1
|
Ding D, Fei J, Yao Y, Jiang Y, Sun H, Yin X. Affected interactions and co-transport of cadmium sulfide quantum dots with Pb 2+ by surface functionalization. JOURNAL OF HAZARDOUS MATERIALS 2025; 492:138025. [PMID: 40154127 DOI: 10.1016/j.jhazmat.2025.138025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2025] [Revised: 03/10/2025] [Accepted: 03/19/2025] [Indexed: 04/01/2025]
Abstract
Quantum dots (QDs), emerging semiconductor nanomaterials, have been detected in various environmental media and can adsorb co-existing contaminants (e.g., Pb2+). Surface modifications aimed at enhancing the performance of QDs can significantly affect their physicochemical properties, but their effects on QDs environmental behavior remain unclear. Herein, we investigated the adsorption and co-transport behaviors of aminated (NQD), hydroxylated (OQD), and carboxylated cadmium sulfide QDs (CQD) with Pb2+ via batch adsorption and quartz sand column experiments. The influence of ionic strength (IS) and cation valence on the co-transport of QDs and Pb2+ was examined. Our experimental findings revealed that Pb2+ inhibited the mobility of OQD and CQD but enhanced the transport of NQD due to the surface complexation and cation bridging effects. This promoting effect was weakened with increasing IS and cation valence, indicating the involvement of non-Derjaguin-Landau-Verwey-Overbeek forces. Furthermore, OQD and CQD with high mobility and strong affinity to Pb2+ effectively promoted the transport of Pb2+, with CQD exhibiting a more pronounced effect than OQD. Conversely, NQD reduced Pb2+ efflux due to their lower mobility and stronger adsorption to Pb2+. These results provide valuable insights into the role of surface modifications on QDs and their interactions with co-existing contaminants in subsurface environments.
Collapse
Affiliation(s)
- Dianji Ding
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China
| | - Jiao Fei
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China; College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Yong Yao
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China
| | - Yanji Jiang
- School of Environment, Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Normal University, Xinxiang 453007, China
| | - Huimin Sun
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China; Key Laboratory of Plant Nutrition and the Agri-environment in Northwest China, Ministry of Agriculture and Rural Affairs, Yangling 712100, China
| | - Xianqiang Yin
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China; Key Laboratory of Plant Nutrition and the Agri-environment in Northwest China, Ministry of Agriculture and Rural Affairs, Yangling 712100, China.
| |
Collapse
|
2
|
Kumar R, Lamba J, Adhikari S, Kasera N, Torbert HA. Influence of iron-modified biochar on phosphate transport and deposition in saturated porous media under varying pH, ionic strength, and biochar dosage. CHEMOSPHERE 2025; 370:143932. [PMID: 39667531 DOI: 10.1016/j.chemosphere.2024.143932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 11/20/2024] [Accepted: 12/09/2024] [Indexed: 12/14/2024]
Abstract
Phosphorus (P) is one of the essential nutrients required for plants; however, loss of phosphorus from agricultural areas results in water quality impairment. This research aims to investigate the transport and deposition of phosphate at different solution chemistries and phosphate-biochar dosages under (a) individual phosphate flow, (b) phosphate transport followed by biochar, and (c) co-transport of biochar-phosphate in saturated porous media. Breakthrough curves (BTCs) for phosphate were generated to understand the effect of pine raw biochar (BC) and iron-modified biochar (Fe-BC) on phosphate transport and deposition under varying solutions, pH (5.5 ± 0.1-10.5 ± 0.1), ionic strength (0-10 mM), phosphate (10-20 mg/L), and biochar dosages (100-200 mg/L) in saturated porous media. Results revealed increased deposition of BC and Fe-BC at high ionic strength (IS), i.e., 10 mM compared to 0 mM. The BTCs of phosphate (10-20 mg/L) transport at increasing IS showed delayed elute and long tailing curves compared to BTCs of tracer. Further, phosphate transport using BTCs in biochar-mediated saturated porous media was investigated at 10-20 mg/L phosphate, where maximum retardation (37%) was observed at pH 6.7 ± 0.1 and 0 mM IS due to the availability of active sites for 10 mg/L phosphate using Fe-BC than BC. The BTCs of phosphate transport at pH 6.7 ± 0.1 and 0-10 mM IS showed 37% and 40% phosphate deposition in Fe-BC-mediated columns for 0 mM and 10 mM, respectively, than BC-mediated columns. For BC, maximum phosphate adsorption was observed at pH 5.5 ± 0.1, whereas for Fe-BC, it was observed at pH 6.7 ± 0.1 at 10 mM IS. The least adsorption was observed at pH of 10.5 ± 0.1 for both BC and Fe-BC. Similar phosphate retardation BTCs for BC and Fe-BC at 10 mM were observed with adsorption of 40% phosphate for 100-200 mg/L biochar dosages. Besides, co-transport and deposition of biochar and phosphate, considering with and without ripening effect, reported high phosphate retardation using Fe-BC than BC at pH of 6.7 ± 0.1 and 10 mM IS due to chemical non-equilibrium and mass transfer. Taken together, iron-modified biochar (Fe-BC) showed significant adsorptive potential for phosphate management in saturated porous media. Overall, modeling of transport and deposition of phosphate and biochar are significant to understanding fate, nutrient mobility & management, biochar-phosphate interactions, and remediation designs in saturated porous media.
Collapse
Affiliation(s)
- Rakesh Kumar
- Department of Biosystems Engineering, Auburn University, Auburn, AL, 36849, USA.
| | - Jasmeet Lamba
- Department of Biosystems Engineering, Auburn University, Auburn, AL, 36849, USA.
| | - Sushil Adhikari
- Department of Biosystems Engineering, Auburn University, Auburn, AL, 36849, USA
| | - Nitesh Kasera
- Department of Biosystems Engineering, Auburn University, Auburn, AL, 36849, USA
| | - Henry Allen Torbert
- United States Department of Agriculture-Agricultural Research Service, National Soil Dynamics Laboratory, Auburn, AL, 36832, USA
| |
Collapse
|
3
|
Huang J, Tan X, Ali I, Ok YS, Duan Z, Liang J, Zhu R. Efficient removal of nanoplastics by iron-modified biochar: Understanding the removal mechanisms. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 363:125121. [PMID: 39426478 DOI: 10.1016/j.envpol.2024.125121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 10/02/2024] [Accepted: 10/12/2024] [Indexed: 10/21/2024]
Abstract
Tiny plastic particles, particularly nanoplastics, are becoming major threats to aquatic and biotic life owing to their unique physico-chemical characteristics. Thus, in the present work, biochar (BC) was fabricated using "Ulva prolifera green tide" as a biowaste raw material by slow pyrolysis technique to examine its potential in removing nanoplastics from the environment. The findings depicted that nanoplastics removal efficiency by BC was V-shaped with initial pH increased from 2 to 11, and the main removal mechanism changed from adsorption to heterogeneous aggregation between nanoplastics, biochar colloids, and leached substances from BC. When the solution pH crossed the pHpzc of BC (2.3), the aggregation kinetics were well-fitted by the logistic model and displayed as an S-shaped curve with a lag period. Characterization results indicated that biochar colloids were the key enabler with a critical concentration of 72.01 mg L-1 at neutral pH. Keeping in mind the removal mechanisms and contribution of biochar colloids, iron-modified biochar (Fe-BC) was produced to enhance the overall removal efficiency. The Fe-BC demonstrated a two-phase removal process of pre-adsorption and post-aggregation, successfully realized to minimize lag time and enhance aggregation performance. The theoretical removal capacity of Fe-BC against nanoplastics could reach up to 1626.3 mg g-1, which was three-fold higher than that of BC. Further, the Fe-BC was suggested to be recycled and reused at least three times by ultrasound, followed by co-pyrolysis for green and efficient degradation of nanoplastics. Overall, the findings offer a promising approach for removing and recycling nanoplastics in the environment.
Collapse
Affiliation(s)
- Jiang Huang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, China
| | - Xiao Tan
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, China.
| | - Imran Ali
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, China.
| | - Yong Sik Ok
- Korea Biochar Research Center, APRU Sustainable Waste Management Program and Division of Environmental Science and Ecological Engineering, Korea University, Seoul, Republic of Korea
| | - Zhipeng Duan
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, China
| | - Jia Liang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, China
| | - Rui Zhu
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, China
| |
Collapse
|
4
|
Huang Y, Xiao Z, Wu S, Zhang X, Wang J, Huangfu X. Biochemical transformation and bioremediation of thallium in the environment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 953:176028. [PMID: 39265674 DOI: 10.1016/j.scitotenv.2024.176028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 08/22/2024] [Accepted: 09/02/2024] [Indexed: 09/14/2024]
Abstract
Thallium (Tl) is a toxic element associated with minerals, and its redistribution is facilitated by both geological and anthropogenic activities. In the natural environment, the transformation and migration of Tl mediated by (micro)organisms have attracted increasing attention. This review presents an overview of the biochemical transformation of Tl and the bioremediation strategies for Tl contamination. In the environment, Tl exists in various forms and originates from diverse sources. The global distribution characteristics of Tl in various media are summarized here, while its speciation and toxicity mechanism to organisms are elucidated. Interactions between (micro)organisms and Tl are commonly observed in the environment. Microbial response mechanisms to typical Tl exposure are analyzed at both species and gene levels, and the possibility of microorganisms as bio-indicators for monitoring Tl contamination is also highlighted. The processes and mechanisms involved in the microbial and benthic mediated transformation of Tl, as well as its enrichment by plants, are discussed. Additionally, in situ bioremediation strategies for Tl contamination and bio-treatment techniques for Tl-containing wastewater are summarized. Finally, the existing knowledge gaps and future research challenges are emphasized, including Tl distribution characteristics in the atmosphere and ocean, the key molecular mechanisms underlying Tl transformation by organisms, the screening of potential Tl oxidizing microorganisms and hyperaccumulators, as well as the revelation of global biogeochemical cycling pathways of Tl.
Collapse
Affiliation(s)
- Yuheng Huang
- Key Laboratory of Eco-Environments in Three Gorges Reservoir Region, Ministry of Education, College of Environment and Ecology, Chongqing University, Chongqing 400044, China
| | - Zhentao Xiao
- Key Laboratory of Eco-Environments in Three Gorges Reservoir Region, Ministry of Education, College of Environment and Ecology, Chongqing University, Chongqing 400044, China
| | - Sisi Wu
- Key Laboratory of Eco-Environments in Three Gorges Reservoir Region, Ministry of Education, College of Environment and Ecology, Chongqing University, Chongqing 400044, China
| | - Xiaoling Zhang
- Key Laboratory of Eco-Environments in Three Gorges Reservoir Region, Ministry of Education, College of Environment and Ecology, Chongqing University, Chongqing 400044, China
| | - Jingrui Wang
- Key Laboratory of Eco-Environments in Three Gorges Reservoir Region, Ministry of Education, College of Environment and Ecology, Chongqing University, Chongqing 400044, China
| | - Xiaoliu Huangfu
- Key Laboratory of Eco-Environments in Three Gorges Reservoir Region, Ministry of Education, College of Environment and Ecology, Chongqing University, Chongqing 400044, China.
| |
Collapse
|
5
|
Zhong R, Pan D, Huang G, Yang G, Wang X, Niu R, Cai X, Ding Z, Chi W, Wang Y, Li X. Colloidal fraction on pomelo peel-derived biochar plays a dual role as electron shuttle and adsorbent in controlling arsenic transformation in anoxic paddy soil. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 934:173340. [PMID: 38763201 DOI: 10.1016/j.scitotenv.2024.173340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 04/20/2024] [Accepted: 05/16/2024] [Indexed: 05/21/2024]
Abstract
Arsenic release and reduction in anoxic environments can be mitigated or facilitated by biochar amendment. However, the key fractions in biochars and how they control arsenic transformation remain poorly understood. In this study, a biochar produced from pomelo peel was rich in colloids and was used to evaluate the roles of the colloidal and residual fractions of biochar in arsenic transformation in anoxic paddy soil. Bulk biochar showed a markedly higher maximum adsorption capacity for As(III) at 1732 mg/kg than for As(V) at 75.7 mg/kg, mainly because of the colloidal fraction on the surface. When compared with the control and treatments with the colloidal/residual fraction, the addition of bulk biochar facilitated As(V) reduction and release in the soil during days 0-12, but decreased the dissolved As(III) concentration during days 12-20. The colloidal fraction revealed significantly higher electron donating capacity (8.26 μmole-/g) than that of bulk biochar (0.88 μmole-/g) and residual fraction (0.65 μmole-/g), acting as electron shuttle to promote As(V) reduction. Because the colloidal fraction was rich in aliphatic carbon, fulvic acid-like compounds, potassium, and calcium, it favored As(III) adsorption when more As(III) was released, probably via organic-cation-As(III) complexation. These findings provide deeper insight into the role of the colloidal fraction of biochar in controlling anaerobic arsenic transformation, which will be helpful for the practical application of biochar in arsenic-contaminated environments.
Collapse
Affiliation(s)
- Ruilin Zhong
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety, MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China
| | - Dandan Pan
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety, MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Provincial Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Guangdong Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China
| | - Guoyong Huang
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety, MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Provincial Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Guangdong Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China
| | - Guang Yang
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety, MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China
| | - Xiaonan Wang
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety, MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China
| | - Rumiao Niu
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety, MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China
| | - Xixi Cai
- Guangdong Key Laboratory of Ornamental Plant Germplasm Innovation and Utilization, Environmental Horticulture Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| | - Ziman Ding
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety, MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China
| | - Wenting Chi
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety, MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Provincial Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Guangdong Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China
| | - Ying Wang
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Provincial Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Guangdong Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China
| | - Xiaomin Li
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety, MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China.
| |
Collapse
|
6
|
Luo J, Cai D, Wei L, Shi H, Liu Y, Yan H, Luo D, Xiao T, Huang X, Wu Q. Aggregation, retention and transport of γ-MnO 2 nanoparticles in water-saturated porous media: Impact on the immobility of thallium. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 347:123711. [PMID: 38447654 DOI: 10.1016/j.envpol.2024.123711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 01/08/2024] [Accepted: 03/03/2024] [Indexed: 03/08/2024]
Abstract
Nano-scale Mn oxides can act as effective stabilizers for Tl in soil and sediments. Nevertheless, the comprehensive analysis of the capacity of MnO2 to immobilize Tl in such porous media has not been systematically explored. Therefore, this study investigates the impact of γ-MnO2, a model functional nanomaterial for remediation, on the mobility of Tl in a water-saturated quartz sand-packed column. The mechanisms involved are further elucidated based on the adsorption and aggregation kinetics of γ-MnO2. The results indicate that higher ionic strength (IS) and the presence of ion Ca(II) promote the aggregation of γ-MnO2, resulting from the reduced electrostatic repulsion between particles. Conversely, an increase in pH inhibits aggregation due to enhanced interaction energy. γ-MnO2 significantly influences Tl retention and mobility, with a substantial fraction of γ-MnO2-bound Tl transported through the column. This might be attributed to the high affinity of γ-MnO2 for Tl through ion exchange reactions and precipitation at the surface of γ-MnO2. The mobility of Tl in the sand column is influenced by the γ-MnO2 colloids, exhibiting either inhibition or promotion depending on the pH, IS, and cation type of the solution. In solutions with higher IS and Ca(II), the mobility of Tl decreases as γ-MnO2 colloids tend to aggregate, strain, and block, facilitating colloidal Tl retention in porous media. Although higher pH reduces the mobility of individual Tl, it promotes the mobility of γ-MnO2 colloids, facilitating a substantial fraction of colloidal-form Tl. Consequently, the optimal conditions for stabilizing Tl by γ-MnO2 involve either high IS and low pH or the presence of competitive cations (e.g., Ca(II)). These findings provide new insights into Tl immobilization using MnO2- and Mn oxide-based functional materials, offering potential applications in the remediation of Tl contamination in soil and groundwater.
Collapse
Affiliation(s)
- Jiaming Luo
- Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, School of Environmental Science and Engineering, Guangzhou University, Guangzhou, 510006, China
| | - Dafeng Cai
- Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, School of Environmental Science and Engineering, Guangzhou University, Guangzhou, 510006, China
| | - Lezhang Wei
- Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, School of Environmental Science and Engineering, Guangzhou University, Guangzhou, 510006, China; Linköping University-Guangzhou University Research Center on Urban Sustainable Development, Guangzhou University, Guangzhou, 510006, China.
| | - Hang Shi
- Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, School of Environmental Science and Engineering, Guangzhou University, Guangzhou, 510006, China
| | - Yu Liu
- Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, School of Environmental Science and Engineering, Guangzhou University, Guangzhou, 510006, China; Linköping University-Guangzhou University Research Center on Urban Sustainable Development, Guangzhou University, Guangzhou, 510006, China
| | - Haiqi Yan
- Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, School of Environmental Science and Engineering, Guangzhou University, Guangzhou, 510006, China
| | - Dinggui Luo
- Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, School of Environmental Science and Engineering, Guangzhou University, Guangzhou, 510006, China
| | - Tangfu Xiao
- Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, School of Environmental Science and Engineering, Guangzhou University, Guangzhou, 510006, China; State Key Laboratory of Geohazard Prevention and Geoenvironment Protection, Chengdu University of Technology, Chengdu, 610059, China
| | - Xuexia Huang
- Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, School of Environmental Science and Engineering, Guangzhou University, Guangzhou, 510006, China
| | - Qihang Wu
- Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, School of Environmental Science and Engineering, Guangzhou University, Guangzhou, 510006, China
| |
Collapse
|
7
|
Liu J, Qiu R, Wei X, Xiong X, Ren S, Wan Y, Wu H, Yuan W, Wang J, Kang M. MnFe 2O 4-biochar decreases bioavailable fractions of thallium in highly acidic soils from pyrite mining area. ENVIRONMENTAL RESEARCH 2024; 241:117577. [PMID: 37923109 DOI: 10.1016/j.envres.2023.117577] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 09/09/2023] [Accepted: 11/01/2023] [Indexed: 11/07/2023]
Abstract
The prevalence of toxic element thallium (Tl) in soils is of increasing concern as a hidden hazard in agricultural systems and food chains. In the present work, pure biochar (as a comparison) and jacobsite (MnFe2O4)-biochar composite (MFBC) were evaluated for their immobilization effects in Tl-polluted agricultural soils (Tl: ∼10 mg/kg). Overall, MFBC exhibited an efficient effect on Tl immobilization, and the effect was strengthened with the increase of amendment ratio. After being amended by MFBC for 15 and 30 days, the labile fraction of Tl in soil decreased from 1.55 to 0.97 mg/kg, and from 1.51 to 0.88 mg/kg, respectively. In addition, pH (3.05) of the highly acidic soil increased to a maximum of 3.97 after the immobilization process. Since the weak acid extractable and oxidizable Tl were the preponderantly mitigated fractions and displayed a negative correlation with pH, it can be inferred that pH may serve as one of the most critical factors in regulating the Tl immobilization process in MFBC-amended acidic soils. This study indicated a great potential of jacobsite-biochar amendment in stabilization and immobilization of Tl in highly acidic and Tl-polluted agricultural soils; and it would bring considerable environmental benefit to these Tl-contaminated sites whose occurrence has significantly increased in recent decades near the pyrite or other sulfide ore mining and smelting area elsewhere.
Collapse
Affiliation(s)
- Juan Liu
- School of Environmental Science and Engineering, Guangzhou University, Guangzhou, 510006, China
| | - Ruoxuan Qiu
- School of Environmental Science and Engineering, Guangzhou University, Guangzhou, 510006, China
| | - Xudong Wei
- School of Environmental Science and Engineering, Guangzhou University, Guangzhou, 510006, China; Department of Agronomy, Food, Natural resources, Animals and Environment (DAFNAE) University of Padova, Agripolis Campus, Viale dell'Università, 16, 35020, Legnaro, PD, Italy
| | - Xinni Xiong
- School of Environmental Science and Engineering, Guangzhou University, Guangzhou, 510006, China
| | - Shixing Ren
- School of Environmental Science and Engineering, Guangzhou University, Guangzhou, 510006, China
| | - Yuebing Wan
- School of Environmental Science and Engineering, Guangzhou University, Guangzhou, 510006, China
| | - Hanyu Wu
- Sino-French Institute of Nuclear Engineering and Technology, Sun Yat-Sen University, Zhuhai, 519082, China
| | - Wenhuan Yuan
- School of Environmental Science and Engineering, Guangzhou University, Guangzhou, 510006, China
| | - Jin Wang
- School of Environmental Science and Engineering, Guangzhou University, Guangzhou, 510006, China.
| | - Mingliang Kang
- Sino-French Institute of Nuclear Engineering and Technology, Sun Yat-Sen University, Zhuhai, 519082, China.
| |
Collapse
|
8
|
Zi S, Xu J, Zhang Y, Wu D, Liu J. Transport of bisphenol A, bisphenol S, and three bisphenol F isomers in saturated soils. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:116091-116104. [PMID: 37906332 DOI: 10.1007/s11356-023-30453-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 10/10/2023] [Indexed: 11/02/2023]
Abstract
With the limitation of the use of bisphenol A (BPA), the production of its substitutes, bisphenol S (BPS), and bisphenol F (4,4'-BPF) is increasing. Understanding the fate and transport of BPA and its substitutes in porous media can help reduce their risk of contaminating soil and groundwater systems. In this study, column and batch adsorption experiments were performed with 14C-labeled bisphenol analogs and combined with mathematical models to investigate the interaction of BPA, BPS, 4,4'-BPF, 2,2'-BPF, and 2,4'-BPF with four standard soils with different soil organic matter (SOM) contents. The results show that the transport capacity of BPS and 4,4'-BPF in the saturated soils is significantly stronger than that of BPA. Meanwhile, the mobility of the three isomers of bisphenol F exhibits variability in saturated soils with high SOM content. The two-site nonequilibrium sorption model was applied to simulate and interpret column experimental data, and model simulations described the interactions between the bisphenol analogs and soil very well. The fitting results underscore SOM's role in providing dynamic adsorption sites for bisphenol analogs. Hydrophobicity primarily accounts for the disparity in adsorption affinity between BPA, BPS, 4,4'-BPF, and soil, whereas hydrogen bonding forces may predominantly influence the differential adsorption affinity between 4,4'-BPF and its isomers and soil. The results of this study indicate that BPS and three isomers of BPF, as alternatives to BPA, have higher mobility in saturated soils and may pose a substantial risk to groundwater quality. This study enhances our understanding of bisphenol analogs' behavior in natural soils, facilitating an assessment of their environmental implications, particularly regarding groundwater contamination.
Collapse
Affiliation(s)
- Shaoxin Zi
- College of Marine and Environmental Sciences, Ministry of Education Key Laboratory of Marine Resource Chemistry and Food Technology, Tianjin University of Science & Technology, Tianjin, 300457, China
| | - Jiale Xu
- College of Marine and Environmental Sciences, Ministry of Education Key Laboratory of Marine Resource Chemistry and Food Technology, Tianjin University of Science & Technology, Tianjin, 300457, China
| | - Yingxin Zhang
- College of Marine and Environmental Sciences, Ministry of Education Key Laboratory of Marine Resource Chemistry and Food Technology, Tianjin University of Science & Technology, Tianjin, 300457, China
| | - Di Wu
- College of Marine and Environmental Sciences, Ministry of Education Key Laboratory of Marine Resource Chemistry and Food Technology, Tianjin University of Science & Technology, Tianjin, 300457, China
| | - Jin Liu
- College of Marine and Environmental Sciences, Ministry of Education Key Laboratory of Marine Resource Chemistry and Food Technology, Tianjin University of Science & Technology, Tianjin, 300457, China.
- College of Environmental Science and Engineering, Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, Nankai University, Tianjin, 300350, China.
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, China.
| |
Collapse
|
9
|
Wan Q, Liu B, Zhang M, Zhao M, Dai Y, Liu W, Ding K, Lin Q, Ni Z, Li J, Wang S, Jin C, Tang Y, Qiu R. Co-transport of biochar nanoparticles (BC NPs) and rare earth elements (REEs) in water-saturated porous media: New insights into REE fractionation. JOURNAL OF HAZARDOUS MATERIALS 2023; 453:131390. [PMID: 37060752 DOI: 10.1016/j.jhazmat.2023.131390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 03/21/2023] [Accepted: 04/07/2023] [Indexed: 06/19/2023]
Abstract
The present study investigated the co-transport behavior of three REEs3+ (La3+, Gd3+, and Yb3+) with and without biochar nanoparticles (BC NPs) in water-saturated porous media. The presence of REEs3+ enhanced the retention of BC NPs in quartz sand (QS) due to decreased electrostatic repulsion between BC NPs and QS, enhanced aggregation of BC NPs, and the contribution of straining. The distribution coefficients (KD) in packed columns in the co-transport of BC NPs and three REEs3+ were much smaller than in batch experiments due to the different hydrodynamic conditions. In addition, we, for the first time, found that REE fractionation in the solid-liquid phase occurred during the co-transport of REEs3+ in the presence and absence of BC NPs. Note that the REE fractionation during the co-transport, which is helpful for the tracing application during earth surface processes, was driven by the interaction of REEs3+ with QS and BC NPs. This study elucidates novel insights into the fate of BC NPs and REEs3+ in porous media and indicates that (i) mutual effects between BC NPs and REE3+ should be considered when BC was applied to REE contaminated aquatic and soil systems; and (ii) REE fractionation provides a useful tool for identifying the sources of coexisting substances.
Collapse
Affiliation(s)
- Quan Wan
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China
| | - Beibei Liu
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510006, China
| | - Miaoyue Zhang
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510006, China; Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Guangzhou 510006, China; Guangdong Provincial Engineering Research Center for Heavy Metal Contaminated Soil Remediation, Sun Yat-sen University, Guangzhou 510006, China.
| | - Man Zhao
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510006, China; Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Guangzhou 510006, China; Guangdong Provincial Engineering Research Center for Heavy Metal Contaminated Soil Remediation, Sun Yat-sen University, Guangzhou 510006, China
| | - Yuan Dai
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510006, China
| | - Wenshen Liu
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510006, China; Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Guangzhou 510006, China; Guangdong Provincial Engineering Research Center for Heavy Metal Contaminated Soil Remediation, Sun Yat-sen University, Guangzhou 510006, China
| | - Kengbo Ding
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510006, China; Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Guangzhou 510006, China; Guangdong Provincial Engineering Research Center for Heavy Metal Contaminated Soil Remediation, Sun Yat-sen University, Guangzhou 510006, China
| | - Qingqi Lin
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China
| | - Zhuobiao Ni
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China
| | - Jingjing Li
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China
| | - Shizhong Wang
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510006, China; Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Guangzhou 510006, China; Guangdong Provincial Engineering Research Center for Heavy Metal Contaminated Soil Remediation, Sun Yat-sen University, Guangzhou 510006, China
| | - Chao Jin
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510006, China; Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Guangzhou 510006, China; Guangdong Provincial Engineering Research Center for Heavy Metal Contaminated Soil Remediation, Sun Yat-sen University, Guangzhou 510006, China
| | - Yetao Tang
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510006, China; Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Guangzhou 510006, China; Guangdong Provincial Engineering Research Center for Heavy Metal Contaminated Soil Remediation, Sun Yat-sen University, Guangzhou 510006, China
| | - Rongliang Qiu
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China; School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510006, China.
| |
Collapse
|
10
|
Chen W, Huangfu X, Xiong J, Liu H, He Q. Dynamic retention of thallium(I) on humic acid: Novel insights into the heterogeneous complexation ability and responsiveness. WATER RESEARCH 2023; 239:120053. [PMID: 37182311 DOI: 10.1016/j.watres.2023.120053] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 05/04/2023] [Accepted: 05/05/2023] [Indexed: 05/16/2023]
Abstract
Widely distributed soil humic acid (HA) would significantly affect the environmental migration behavior of Tl(I), but a quantitative and mechanistic understanding of the dynamic Tl(I) retention process on HA is limited. A unified kinetic model was established by coupling the humic ion-binding model with a stirred-flow kinetic model, which quantified the complexation constants and responsiveness coefficients during dynamic Tl(I)-HA complexation. Furthermore, the heterogeneous complexation mechanism of HA and Tl(I) was revealed by batch adsorption experiments, stirred-flow migration experiments, and 2D-FTIR-COS analysis. An increase in pH significantly improved the responsiveness of HA organic binding sites, promoting Tl(I) dynamic retention. Monodentate carboxyl groups induced rapid Tl(I) complexation (kd = 1.9 min-1) in strongly acidic environments. Under weakly acidic conditions, Tl(I) retention on HA was mainly attributed to the synergistic complexation effect of carboxyl and amide groups. Among the groups, multidentate carboxyl-phenolic hydroxyl sites could achieve sustained Tl(I) retention due to their stable complexing properties (logK = 4.48∼7.46) and slow response (kd = 1.1 × 10-3 min-1). These findings are crucial for a comprehensive understanding of the environmental interactions of Tl(I) with humic substances in swamp environments.
Collapse
Affiliation(s)
- Wanpeng Chen
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region, Ministry of Education, College of Environment and Ecology, Chongqing University, Chongqing 400044, China
| | - Xiaoliu Huangfu
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region, Ministry of Education, College of Environment and Ecology, Chongqing University, Chongqing 400044, China.
| | - Jiaming Xiong
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region, Ministry of Education, College of Environment and Ecology, Chongqing University, Chongqing 400044, China
| | - Hongxia Liu
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region, Ministry of Education, College of Environment and Ecology, Chongqing University, Chongqing 400044, China
| | - Qiang He
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region, Ministry of Education, College of Environment and Ecology, Chongqing University, Chongqing 400044, China
| |
Collapse
|