1
|
Yang W, Gong W, Zhu L, Ma X, Xu W. Novel catalytic behavior of defective nanozymes with catalase-mimicking characteristics for the degradation of tetracycline. J Colloid Interface Sci 2025; 677:952-966. [PMID: 39178674 DOI: 10.1016/j.jcis.2024.08.131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Revised: 08/16/2024] [Accepted: 08/17/2024] [Indexed: 08/26/2024]
Abstract
Although nanozymes have shown significant potential in wastewater treatment, enhancing their degradation performance remains challenging. Herein, a novel catalytic behavior was revealed for defective nanozymes with catalase-mimicking characteristics that efficiently degraded tetracycline (TC) in wastewater. Hydroxyl groups adsorbed on defect sites facilitated the in-situ formation of vacancies during catalysis, thereby replenishing active sites. Additionally, electron transfer considerably enhanced the catalytic reaction. Consequently, numerous reactive oxygen species (ROS) were generated through these processes and subsequent radical reactions. The defective nanozymes, with their unique catalytic behavior, proved effective for the catalytic degradation of TC. Experimental results demonstrate that •OH, •O2-, 1O2 and e- were the primary contributors to the degradation process. In real wastewater samples, the normalized degradation rate constant for defective nanozymes reached 26.0 min-1 g-1 L, exceeding those of other catalysts. This study reveals the new catalytic behavior of defective nanozymes and provides an effective advanced oxidation process for the degradation of organic pollutants.
Collapse
Affiliation(s)
- Wenping Yang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Wenbin Gong
- School of Physics and Energy, Xuzhou University of Technology, Xuzhou 221018, China
| | - Longjiao Zhu
- Food Laboratory of Zhongyuan, Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing 100193, China
| | - Xuan Ma
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Wentao Xu
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; Food Laboratory of Zhongyuan, Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
2
|
Adıgüzel AO, Yabalak E, Cilmeli S, Durgun RT, Kaya NG. Robust peroxidase from Bacillus mojavensis TH309: Immobilization on walnut shell hydrochar and evaluation of its potential in dye decolorization. Int J Biol Macromol 2024; 277:134525. [PMID: 39111491 DOI: 10.1016/j.ijbiomac.2024.134525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 08/02/2024] [Accepted: 08/04/2024] [Indexed: 09/06/2024]
Abstract
Peroxidases have received considerable attention as a cost-effective and environmentally friendly catalyst for bioremediation. Their rapid activity loss under harsh environmental conditions and inability to be used repetitively limit their exploitation in real-world wastewater treatment. First, a peroxidase was produced extracellularly by Bacillus mojavensis TH309 and purified 8.12-fold with a final yield of 47.10 % using Sephadex G-100 superfine resin. The pure peroxidase (BmPer) possessed a relatively low molecular weight of ∼21 kDa and was active against L-DOPA on acrylamide gel after electrophoresis. BmPer was immobilized by adsorption functionalized walnut shell hydrochar (WsH) with 61.99 ± 1.34 % efficiency and 37.07 ± 4.16 % activity loss. BmPer and its immobilized form (WsH-BmPer) exhibited maximum activity at 50 °C and pH 9. WsH-BmPer exhibited 3.23-, 2.37-, 1.65-, and 2.25-fold longer half-life than BmPer at 50, 60, 70, and 80 °C, respectively. Immobilization significantly enhanced the stability of the enzyme under acidic conditions. BmPer and WsH-BmPer showed maximal activity in the presence of 1 % salt and retained more than 85 % of their activity even after pre-incubation with 2.5 M salt for 60 min at 50 °C. Their catalytic efficiency was significantly stimulated by pre-incubation with Triton X-100 (1 mM), Tween20 (1 mM), and Mg2+ (1 and 10 mM). Immobilization strongly reduced the loss of activity caused by inhibitors including Ba2+, Hg2+, and Cu2+. Moreover, both forms of the enzyme were compatible with solvents. The Michaelis constant (Km) values of BmPer and WsH-BmPer were 0.88 and 2.66 mM for 2,4 DCP, respectively. WsH-BmPer peroxidase maintained about 82 % and 85 % of its activity when stored at 4 °C for 30 days and reused for up to 10 cycles, respectively. Furthermore, it decolorized Cibacron red (CR), Poly R-478 (PR), Remazol Brilliant Blue R (RBBR), and Methyl red (MR) dyes by 60.13 %, 91.34 %, 86.41 %, and 50.51 % within 60 min, respectively.
Collapse
Affiliation(s)
- Ali Osman Adıgüzel
- Ondokuz Mayıs University, Science Faculty, Department of Molecular Biology and Genetics, Samsun, Turkey.
| | - Erdal Yabalak
- Mersin University, Department of Nanotechnology and Advanced Materials, Mersin, Turkey; Department of Chemistry and Chemical Processing Technologies, Technical Science Vocational School, Mersin University, 33343 Mersin, Turkey.
| | - Sümeyye Cilmeli
- Ondokuz Mayıs University, Science Faculty, Department of Molecular Biology and Genetics, Samsun, Turkey
| | - Recep Tayyip Durgun
- Ondokuz Mayıs University, Science Faculty, Department of Molecular Biology and Genetics, Samsun, Turkey
| | - Nisa Gül Kaya
- Ondokuz Mayıs University, Science Faculty, Department of Molecular Biology and Genetics, Samsun, Turkey
| |
Collapse
|
3
|
Weber AC, da Silva BE, Cordeiro SG, Henn GS, Costa B, Dos Santos JSH, Corbellini VA, Ethur EM, Hoehne L. Immobilization of Horseradish Peroxidase on Ca Alginate-Starch Hybrid Support: Biocatalytic Properties and Application in Biodegradation of Phenol Red Dye. Appl Biochem Biotechnol 2024; 196:4759-4792. [PMID: 37950796 DOI: 10.1007/s12010-023-04772-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/31/2023] [Indexed: 11/13/2023]
Abstract
In this study, horseradish peroxidase was extracted, purified, and immobilized on a calcium alginate-starch hybrid support by covalent bonding and entrapment. The immobilized HRP was used for the biodegradation of phenol red dye. A 3.74-fold purification was observed after precipitation with ammonium sulfate and dialysis. An immobilization yield of 88.33%, efficiency of 56.89%, and activity recovery of 50.26% were found. The optimum pH and temperature values for immobilized and free HRP were 5.0 and 50 °C and 6.5 and 60 °C, respectively. The immobilized HRP showed better thermal stability than its free form, resulting in a considerable increase in half-life time (t1/2) and deactivation energy (Ed). The immobilized HRP maintained 93.71% of its initial activity after 45 days of storage at 4 °C. Regarding the biodegradation of phenol red, immobilized HRP resulted in 63.57% degradation after 90 min. After 10 cycles of reuse, the immobilized HRP was able to maintain 43.06% of its initial biodegradative capacity and 42.36% of its enzymatic activity. At the end of 15 application cycles, a biodegradation rate of 8.34% was observed. In conclusion, the results demonstrate that the immobilized HRP is a promising option for use as an industrial biocatalyst in various biotechnological applications.
Collapse
Affiliation(s)
- Ani Caroline Weber
- Postgraduate Program in Biotechnology, University of Vale do Taquari - Univates, Av. Avelino Talini, 171, Lajeado, RS, ZIP CODE 95914-014, Brazil
| | - Bruno Eduardo da Silva
- Postgraduate Program in Biotechnology, University of Vale do Taquari - Univates, Av. Avelino Talini, 171, Lajeado, RS, ZIP CODE 95914-014, Brazil
| | - Sabrina Grando Cordeiro
- Postgraduate Program in Biotechnology, University of Vale do Taquari - Univates, Av. Avelino Talini, 171, Lajeado, RS, ZIP CODE 95914-014, Brazil
| | - Guilherme Schwingel Henn
- Postgraduate Program in Biotechnology, University of Vale do Taquari - Univates, Av. Avelino Talini, 171, Lajeado, RS, ZIP CODE 95914-014, Brazil
| | - Bruna Costa
- Postgraduate Program in Biotechnology, University of Vale do Taquari - Univates, Av. Avelino Talini, 171, Lajeado, RS, ZIP CODE 95914-014, Brazil
| | - Jéssica Samara Herek Dos Santos
- Postgraduate Program in Biotechnology, University of Vale do Taquari - Univates, Av. Avelino Talini, 171, Lajeado, RS, ZIP CODE 95914-014, Brazil
| | | | - Eduardo Miranda Ethur
- Postgraduate Program in Biotechnology, University of Vale do Taquari - Univates, Av. Avelino Talini, 171, Lajeado, RS, ZIP CODE 95914-014, Brazil
| | - Lucélia Hoehne
- Postgraduate Program in Biotechnology, University of Vale do Taquari - Univates, Av. Avelino Talini, 171, Lajeado, RS, ZIP CODE 95914-014, Brazil.
| |
Collapse
|
4
|
Bakar B, Akbulut M, Ulusal F, Ulu A, Özdemir N, Ateş B. Horseradish Peroxidase Immobilized onto Mesoporous Magnetic Hybrid Nanoflowers for Enzymatic Decolorization of Textile Dyes: A Highly Robust Bioreactor and Boosted Enzyme Stability. ACS OMEGA 2024; 9:24558-24573. [PMID: 38882139 PMCID: PMC11170722 DOI: 10.1021/acsomega.4c00703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 05/14/2024] [Accepted: 05/17/2024] [Indexed: 06/18/2024]
Abstract
Recently, hybrid nanoflowers (hNFs), which are accepted as popular carrier supports in the development of enzyme immobilization strategies, have attracted much attention. In this study, the horseradish peroxidase (HRP) was immobilized to mesoporous magnetic Fe3O4-NH2 by forming Schiff base compounds and the HRP@Fe3O4-NH2/hNFs were then synthesized. Under optimal conditions, 95.0% of the available HRP was immobilized on the Fe3O4-NH2/hNFs. Structural morphology and characterization of synthesized HRP@Fe3O4-NH2/hNFs were investigated. The results demonstrated that the average size of HRP@Fe3O4-NH2/hNFs was determined to be around 220 nm. The ζ-potential and magnetic saturation values of HRP@Fe3O4-NH2/hNFs were -33.58 mV and ∼30 emu/g, respectively. Additionally, the optimum pH, optimum temperature, thermal stability, kinetic parameters, reusability, and storage stability were examined. It was observed that the optimum pH value shifted from 5.0 to pH 8.0 after immobilization, while the optimum temperature shifted from 30 to 80 °C. K m values were calculated to be 15.5502 and 7.6707 mM for free HRP and the HRP@Fe3O4-NH2/hNFs, respectively, and V max values were calculated to be 0.0701 and 0.0038 mM min-1. The low K m value observed after immobilization indicated that the affinity of HRP for its substrate increased. The HRP@Fe3O4-NH2/hNFs showed higher thermal stability than free HRP, and its residual activity after six usage cycles was approximately 45%. While free HRP lost all of its activity within 120 min at 65 °C, the HRP@Fe3O4-NH2/hNFs retained almost all of its activity during the 6 h incubation period at 80 °C. Most importantly, the HRP@Fe3O4-NH2/hNFs demonstrated good potential efficiency for the biodegradation of methyl orange, phenol red, and methylene blue dyes. The HRP@Fe3O4-NH2/hNFs were used for a total of 8 cycles to degrade methyl orange, phenol red, and methylene blue, and degradation of around 81, 96, and 56% was obtained in 8 h, respectively. Overall, we believe that the HRP@Fe3O4-NH2/hNFs reported in this work can be potentially used in various industrial and environmental applications, particularly for the biodegradation of recalcitrant compounds, such as textile dyes.
Collapse
Affiliation(s)
- Büşra Bakar
- Biochemistry and Biomaterials Research Laboratory, Department of Chemistry, Faculty of Arts and Science, İnönü University, 44280 Malatya, Türkiye
| | - Mustafa Akbulut
- Department of Chemistry, Faculty of Science, Erciyes University, 38280 Kayseri, Türkiye
| | - Fatma Ulusal
- Department of Chemistry and Chemical Process Technologies, Vocational School of Technical Sciences, Tarsus University, 33400, Mersin, Türkiye
| | - Ahmet Ulu
- Biochemistry and Biomaterials Research Laboratory, Department of Chemistry, Faculty of Arts and Science, İnönü University, 44280 Malatya, Türkiye
| | - Nalan Özdemir
- Department of Chemistry, Faculty of Science, Erciyes University, 38280 Kayseri, Türkiye
| | - Burhan Ateş
- Biochemistry and Biomaterials Research Laboratory, Department of Chemistry, Faculty of Arts and Science, İnönü University, 44280 Malatya, Türkiye
| |
Collapse
|
5
|
Mahato P, Arshad F, Palmisano G, Zou L. Immobilized enzymatic membrane surfaces for biocatalytic organics removal and fouling resistance. CHEMOSPHERE 2024; 358:142145. [PMID: 38670514 DOI: 10.1016/j.chemosphere.2024.142145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 04/20/2024] [Accepted: 04/24/2024] [Indexed: 04/28/2024]
Abstract
This research reported on the immobilization of environmentally friendly enzymes, such as horseradish peroxidase (HRP) and laccase (L), along with the hydrophilic zwitterionic compound l-DOPA on nano-filtration (NF) membranes. This approach introduced biocatalytic membranes, leveraging combined effects between membranes and enzymes. The aim was to systematically assess the efficacy of the enzymatic modified membrane (HRP-NF) in degrading colors in the wastewater, as well as enhancing the membrane resistance toward organic fouling. The enzymatic immobilized membrane demonstrated 96.3 ± 1.8% to 96.6 ± 1.9% removal of colors, and 65.2 ± 1.3% to 67.2 ± 1.3% removal of TOC. This result was underpinned by the insights obtained from the radical scavenger coumarin, which was employed to trap and confirm the formation of PRs through the reaction of enzymes and H2O2. Furthermore, membranes modified with enzymes exhibited significantly improved antifouling properties. The HRP-NF membrane experienced an 8% decline in flux, while the co-immobilized HRP-L-NF membrane demonstrated as low as 6% flux decline, contributed by the synergistic effect of increased hydrophilicity and biocatalytic effects. These findings confirmed that the immobilized enzymatic surface has added function of degrading contaminants in addition to separation function of nanofiltration membrane. These l-DOPA-immobilized enzymatic membranes offered a promising hybrid biocatalytic membrane to eliminate dyes and mitigate membrane fouling, which can be applied in many industrial and domestic water and wastewater treatment.
Collapse
Affiliation(s)
- Prativa Mahato
- Department of Civil Infrastructure and Environmental Engineering, Khalifa University, PO Box, 127788, Abu Dhabi, United Arab Emirates
| | - Fathima Arshad
- Department of Civil Infrastructure and Environmental Engineering, Khalifa University, PO Box, 127788, Abu Dhabi, United Arab Emirates
| | - Giovanni Palmisano
- Department of Chemical and Petroleum Engineering and Research and Innovation Center on CO(2) and Hydrogen (RICH Center), Khalifa University, PO Box, 127788, Abu Dhabi, United Arab Emirates
| | - Linda Zou
- Department of Civil Infrastructure and Environmental Engineering, Khalifa University, PO Box, 127788, Abu Dhabi, United Arab Emirates.
| |
Collapse
|
6
|
Senthil Rathi B, Ewe LS, S S, S S, Yew WK, R B, Tiong SK. Recent trends and advancement in metal oxide nanoparticles for the degradation of dyes: synthesis, mechanism, types and its application. Nanotoxicology 2024; 18:272-298. [PMID: 38821108 DOI: 10.1080/17435390.2024.2349304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 03/30/2024] [Indexed: 06/02/2024]
Abstract
Synthetic dyes play a crucial role in our daily lives, especially in clothing, leather accessories, and furniture manufacturing. Unfortunately, these potentially carcinogenic substances are significantly impacting our water systems due to their widespread use. Dyes from various sources pose a serious environmental threat owing to their persistence and toxicity. Regulations underscore the urgency in addressing this problem. In response to this challenge, metal oxide nanoparticles such as titanium dioxide (TiO2), zinc oxide (ZnO), and iron oxide (Fe3O4) have emerged as intriguing options for dye degradation due to their unique characteristics and production methods. This paper aims to explore the types of nanoparticles suitable for dye degradation, various synthesis methods, and the properties of nanoparticles. The study elaborates on the photocatalytic and adsorption-desorption activities of metal oxide nanoparticles, elucidating their role in dye degradation and their application potential. Factors influencing degradation, including nanoparticle properties and environmental conditions, are discussed. Furthermore, the paper provides relevant case studies, practical applications in water treatment, and effluent treatment specifically in the textile sector. Challenges such as agglomeration, toxicity concerns, and cost-effectiveness are acknowledged. Future advancements in nanomaterial synthesis, their integration with other materials, and their impact on environmental regulations are potential areas for development. In conclusion, metal oxide nanoparticles possess immense potential in reducing dye pollution, and further research and development are essential to define their role in long-term environmental management.
Collapse
Affiliation(s)
- B Senthil Rathi
- Institute of Sustainable Energy, Universiti Tenaga Nasional (UNITEN), Kajang, Selangor, Malaysia
| | - Lay Sheng Ewe
- Institute of Sustainable Energy, Universiti Tenaga Nasional (UNITEN), Kajang, Selangor, Malaysia
| | - Sanjay S
- Department of Chemical Engineering, St. Joseph's College of Engineering, Chennai, India
| | - Sujatha S
- Department of Chemical Engineering, St. Joseph's College of Engineering, Chennai, India
| | - Weng Kean Yew
- School of Engineering and Physical Science, Heriot-Watt University Malaysia, Putrajaya, Malaysia
| | | | - Sieh Kiong Tiong
- Institute of Sustainable Energy, Universiti Tenaga Nasional (UNITEN), Kajang, Selangor, Malaysia
| |
Collapse
|
7
|
Doondani P, Panda D, Gomase V, Peta KR, Jugade R. Novel Chitosan-ZnO nanocomposites derived from Nymphaeaceae fronds for highly efficient removal of Reactive Blue 19, Reactive Orange 16, and Congo Red dyes. ENVIRONMENTAL RESEARCH 2024; 247:118228. [PMID: 38246296 DOI: 10.1016/j.envres.2024.118228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 01/11/2024] [Accepted: 01/15/2024] [Indexed: 01/23/2024]
Abstract
The primary aim of this investigation was to synthesise novel adsorbent by incorporating greenly synthesized zinc oxide nanoparticles into chitosan matrix (G-ZnO-Cs). The production of ZnO Nanoparticles via a green approach involved the utilization of extracts derived from Nymphaeaceae fronds. This assertion was substantiated by the application of Field Emission Scanning Electron Microscopy (FESEM) and X-ray Diffraction (XRD) analytical techniques. Several Analytical methods such as Fourier Transform Infrared spectroscopy (FT-IR), Energy Dispersive X-ray Analysis (EDAX), FESEM, Thermogravimetric Analysis (TGA), XRD, Brunauer-Emmett-Teller (BET) analysis, and point-of-zero charge determination were used to characterize G-ZnO-Cs. Further study investigates the impact of five key processing parameters, namely pH, interaction duration, G-ZnO-Cs dosage, temperature, and initial concentration of dyes, on the removal of three organic dyes Reactive Blue 19 (RB 19), Reactive Orange 16 (RO 16), and Congo Red (CR) The adsorption process of Reactive Blue 19 (RB 19), Reactive Orange 16 (RO 16), and Congo Red (CR) dyes on G-ZnO-Cs were determined to comply to the pseudo-second-order (PSO) and Langmuir models, as determined through equilibrium and kinetic experiments. The highest adsorption capabilities for RB 19, RO 16 and CR dye were revealed to be 219.6 mg/g, 129.6 mg/g, and 118.8 mg/g, respectively. The elimination success rate of the fixed-bed column approach for treating huge volumes was highlighted in the conducted research. Moreover, the G-ZnO-Cs composite exhibited significant reusability due to its ability to undergo elution and simultaneous regeneration processes.
Collapse
Affiliation(s)
- Priyanka Doondani
- Department of Chemistry, RTM Nagpur University, 440033, Nagpur, India
| | - Dhananjaya Panda
- Department of Electronic Science, University of Delhi South Campus, 110021, Benito Juarez Road, New Delhi, India
| | - Vaishnavi Gomase
- Department of Chemistry, RTM Nagpur University, 440033, Nagpur, India
| | - Koteswara Rao Peta
- Department of Electronic Science, University of Delhi South Campus, 110021, Benito Juarez Road, New Delhi, India.
| | - Ravin Jugade
- Department of Chemistry, RTM Nagpur University, 440033, Nagpur, India.
| |
Collapse
|
8
|
Bilal M, Degorska O, Szada D, Rybarczyk A, Zdarta A, Kaplon M, Zdarta J, Jesionowski T. Support Materials of Organic and Inorganic Origin as Platforms for Horseradish Peroxidase Immobilization: Comparison Study for High Stability and Activity Recovery. Molecules 2024; 29:710. [PMID: 38338454 PMCID: PMC10856027 DOI: 10.3390/molecules29030710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 01/30/2024] [Accepted: 01/31/2024] [Indexed: 02/12/2024] Open
Abstract
In the presented study, a variety of hybrid and single nanomaterials of various origins were tested as novel platforms for horseradish peroxidase immobilization. A thorough characterization was performed to establish the suitability of the support materials for immobilization, as well as the activity and stability retention of the biocatalysts, which were analyzed and discussed. The physicochemical characterization of the obtained systems proved successful enzyme deposition on all the presented materials. The immobilization of horseradish peroxidase on all the tested supports occurred with an efficiency above 70%. However, for multi-walled carbon nanotubes and hybrids made of chitosan, magnetic nanoparticles, and selenium ions, it reached up to 90%. For these materials, the immobilization yield exceeded 80%, resulting in high amounts of immobilized enzymes. The produced system showed the same optimal pH and temperature conditions as free enzymes; however, over a wider range of conditions, the immobilized enzymes showed activity of over 50%. Finally, a reusability study and storage stability tests showed that horseradish peroxidase immobilized on a hybrid made of chitosan, magnetic nanoparticles, and selenium ions retained around 80% of its initial activity after 10 repeated catalytic cycles and after 20 days of storage. Of all the tested materials, the most favorable for immobilization was the above-mentioned chitosan-based hybrid material. The selenium additive present in the discussed material gives it supplementary properties that increase the immobilization yield of the enzyme and improve enzyme stability. The obtained results confirm the applicability of these nanomaterials as useful platforms for enzyme immobilization in the contemplation of the structural stability of an enzyme and the high catalytic activity of fabricated biocatalysts.
Collapse
Affiliation(s)
- Muhammad Bilal
- Department of Sanitary Engineering, Faculty of Civil and Environmental Engineering, Gdansk University of Technology, G. Narutowicza 11/12, PL-80233 Gdansk, Poland
- Advanced Materials Center, Gdansk University of Technology, 11/12 Narutowicza, PL-80233 Gdansk, Poland
- Institute of Chemical Technology and Engineering, Faculty of Chemical Technology, Poznan University of Technology, Berdychowo 4, PL-60965 Poznan, Poland; (O.D.); (D.S.); (A.Z.); (M.K.); (T.J.)
| | - Oliwia Degorska
- Institute of Chemical Technology and Engineering, Faculty of Chemical Technology, Poznan University of Technology, Berdychowo 4, PL-60965 Poznan, Poland; (O.D.); (D.S.); (A.Z.); (M.K.); (T.J.)
| | - Daria Szada
- Institute of Chemical Technology and Engineering, Faculty of Chemical Technology, Poznan University of Technology, Berdychowo 4, PL-60965 Poznan, Poland; (O.D.); (D.S.); (A.Z.); (M.K.); (T.J.)
| | - Agnieszka Rybarczyk
- Institute of Chemical Technology and Engineering, Faculty of Chemical Technology, Poznan University of Technology, Berdychowo 4, PL-60965 Poznan, Poland; (O.D.); (D.S.); (A.Z.); (M.K.); (T.J.)
| | - Agata Zdarta
- Institute of Chemical Technology and Engineering, Faculty of Chemical Technology, Poznan University of Technology, Berdychowo 4, PL-60965 Poznan, Poland; (O.D.); (D.S.); (A.Z.); (M.K.); (T.J.)
| | - Michal Kaplon
- Institute of Chemical Technology and Engineering, Faculty of Chemical Technology, Poznan University of Technology, Berdychowo 4, PL-60965 Poznan, Poland; (O.D.); (D.S.); (A.Z.); (M.K.); (T.J.)
| | - Jakub Zdarta
- Institute of Chemical Technology and Engineering, Faculty of Chemical Technology, Poznan University of Technology, Berdychowo 4, PL-60965 Poznan, Poland; (O.D.); (D.S.); (A.Z.); (M.K.); (T.J.)
| | - Teofil Jesionowski
- Institute of Chemical Technology and Engineering, Faculty of Chemical Technology, Poznan University of Technology, Berdychowo 4, PL-60965 Poznan, Poland; (O.D.); (D.S.); (A.Z.); (M.K.); (T.J.)
| |
Collapse
|
9
|
Bilal M, Singh AK, Iqbal HMN, Zdarta J, Chrobok A, Jesionowski T. Enzyme-linked carbon nanotubes as biocatalytic tools to degrade and mitigate environmental pollutants. ENVIRONMENTAL RESEARCH 2024; 241:117579. [PMID: 37944691 DOI: 10.1016/j.envres.2023.117579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 10/21/2023] [Accepted: 11/01/2023] [Indexed: 11/12/2023]
Abstract
A wide array of organic compounds have been recognized as pollutants of high concern due to their controlled or uncontrolled presence in environmental matrices. The persistent prevalence of diverse organic pollutants, including pharmaceutical compounds, phenolic compounds, synthetic dyes, and other hazardous substances, necessitates robust measures for their practical and sustainable removal from water bodies. Several bioremediation and biodegradation methods have been invented and deployed, with a wide range of materials well-suited for diverse environments. Enzyme-linked carbon-based materials have been considered efficient biocatalytic platforms for the remediation of complex organic pollutants, mostly showing over 80% removal efficiency of micropollutants. The advantages of enzyme-linked carbon nanotubes (CNTs) in enzyme immobilization and improved catalytic potential may thus be advantageous for environmental research considering the current need for pollutant removal. This review outlines the perspective of current remediation approaches and highlights the advantageous features of enzyme-linked CNTs in the removal of pollutants, emphasizing their reusability and stability aspects. Furthermore, different applications of enzyme-linked CNTs in environmental research with concluding remarks and future outlooks have been highlighted. Enzyme-linked CNTs serve as a robust biocatalytic platform for the sustainability agenda with the aim of keeping the environment clean and safe from a variety of organic pollutants.
Collapse
Affiliation(s)
- Muhammad Bilal
- Institute of Chemical Technology and Engineering, Faculty of Chemical Technology, Poznan University of Technology, Berdychowo 4, PL-60965, Poznan, Poland; Department of Sanitary Engineering, Faculty of Civil and Environmental Engineering, Gdansk University of Technology, G. Narutowicza 11/12 Str., 80-233, Gdansk, Poland; Advanced Materials Center, Gdansk University of Technology, 11/12 Narutowicza St., 80-233, Gdansk, Poland.
| | - Anil Kumar Singh
- Environmental Toxicology Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow, 226001, Uttar Pradesh, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Hafiz M N Iqbal
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey, 64849, Mexico; Institute of Advanced Materials for Sustainable Manufacturing, Tecnologico de Monterrey, Monterrey, 64849, Mexico
| | - Jakub Zdarta
- Institute of Chemical Technology and Engineering, Faculty of Chemical Technology, Poznan University of Technology, Berdychowo 4, PL-60965, Poznan, Poland
| | - Anna Chrobok
- Department of Chemical Organic Technology and Petrochemistry, Faculty of Chemistry, Silesian University of Technology, Krzywoustego 4, 44-100, Gliwice, Poland
| | - Teofil Jesionowski
- Institute of Chemical Technology and Engineering, Faculty of Chemical Technology, Poznan University of Technology, Berdychowo 4, PL-60965, Poznan, Poland.
| |
Collapse
|
10
|
Batool I, Imran M, Anwar A, Khan FA, Mohammed AE, Shami A, Iqbal H. Enzyme-triggered approach to reduce water bodies' contamination using peroxidase-immobilized ZnO/SnO 2/alginate nanocomposite. Int J Biol Macromol 2024; 254:127900. [PMID: 37931863 DOI: 10.1016/j.ijbiomac.2023.127900] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Revised: 10/30/2023] [Accepted: 11/03/2023] [Indexed: 11/08/2023]
Abstract
Enzyme immobilization on solid support offers advantages over free enzymes by overcoming characteristic limitations. To synthesize new stable and hyperactive nano-biocatalysts (co-precipitation method), ginger peroxidase (GP) was surface immobilized (adsorption) on ZnO/SnO2 and ZnO/SnO2/SA nanocomposite with immobilization efficacy of 94 % and 99 %, respectively. Thereafter, catalytic and biochemical characteristics of free and immobilized GP were investigated by deploying various techniques, i.e., FTIR, PXRD, SEM, and PL. Diffraction peaks emerged at 2θ values of 26°, 33°, 37°, 51°, 31°, 34°, 36°, 56°, indicating the formation of SnO2 and ZnO. The OH stretching of the H2O molecules was attributed to broad peaks between 3200 and 3500 cm-1, whereas ZnO/SnO2 spikes occurred in the 1626-1637 cm-1 range. SnO stretching mode and ZnO terminal vibrational patterns have been verified at corresponding wavelengths of 625 cm-1 and 560 cm-1. Enzyme entrapment onto substrate was verified via interactions between GP and ZnO/SnO2/SA as corroborated by signals beneath 1100 cm-1. GP-immobilized fractions were optimally active at pH 5, 50 °C, and retained maximum activity after storage of 4 weeks at -4 °C. Kinetic parameters were determined by using a Lineweaver-Burk plot and Vmax for free GP, ZnO/SnO2/GP and ZnO/SnO2/SA/GP with guaiacol as a substrate, were found to be 322.58, 49.01 and 11.45 (μM/min) respectively. A decrease in values of Vmax and KM indicates strong adsorption of peroxidase on support and maximum affinity between nano support and enzyme, respectively. For environmental remediation, free ginger peroxidase (GP), ZnO/SnO2/GP and ZnO/SnO2/SA/GP fractions effectively eradicated highly intricate dye. Multiple scavengers had a significant impact on the depletion of the dye. In conclusion, ZnO/SnO2 and ZnO/SnO2/SA nanostructures comprise an ecologically acceptable and intriguing carrier for enzyme immobilization.
Collapse
Affiliation(s)
- Iqra Batool
- Institute of Chemistry, Baghdad-ul-Jadeed Campus, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan
| | - Muhammad Imran
- Institute of Chemistry, Baghdad-ul-Jadeed Campus, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan.
| | - Ayesha Anwar
- Institute of Chemistry, Baghdad-ul-Jadeed Campus, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan
| | - Farhan Ahmed Khan
- Department of Chemistry, COMSATS University Islamabad, Abbottabad Campus, Pakistan
| | - Afrah E Mohammed
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, Riyadh 11671, Saudi Arabia
| | - Ashwag Shami
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, Riyadh 11671, Saudi Arabia
| | - Hafiz Iqbal
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, Riyadh 11671, Saudi Arabia.
| |
Collapse
|
11
|
Dong W, Yan J, Yang Y, Wu Q, Hu X. Immobilization of laccase on magnetic mesoporous silica as a recoverable biocatalyst for the efficient degradation of benzo[a]pyrene. CHEMOSPHERE 2024; 346:140642. [PMID: 37939925 DOI: 10.1016/j.chemosphere.2023.140642] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 08/31/2023] [Accepted: 11/06/2023] [Indexed: 11/10/2023]
Abstract
Laccase is an efficient green biocatalyst, widely used for the degradation of various organic pollutants. However, free laccase is unstable and difficult to recover, which limits its practical application. In this study, a multilayer core-shell magnetic mesoporous silica (Fe3O4@d-SiO2@p-SiO2) microsphere with high specific surface area (275 m2 g-1) was fabricated for immobilization of laccase. The unique structure of Fe3O4@d-SiO2@p-SiO2 enabled the successful immobilization of laccase. Under the optimal immobilization conditions of laccase concentration of 1.5 mg mL-1, immobilization time of 6 h, immobilization pH of 6, the loading capacity of laccase was up to 567 mg g-1. Compared with free laccase, immobilized laccase exhibited remarkable pH stability, thermal stability and storage stability. Moreover, the immobilized laccase was easy to achieve magnetic recovery and possessed excellent reusability, with its activity remaining 58.2% after 10 consecutive reuses. More importantly, immobilized laccase had good degradation performance for benzo[a]pyrene (BaP), which can achieve rapid and efficient degradation of low concentration BaP over a wide range of pH and temperature. The removal efficiency of BaP was up to 99.0% within 1 h, and still exceeded 35.0% after 5 cycles. The removal of BaP by immobilized laccase was achieved through both adsorption and degradation. The degradation products and possible degradation pathways were determined by GC-MS analysis. This study indicated that Fe3O4@d-SiO2@p-SiO2 could effectively enhance the stability and biocatalytic activity of laccase, which is expected to provide a new clean biotechnology for the remediation of BaP contaminated sites.
Collapse
Affiliation(s)
- Wenya Dong
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, Shanghai 201418, PR China
| | - Jiaqi Yan
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, Shanghai 201418, PR China
| | - Yaoyu Yang
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, Shanghai 201418, PR China
| | - Qingsheng Wu
- School of Chemical Science and Engineering, Tongji University, Shanghai 200092, PR China
| | - Xiaojun Hu
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, Shanghai 201418, PR China.
| |
Collapse
|
12
|
Veena M, Hemanth Kumar C, Majani SS, Munirajappa N, Harendra B, Shivamallu C, Raghavendra H, Shati AA, Alfaifi MY, Elbehairi SEI, Namratha, Prasad Kollur S. Eco-friendly synthesized manganese dioxide nanoparticles using Tridax procumbens as potent antimicrobial and dye degrading agent. RESULTS IN CHEMISTRY 2024; 7:101290. [DOI: 10.1016/j.rechem.2023.101290] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/02/2024] Open
|
13
|
Elmerhi N, Al-Maqdi K, Athamneh K, Mohammed AK, Skorjanc T, Gándara F, Raya J, Pascal S, Siri O, Trabolsi A, Shah I, Shetty D, Ashraf SS. Enzyme-immobilized hierarchically porous covalent organic framework biocomposite for catalytic degradation of broad-range emerging pollutants in water. JOURNAL OF HAZARDOUS MATERIALS 2023; 459:132261. [PMID: 37572608 DOI: 10.1016/j.jhazmat.2023.132261] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 08/02/2023] [Accepted: 08/08/2023] [Indexed: 08/14/2023]
Abstract
Efficient enzyme immobilization is crucial for the successful commercialization of large-scale enzymatic water treatment. However, issues such as lack of high enzyme loading coupled with enzyme leaching present challenges for the widespread adoption of immobilized enzyme systems. The present study describes the development and bioremediation application of an enzyme biocomposite employing a cationic macrocycle-based covalent organic framework (COF) with hierarchical porosity for the immobilization of horseradish peroxidase (HRP). The intrinsic hierarchical porous features of the azacalix[4]arene-based COF (ACA-COF) allowed for a maximum HRP loading capacity of 0.76 mg/mg COF with low enzyme leaching (<5.0 %). The biocomposite, HRP@ACA-COF, exhibited exceptional thermal stability (∼200 % higher relative activity than the free enzyme), and maintained ∼60 % enzyme activity after five cycles. LCMSMS analyses confirmed that the HRP@ACA-COF system was able to achieve > 99 % degradation of seven diverse types of emerging pollutants (2-mercaptobenzothiazole, paracetamol, caffeic acid, methylparaben, furosemide, sulfamethoxazole, and salicylic acid)in under an hour. The described enzyme-COF system offers promise for efficient wastewater bioremediation applications.
Collapse
Affiliation(s)
- Nada Elmerhi
- Department of Chemistry, Khalifa University, PO Box: 127788, Abu Dhabi, the United Arab Emirates; Center for Catalysis and Separations, Khalifa University, PO Box: 127788, Abu Dhabi, the United Arab Emirates
| | - Khadega Al-Maqdi
- Department of Chemistry, United Arab Emirates University, Abu Dhabi, the United Arab Emirate
| | - Khawlah Athamneh
- Department of Biology, Khalifa University, PO Box: 127788, Abu Dhabi, the United Arab Emirates
| | - Abdul Khayum Mohammed
- Department of Chemistry, Khalifa University, PO Box: 127788, Abu Dhabi, the United Arab Emirates
| | - Tina Skorjanc
- Materials Research Laboratory, University of Nova Gorica, Vipavska 11c, 5270 Ajdovscina, Slovenia
| | - Felipe Gándara
- Instituto de Ciencia de Materiales de Madrid-CSIC, C/Sor Juana Inés de la Cruz 3, 28049 Madrid, Spain
| | - Jesus Raya
- Membrane Biophysics and NMR, Institute of Chemistry, University of Strasbourg - CNRS, Rue Blaise, Pascal 1, Strasbourg, France
| | - Simon Pascal
- Aix Marseille University, UMR 7325 CNRS, Centre Interdisciplinaire de Nanosciences de Marseille (CINaM), Campus de Luminy, 13288 Marseille cedex 09, France
| | - Olivier Siri
- Aix Marseille University, UMR 7325 CNRS, Centre Interdisciplinaire de Nanosciences de Marseille (CINaM), Campus de Luminy, 13288 Marseille cedex 09, France
| | - Ali Trabolsi
- Chemistry Program & NYUAD Water Research Center, New York University Abu Dhabi (NYUAD), 129188 Abu Dhabi, the United Arab Emirates
| | - Iltaf Shah
- Department of Chemistry, United Arab Emirates University, Abu Dhabi, the United Arab Emirate
| | - Dinesh Shetty
- Department of Chemistry, Khalifa University, PO Box: 127788, Abu Dhabi, the United Arab Emirates; Center for Catalysis and Separations, Khalifa University, PO Box: 127788, Abu Dhabi, the United Arab Emirates.
| | - Syed Salman Ashraf
- Department of Biology, Khalifa University, PO Box: 127788, Abu Dhabi, the United Arab Emirates; Center for Biotechnology, Khalifa University, PO Box: 127788, Abu Dhabi, the United Arab Emirates; Advanced Materials Chemistry Center, Khalifa University, PO Box: 127788, Abu Dhabi, the United Arab Emirates.
| |
Collapse
|
14
|
Anwar A, Imran M, Iqbal HM. Smart chemistry and applied perceptions of enzyme-coupled nano-engineered assemblies to meet future biocatalytic challenges. Coord Chem Rev 2023; 493:215329. [DOI: 10.1016/j.ccr.2023.215329] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2024]
|