moreover, the CS aerogel demonstrates substantial potential in remediating Se(IV)-contaminated wastewater and improving circulation stability. A series of characterization results demonstrate that the primary adsorption mechanism of the CS aerogel onto Se(IV) involves electrostatic interactions, complemented by hydrogen bonding between the amino and hydroxyl groups of the CS aerogel and Se(IV), thereby augmenting the adsorption efficacy. This study introduces innovative avenues for tailoring the functionality of 3D macroscopic materials to address the remediation of heavy metals in aquatic environments.
Collapse
Affiliation(s)
- Caiyu Liu
- College of Chemistry and Chemical Engineering, Qingdao University, Qingdao 266071, PR China
| | - Wenliang Zhang
- College of Chemistry and Chemical Engineering, Qingdao University, Qingdao 266071, PR China
| | - Zhongshan Zhao
- College of Chemistry and Chemical Engineering, Qingdao University, Qingdao 266071, PR China
| | - Yan Wang
- College of Chemistry and Chemical Engineering, Qingdao University, Qingdao 266071, PR China
| | - Pengfei Qi
- College of Materials Science and Engineering, State Key Laboratory of Bio-Fiber and Eco-textiles, Collaborative Innovation Center for Marine Biobased Fibers and Ecological Textiles, Institute of Marine Biobased Materials, Qingdao University, Qingdao 266071, PR China
| | - Xiaomin Liu
- College of Chemistry and Chemical Engineering, Qingdao University, Qingdao 266071, PR China
| |
Collapse
|
2
|
Peng L, Li W, Du J, Zhang M, Zhao L. Efficient removal of p-nitrophenol from water by imidazolium ionic liquids functionalized cellulose microsphere. Int J Biol Macromol 2024; 273:133117. [PMID: 38871098 DOI: 10.1016/j.ijbiomac.2024.133117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 05/31/2024] [Accepted: 06/10/2024] [Indexed: 06/15/2024]
Abstract
Removing p-nitrophenol (PNP) from water resources is crucial due to its significant threat to the environment and human health. Herein, imidazolium ionic liquids with short/long alkyl chain ([C2VIm]Br and [C8VIm]Br) modified cellulose microspheres (MCC-[C2VIm]Br and MCC-[C8VIm]Br) were synthesized by radiation method. To examine the impact of adsorbent hydrophilicity on adsorption performance, batch and column experiments were conducted for PNP adsorption. The MCC-[C2VIm]Br and MCC-[C8VIm]Br, with an equivalent molar import amount of ionic liquids, exhibited maximum adsorption capacities of 190.84 mg/g and 191.20 mg/g for PNP, respectively, and the adsorption equilibrium was reached within 30 min. Both adsorbents displayed exceptional reusability. Integrating the findings from XPS and FTIR analyses, and AgNO3 identification, the suggested adsorption mechanism posited that the adsorbents engaged with PNP through ion exchange, hydrogen bonds and π-π stacking. Remarkably, the hydrophobic MCC-[C8VIm]Br exhibited superior selectivity for PNP than the hydrophilic MCC-[C2VIm]Br, while had little effect on adsorption capacity and rate. MCC-[C8VIm]Br-2 with high grafting yield increased the adsorption capacity to 327.87 mg/g. Moreover, MCC-[C8VIm]Br-2 demonstrated efficient PNP removal from various real water samples, and column experiments illustrated its selective capture of PNP from groundwater. The promising adsorption performance indicates that MCC-[C8VIm]Br-2 holds potential for PNP removal from wastewater.
Collapse
Affiliation(s)
- Lifang Peng
- Hubei Key Laboratory of Radiation Chemistry and Functional Materials, School of Nuclear Technology and Chemistry & Biology, Hubei University of Science and Technology, Xianning 437100, China; State Key Laboratory of Advanced Electromagnetic Engineering and Technology, School of Electrical and Electronic Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Wenkang Li
- State Key Laboratory of Advanced Electromagnetic Engineering and Technology, School of Electrical and Electronic Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Jifu Du
- Hubei Key Laboratory of Radiation Chemistry and Functional Materials, School of Nuclear Technology and Chemistry & Biology, Hubei University of Science and Technology, Xianning 437100, China.
| | - Manman Zhang
- School of Chemical and Environmental Engineering, Wuhan Polytechnic University, Wuhan 430040, China.
| | - Long Zhao
- State Key Laboratory of Advanced Electromagnetic Engineering and Technology, School of Electrical and Electronic Engineering, Huazhong University of Science and Technology, Wuhan 430074, China.
| |
Collapse
|
3
|
Xie J, Latif J, Yang K, Wang Z, Zhu L, Yang H, Qin J, Ni Z, Jia H, Xin W, Li X. A state-of-art review on the redox activity of persistent free radicals in biochar. WATER RESEARCH 2024; 255:121516. [PMID: 38552490 DOI: 10.1016/j.watres.2024.121516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 03/04/2024] [Accepted: 03/23/2024] [Indexed: 04/24/2024]
Abstract
Biochar-bound persistent free radicals (biochar-PFRs) attract much attention because they can directly or indirectly mediate the transformation of contaminants in large-scale wastewater treatment processes. Despite this, a comprehensive top-down understanding of the redox activity of biochar-PFRs, particularly consumption and regeneration mechanisms, as well as challenges in redox activity assessment, is still lacking. To tackle this challenge, this review outlines the identification and determination methods of biochar-PFRs, which serve as a prerequisite for assessing the redox activity of biochar-PFRs. Recent developments concerning biochar-PFRs are discussed, with a main emphasis on the reaction mechanisms (both non-free radical and free radical pathways) and their effectiveness in removing contaminants. Importantly, the review delves into the mechanism of biochar-PFRs regeneration, triggered by metal cations, reactive oxygen species, and ultraviolet radiations. Furthermore, this review thoroughly explores the dilemma in appraising the redox activity of biochar-PFRs. Components with unpaired electrons (particular defects and metal ions) interfere with biochar-PFRs signals in electron paramagnetic resonance spectra. Scavengers and extractants of biochar-PFRs also inevitably modify the active ingredients of biochar. Based on these analyses, a practical strategy is proposed to precisely determine the redox activity of biochar-PFRs. Finally, the review concludes by presenting current gaps in knowledge and offering suggestions for future research. This comprehensive examination aims to provide new and significant insights into the redox activity of biochar-PFRs.
Collapse
Affiliation(s)
- Jia Xie
- Key Laboratory of Low-carbon Green Agriculture in Northwestern China, Ministry of Agriculture and Rural Affairs, College of Natural Resources and Environment, Northwest A & F University, Yangling 712100, China
| | - Junaid Latif
- Key Laboratory of Low-carbon Green Agriculture in Northwestern China, Ministry of Agriculture and Rural Affairs, College of Natural Resources and Environment, Northwest A & F University, Yangling 712100, China
| | - Kangjie Yang
- Key Laboratory of Low-carbon Green Agriculture in Northwestern China, Ministry of Agriculture and Rural Affairs, College of Natural Resources and Environment, Northwest A & F University, Yangling 712100, China
| | - Zhiqiang Wang
- Key Laboratory of Low-carbon Green Agriculture in Northwestern China, Ministry of Agriculture and Rural Affairs, College of Natural Resources and Environment, Northwest A & F University, Yangling 712100, China
| | - Lang Zhu
- Key Laboratory of Low-carbon Green Agriculture in Northwestern China, Ministry of Agriculture and Rural Affairs, College of Natural Resources and Environment, Northwest A & F University, Yangling 712100, China
| | - Huiqiang Yang
- Key Laboratory of Low-carbon Green Agriculture in Northwestern China, Ministry of Agriculture and Rural Affairs, College of Natural Resources and Environment, Northwest A & F University, Yangling 712100, China
| | - Jianjun Qin
- Key Laboratory of Low-carbon Green Agriculture in Northwestern China, Ministry of Agriculture and Rural Affairs, College of Natural Resources and Environment, Northwest A & F University, Yangling 712100, China
| | - Zheng Ni
- Key Laboratory of Low-carbon Green Agriculture in Northwestern China, Ministry of Agriculture and Rural Affairs, College of Natural Resources and Environment, Northwest A & F University, Yangling 712100, China
| | - Hanzhong Jia
- Key Laboratory of Low-carbon Green Agriculture in Northwestern China, Ministry of Agriculture and Rural Affairs, College of Natural Resources and Environment, Northwest A & F University, Yangling 712100, China.
| | - Wang Xin
- College of Chemistry and Environmental Science, Inner Mongolia Normal University, Huhhot 010022, China
| | - Xing Li
- College of Chemistry and Environmental Science, Inner Mongolia Normal University, Huhhot 010022, China
| |
Collapse
|
4
|
Gao Y, Chen H, Fang Z, Niazi NK, Adusei-Fosu K, Li J, Yang X, Liu Z, Bolan NS, Gao B, Hou D, Sun C, Meng J, Chen W, Quin BF, Wang H. Coupled sorptive and oxidative antimony(III) removal by iron-modified biochar: Mechanisms of electron-donating capacity and reactive Fe species. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 337:122637. [PMID: 37769707 DOI: 10.1016/j.envpol.2023.122637] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 09/11/2023] [Accepted: 09/25/2023] [Indexed: 10/02/2023]
Abstract
Sorption and oxidation are two potential pathways for the decontamination of trivalent antimony (Sb(III))-bearing water, using iron (Fe)-modified biochar (FeBC). Here we investigated the sorption and oxidation behavior of FeBC for Sb(III) in aqueous solutions. Results revealed that Sb(III) removal by FeBC was significantly improved showing the maximum Sb(III) sorption (64.0 mg g-1). Density functional theory (DFT) calculations indicated that magnetite (Fe3O4) in FeBC offered a sorption energy of -0.22 eV, which is 5 times that of non-modified biochar. With the addition of peroxymonosulfate (PMS), the sorption of Sb(III) on FeBC was 7 times higher than that on BC, indicating the sorption capacity of FeBC for Sb(III) could be substantially increased by adding oxidizing agents. Electrochemical analysis showed that Fe modification imparted FeBC higher electron-donating capacity than that of BC (0.045 v. s. 0.023 mmol e- (g biochar)-1), which might be the reason for the strong Sb(III) oxidation (63.6%) on the surface of FeBC. This study provides new information that is key for the development of effective biochar-based composite materials for the removal of Sb(III) from drinking water and wastewater. The findings from this study have important implications for protecting human health and agriculture.
Collapse
Affiliation(s)
- Yurong Gao
- School of Environmental and Chemical Engineering, Foshan University, Foshan, Guangdong, 528000, China
| | - Hanbo Chen
- Key Laboratory of Recycling and Eco-treatment of Waste Biomass of Zhejiang Province, School of Environmental and Natural Resources, Zhejiang University of Science & Technology, Hangzhou, 310023, China
| | - Zheng Fang
- School of Environmental and Chemical Engineering, Foshan University, Foshan, Guangdong, 528000, China
| | - Nabeel Khan Niazi
- Institute of Soil and Environmental Sciences, University of Agriculture Faisalabad, Faisalabad, 38040, Pakistan
| | - Kwasi Adusei-Fosu
- Resilient Agriculture, AgResearch Ltd., Grasslands Research Centre, Palmerston North, New Zealand
| | - Jianhong Li
- Rubber Research Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, China
| | - Xing Yang
- Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province, College of Ecology and Environment, Hainan University, Renmin Road, Haikou, 570228, China
| | - Zhongzhen Liu
- Institute of Agricultural Resources and Environment, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China
| | - Nanthi S Bolan
- School of Agriculture and Environment, The University of Western Australia, Perth, WA 6001, Australia; The UWA Institute of Agriculture, The University of Western Australia, Perth, WA 6001, Australia
| | - Bin Gao
- Department of Civil and Environmental Engineering, Rensselaer Polytechnic Institute, Troy, NY 12180, United States
| | - Deyi Hou
- School of Environment, Tsinghua University, Beijing, 100084, China
| | - Chenghua Sun
- Department of Chemistry and Biotechnology, Center for Translational Atomaterials, Swinburne University of Technology, Hawthorn, VIC, 3122, Australia
| | - Jun Meng
- Agronomy College, Shenyang Agricultural University, Shenyang, 110866, China
| | - Wenfu Chen
- Agronomy College, Shenyang Agricultural University, Shenyang, 110866, China
| | - Bert F Quin
- Quin Environmentals (NZ) Ltd., PO Box 125122, St. Heliers, Auckland, 1740, New Zealand
| | - Hailong Wang
- School of Environmental and Chemical Engineering, Foshan University, Foshan, Guangdong, 528000, China; Agronomy College, Shenyang Agricultural University, Shenyang, 110866, China.
| |
Collapse
|
5
|
He Y, Sun R, Zhang D, Wang Y, Zhou S, Deng X, Wang B, Hu G. Separable alginate gel spheres encapsulated with La-Fe modified biochar for efficient adsorption of Sb(III) with high capacity. JOURNAL OF HAZARDOUS MATERIALS 2023; 460:132322. [PMID: 37657320 DOI: 10.1016/j.jhazmat.2023.132322] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Revised: 07/31/2023] [Accepted: 08/15/2023] [Indexed: 09/03/2023]
Abstract
Sb and its compounds have been widely used in various industrial applications. Therefore, the preparation of Sb adsorbents with easy recovery and excellent adsorption levels is an urgent problem that must be resolved. By calcining and treating La/Fe metal-organic frameworks (MOF) biochar as a precursor, a loaded La-Fe-modified water hyacinth biochar was synthesised and used as a filler to synthesise iron alginate composite gel spheres, MBC/algFe. Through a series of static adsorption experiments, the effects of different filler addition ratios, solution pH, reaction time, coexisting ions, and other factors on the adsorption of Sb(III) were investigated. According to the Langmuir model, the maximum adsorption capacity of MBC/algFe at 25 ℃ was 277.8 mg·g-1. The adsorption mechanism mainly involved hydrogen bonding and metal-organic complexation interactions.
Collapse
Affiliation(s)
- Yingnan He
- Yunnan Key Laboratory of Metal-Organic Molecular Materials and Device, School of Chemistry and Chemical Engineering, Kunming University, Kunming 650214, China; Institute for Ecological Research and Pollution Control of Plateau Lakes, School of Ecology and Environmental Science, Yunnan University, Kunming 650504, China
| | - Ruiyi Sun
- Institute for Ecological Research and Pollution Control of Plateau Lakes, School of Ecology and Environmental Science, Yunnan University, Kunming 650504, China
| | - Dafeng Zhang
- School of Materials Science and Engineering, Liaocheng University, Liaocheng 252000, China
| | - Yin Wang
- Hubei Key Laboratory of Low Dimensional Optoelectronic Materials and Devices, Hubei University of Arts and Science, Xiangyang 441053, China
| | - Shuxing Zhou
- Hubei Key Laboratory of Low Dimensional Optoelectronic Materials and Devices, Hubei University of Arts and Science, Xiangyang 441053, China.
| | - Xiujun Deng
- Yunnan Key Laboratory of Metal-Organic Molecular Materials and Device, School of Chemistry and Chemical Engineering, Kunming University, Kunming 650214, China.
| | - Baoling Wang
- Yunnan Key Laboratory of Metal-Organic Molecular Materials and Device, School of Chemistry and Chemical Engineering, Kunming University, Kunming 650214, China
| | - Guangzhi Hu
- Institute for Ecological Research and Pollution Control of Plateau Lakes, School of Ecology and Environmental Science, Yunnan University, Kunming 650504, China.
| |
Collapse
|
6
|
Yang W, Zhang L, Li M, Zhang T, Liu Y, Liu J. KOH-modified bamboo charcoal loaded with α-FeOOH for efficient adsorption of copper and fluoride ions from aqueous solution. RSC Adv 2023; 13:30176-30189. [PMID: 37849693 PMCID: PMC10577395 DOI: 10.1039/d3ra05315f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 10/09/2023] [Indexed: 10/19/2023] Open
Abstract
In this work, bamboo charcoal (BC) is prepared by pyrolysis of bamboo. Then, KOH modification and surface deposition of Goethite (α-FeOOH) are performed to obtain a new KOH-modified BC loaded with α-FeOOH (FKBC) adsorbent for copper (Cu2+) and fluoride (F-) ion adsorption from aqueous solution. Surface morphology and physiochemical properties of the prepared adsorbent are characterized by scanning electron microscopy-energy dispersive spectrometer, X-ray diffraction, and N2 adsorption-desorption. The effect of pH, contact time, adsorbent dosage, and initial concentration on Cu2+ and F- adsorption is also investigated. In addition, adsorption kinetics and isotherms are fitted to pseudo-second-order kinetics and Langmuir model, respectively. Thermodynamic parameters suggest that the adsorption process is spontaneous and endothermic. The adsorption mechanism is further characterized by Fourier transform infrared spectroscopy and X-ray photoelectron spectroscopy. The Cu2+ absorption mainly occurs through ion exchange, coordination reactions, and surface precipitation, while the F- adsorption mainly occurs via ion exchange and hydrogen bonding. The selective adsorption experiments reveal that FKBC has good selectivity for Cu2+ and F-. The adsorption-desorption experimental results indicate that FKBC can be reused for Cu2+ and F- adsorption after regeneration. Results indicate that FKBC can be a promising adsorbent for Cu2+ and F- removal from aqueous solutions.
Collapse
Affiliation(s)
- Wei Yang
- School of Environmental Science and Engineering, Hubei Polytechnic University Huangshi 435003 Hubei China
| | - Lei Zhang
- MWR Standard & Quality Control Research Institute Hangzhou 310024 Zhejiang China
| | - Meng Li
- School of Civil Engineering and Architecture, Wuhan University of Technology Wuhan 430070 Hubei China
| | - Ting Zhang
- School of Environmental Science and Engineering, Hubei Polytechnic University Huangshi 435003 Hubei China
| | - Yue Liu
- School of Environmental Science and Engineering, Hubei Polytechnic University Huangshi 435003 Hubei China
| | - Juan Liu
- School of Environmental Science and Engineering, Hubei Polytechnic University Huangshi 435003 Hubei China
| |
Collapse
|