1
|
Hani U, Kidwan FN, Albarqi LA, Al-Qahtani SA, AlHadi RM, AlZaid HA, Haider N, Ansari MA. Biogenic silver nanoparticle synthesis using orange peel extract and its multifaceted biomedical application. Bioprocess Biosyst Eng 2024; 47:1363-1375. [PMID: 38740634 DOI: 10.1007/s00449-024-03031-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 05/06/2024] [Indexed: 05/16/2024]
Abstract
The aim of this study was to employ an agro-industrial byproduct, specifically Citrus sinensis peels, as a reservoir of polyphenols. The natural chemicals present in C. sinensis peels serve as reducing agents in an environmentally benign method for synthesizing silver nanoparticles (AgNPs). This methodology not only provides a more environmentally friendly method for synthesizing nanoparticles but also enhances the value of agricultural waste, emphasizing the sustainable utilization of resources. In our study, AgNPs were successfully synthesized using peel aqueous exact of C. sinensis and then their various biological activity has been investigated. The synthesized AgNPs were characterized by UV-vis spectroscopy, dynamic light scattering (DLS), scanning electron microscopy (SEM), energy-dispersive X-ray (EDX), and transmission electron microscopy (TEM) analysis. Furthermore, their effectiveness in inhibiting growth and biofilm formation of Escherichia coli, Staphylococcus aureus, and Candida albicans has been investigated. The minimum inhibitory concentrations (MIC) for E. coli and S. aureus were both 32 μg/mL, and for C. albicans, it was 128 µg/mL. At 250 µg/mL of AgNPs, 94% and 92% biofilm inhibition were observed against E. coli and S. aureus, respectively. Furthermore, AgNPs demonstrated significant toxic effects against human prostate cancer cell line DU145 as investigated by anti-apoptotic, 4',6-diamidino-2-phenylindole (DAPI), reactive oxygen species (ROS), and acridine orange/ethidium bromide (AO/EtBr) assays. We also conducted uptake analysis on these pathogens and cancer cell lines to preliminarily investigate the mechanisms underlying their toxic effects. These findings confirm that AgNPs can serve as a cost-effective, non-toxic, and environmentally friendly resource for green synthesis of medicinal AgNPs. Moreover, this approach offers an alternative recycling strategy that contributes to the sustainable use of biological by-products.
Collapse
Affiliation(s)
- Umme Hani
- Department of Pharmaceutics, College of Pharmacy, King Khalid University, Abha, Saudi Arabia.
| | - Fawziah Nasser Kidwan
- Department of Doctor of Pharmacy, College of Pharmacy, King Khalid University, Abha, Saudi Arabia
| | - Lamis Ahmed Albarqi
- Department of Doctor of Pharmacy, College of Pharmacy, King Khalid University, Abha, Saudi Arabia
| | | | - Ruba Muhammad AlHadi
- Department of Doctor of Pharmacy, College of Pharmacy, King Khalid University, Abha, Saudi Arabia
| | - Haifa Abdullah AlZaid
- Pharmaceutical Sciences, College of Pharmacy, King Khalid University, Abha, Saudi Arabia
| | - Nazima Haider
- Department of Pathology, College of Medicine, King Khalid University, Abha, Saudi Arabia
| | - Mohammad Azam Ansari
- Department of Epidemic Disease Research, Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, 31441, Dammam, Saudi Arabia.
| |
Collapse
|
2
|
Putra NR, Ismail A, Sari DP, Nurcholis N, Murwatono TT, Rina R, Yuniati Y, Suwarni E, Sasmito A, Virliani P, Alif Rahadi SJ, Irianto I, Widati AA. A bibliometric analysis of cellulose anti-fouling in marine environments. Heliyon 2024; 10:e28513. [PMID: 38596028 PMCID: PMC11002589 DOI: 10.1016/j.heliyon.2024.e28513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 03/19/2024] [Accepted: 03/20/2024] [Indexed: 04/11/2024] Open
Abstract
Marine biofouling poses significant challenges to maritime industries worldwide, affecting vessel performance, fuel efficiency, and environmental sustainability. These challenges demand innovative and sustainable solutions. In this review, the evolving landscape of cellulose-based materials for anti-fouling applications in marine environments is explored. Through a comprehensive bibliometric analysis, the current state of research is examined, highlighting key trends, emerging technologies, and geographical distributions. Cellulose, derived from renewable resources, offers a promising avenue for sustainable anti-fouling strategies due to its biodegradability, low toxicity, and resistance to microbial attachment. Recent advancements in cellulose-based membranes, coatings, and composites are discussed, showcasing their efficacy in mitigating biofouling while minimizing environmental impact. Opportunities for interdisciplinary collaboration and innovation are identified to drive the development of next-generation anti-fouling solutions. By harnessing the power of cellulose, progress towards cleaner, more sustainable oceans can be facilitated, fostering marine ecosystems and supporting global maritime industries.
Collapse
Affiliation(s)
- Nicky Rahmana Putra
- Research Center for Hydrodynamic Technology, National Research and Innovation Agency, Surabaya, Indonesia
| | - Abdi Ismail
- Research Center for Hydrodynamic Technology, National Research and Innovation Agency, Surabaya, Indonesia
| | - Dian Purnama Sari
- Research Center for Hydrodynamic Technology, National Research and Innovation Agency, Surabaya, Indonesia
| | - Nurcholis Nurcholis
- Research Center for Hydrodynamic Technology, National Research and Innovation Agency, Surabaya, Indonesia
| | | | - Rina Rina
- Research Center for Hydrodynamic Technology, National Research and Innovation Agency, Surabaya, Indonesia
| | - Yuniati Yuniati
- Research Center for Hydrodynamic Technology, National Research and Innovation Agency, Surabaya, Indonesia
| | - Endah Suwarni
- Research Center for Hydrodynamic Technology, National Research and Innovation Agency, Surabaya, Indonesia
| | - Agus Sasmito
- Research Center for Hydrodynamic Technology, National Research and Innovation Agency, Surabaya, Indonesia
| | - Putri Virliani
- Research Center for Hydrodynamic Technology, National Research and Innovation Agency, Surabaya, Indonesia
| | - Shinta Johar Alif Rahadi
- Research Center for Hydrodynamic Technology, National Research and Innovation Agency, Surabaya, Indonesia
| | - Irianto Irianto
- Department General Education, Faculty of Resilience, Rabdan Academy, Abu Dhabi, United Arab Emirates
| | | |
Collapse
|
3
|
Wu H, Krause R, Gogoi E, Reck A, Graf A, Wislicenus M, Hild OR, Guhl C. Multielectrode Arrays at Wafer-Level for Miniaturized Sensors Applications: Electrochemical Growth of Ag/AgCl Reference Electrodes. SENSORS (BASEL, SWITZERLAND) 2023; 23:6130. [PMID: 37447979 DOI: 10.3390/s23136130] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 06/26/2023] [Accepted: 06/27/2023] [Indexed: 07/15/2023]
Abstract
In this study, a range of miniaturized Ag/AgCl reference electrodes with various layouts were successfully fabricated on wafer-level silicon-based substrates with metallic intermediate layers by precisely controlling the electrochemical deposition of Ag, followed by electrochemical chlorination of the deposited Ag layer. The structure, as well as the chemical composition of the electrode, were characterized with SEM & EDS. The results showed that the chlorination is very sensitive to the applied electric field and background solution. Potentiostatic chlorination, in combination with an adjusted mushroom-shaped Ag sealing deposition, enabled the formation of electrochemical usable Ag/AgCl layers. The stability of the electrodes was tested using open circuit potential (OCP) measurement. The results showed that the reference electrodes stayed stable for 300 s under 3 M KCl solution. The first stage study showed that the stability of the Ag/AgCl reference electrode in a chip highly depends on chip size design, chlorination conditions, and a further protection layer.
Collapse
Affiliation(s)
- Haosheng Wu
- Fraunhofer Institute for Photonic Microsystems (IPMS), Center Nanoelectronic Technologies (CNT), An der Bartlake 5, 01109 Dresden, Germany
| | - Robert Krause
- Fraunhofer Institute for Photonic Microsystems (IPMS), Center Nanoelectronic Technologies (CNT), An der Bartlake 5, 01109 Dresden, Germany
| | - Eshanee Gogoi
- Fraunhofer Institute for Photonic Microsystems (IPMS), Center Nanoelectronic Technologies (CNT), An der Bartlake 5, 01109 Dresden, Germany
| | - André Reck
- Fraunhofer Institute for Photonic Microsystems (IPMS), Center Nanoelectronic Technologies (CNT), An der Bartlake 5, 01109 Dresden, Germany
| | - Alexander Graf
- Fraunhofer Institute for Photonic Microsystems (IPMS), Maria-Reiche-Str. 2, 01109 Dresden, Germany
| | - Marcus Wislicenus
- Fraunhofer Institute for Photonic Microsystems (IPMS), Center Nanoelectronic Technologies (CNT), An der Bartlake 5, 01109 Dresden, Germany
| | - Olaf R Hild
- Fraunhofer Institute for Photonic Microsystems (IPMS), Maria-Reiche-Str. 2, 01109 Dresden, Germany
| | - Conrad Guhl
- Fraunhofer Institute for Photonic Microsystems (IPMS), Center Nanoelectronic Technologies (CNT), An der Bartlake 5, 01109 Dresden, Germany
| |
Collapse
|
4
|
Popescu M, Ungureanu C. Biosensors in Food and Healthcare Industries: Bio-Coatings Based on Biogenic Nanoparticles and Biopolymers. COATINGS 2023; 13:486. [DOI: 10.3390/coatings13030486] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
Abstract
Biosensors use biological materials, such as enzymes, antibodies, or DNA, to detect specific analytes. These devices have numerous applications in the health and food industries, such as disease diagnosis, food safety monitoring, and environmental monitoring. However, the production of biosensors can result in the generation of chemical waste, which is an environmental concern for the developed world. To address this issue, researchers have been exploring eco-friendly alternatives for immobilising biomolecules on biosensors. One solution uses bio-coatings derived from nanoparticles synthesised via green chemistry and biopolymers. These materials offer several advantages over traditional chemical coatings, such as improved sensitivity, stability, and biocompatibility. In conclusion, the use of bio-coatings derived from green-chemistry synthesised nanoparticles and biopolymers is a promising solution to the problem of chemical waste generated from the production of biosensors. This review provides an overview of these materials and their applications in the health and food industries, highlighting their potential to improve the performance and sustainability of biosensors.
Collapse
Affiliation(s)
- Melania Popescu
- National Institute for Research and Development in Microtechnologies—IMT Bucharest, 126A Erou Iancu Nicolae Street, 077190 Bucharest, Romania
| | - Camelia Ungureanu
- General Chemistry Department, University “Politehnica” of Bucharest, Gheorghe Polizu Street, 1-7, 011061 Bucharest, Romania
| |
Collapse
|