1
|
Parasnis MS, Fu Y, Deng E, Butler A, Chen CT, Dias R, Lin H, Yao F, Nalam PC. High-Performance Ti 3C 2T x-MXene/Mycelium Hybrid Membrane for Efficient Lead Remediation: Design and Mechanistic Insights. ACS APPLIED MATERIALS & INTERFACES 2025; 17:7838-7848. [PMID: 39851067 DOI: 10.1021/acsami.4c19943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2025]
Abstract
This study presents a hybrid microfiltration technology designed for high-performance lead (Pb(II)) remediation, especially from aqueous solutions with high Pb(II) concentrations, by utilizing two-dimensional (2D) Ti3C2Tx-MXene layers deposited on dry mycelium membranes. The hybrid Ti3C2Tx-MXene/mycelium (MyMX) membranes were fabricated via a single-step electrochemical deposition (ECD) technique, which enabled a uniform coating of 2D Ti3C2Tx-MXene onto individual hyphal fibers of a prefabricated mycelium membrane. Optimized ECD parameters for high Pb(II) uptake were identified using scanning electron microscopy and energy-dispersive X-ray spectroscopy. In immersion-based (no-flow) Pb(II) remediation experiments, MyMX membranes demonstrated significantly high Pb(II) removal efficiency (>87-99%) and rapid sorption kinetics across an initial Pb(II) concentration range of 60-1500 ppm in both single-ion and co-ion solutions. The enhanced Pb(II) sorption was attributed to electrostatic interactions and surface complexation assisted by hyphal surface proteins and Ti3C2Tx-MXene functional groups, as confirmed by infrared and X-ray photoelectron spectroscopies. In cross-flow studies, the MyMX membranes achieved a Pb(II) sorption capacity of ∼1347 mg/g while maintaining a high permeation rate of 51,800 L m-2 bar-1 h-1 at 1500 ppm Pb(II), surpassing the performance of various polymer-based and MXene-based microporous membranes for heavy metal remediation. The biomaterial-based hybrid MyMX membrane represents a significant advancement in water treatment technology, providing a cost-effective, sustainable solution for Pb(II) remediation in contaminated water sources.
Collapse
Affiliation(s)
- Mruganka Sandip Parasnis
- Department of Materials Design and Innovation, University at Buffalo, Buffalo, New York 14260-1660, United States
| | - Yu Fu
- Department of Materials Design and Innovation, University at Buffalo, Buffalo, New York 14260-1660, United States
| | - Erda Deng
- Department of Chemical and Biological Engineering, University at Buffalo, Buffalo, New York 14260-1660, United States
| | - Anthony Butler
- Department of Materials Design and Innovation, University at Buffalo, Buffalo, New York 14260-1660, United States
| | - Chu Te Chen
- Department of Materials Design and Innovation, University at Buffalo, Buffalo, New York 14260-1660, United States
| | - Ruveen Dias
- Department of Chemical and Biological Engineering, University at Buffalo, Buffalo, New York 14260-1660, United States
| | - Haiqing Lin
- Department of Chemical and Biological Engineering, University at Buffalo, Buffalo, New York 14260-1660, United States
| | - Fei Yao
- Department of Materials Design and Innovation, University at Buffalo, Buffalo, New York 14260-1660, United States
| | - Prathima C Nalam
- Department of Materials Design and Innovation, University at Buffalo, Buffalo, New York 14260-1660, United States
| |
Collapse
|
2
|
Afzal S, Rehman AU, Najam T, Hossain I, Abdelmotaleb MAI, Riaz S, Karim MR, Shah SSA, Nazir MA. Recent advances of MXene@MOF composites for catalytic water splitting and wastewater treatment approaches. CHEMOSPHERE 2024; 364:143194. [PMID: 39209044 DOI: 10.1016/j.chemosphere.2024.143194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 08/16/2024] [Accepted: 08/26/2024] [Indexed: 09/04/2024]
Abstract
MXenes are a group of 2D material which have been derived from the layered transition metal nitrides and carbides and have the characteristics like electrical conductivity, high surface area and variable surface chemical composition. Self-assembly of clusters/metal ions and organic linkers forms metal organic framework (MOF). Their advantages of ultrahigh porosity, highly exposed active sites and many pore architectures have garnered them a lot of attention. But poor conductivity and instability plague several conventional MOF. To address the issue, MOF can be linked with MXenes that have rich surface functional groups and excellent electrical conductivity. In this review, different etching methods for exfoliation of MXene along with the synthesis methods of MXene/MOF composites are reviewed, including hydrothermal method, solvothermal method, in-situ growth method, and self-assembly method. Moreover, application of these MXene/MOF composites for catalytic water splitting and wastewater treatment were also discussed in details. In addition to increasing a single MOF conductivity and stability, MXenes can add a variety of new features, such the template effect. Due to these benefits, MXene/MOF composites can be effectively used in several applications, including photocatalytic/electrocatalytic water splitting, adsorption and degradation of pollutants from wastewater. Finally, the authors explored the current challenges and the future opportunities to improve the efficiency of MXene/MOF composites.
Collapse
Affiliation(s)
- Samreen Afzal
- Institute of Chemistry, The Islamia University of Bahawalpur, Bahawalpur, 63100, Pakistan
| | - Aziz Ur Rehman
- Institute of Chemistry, The Islamia University of Bahawalpur, Bahawalpur, 63100, Pakistan
| | - Tayyaba Najam
- Research and Development Division, SciTech International Pvt Ltd, G-10/1 Islamabad, Pakistan
| | - Ismail Hossain
- Department of Nuclear and Renewable Energy, Ural Federal University, Yekaterinburg, 620002, Russia
| | - Mostafa A I Abdelmotaleb
- Research Center for Advanced Materials Science (RCAMS), Chemistry Department, Faculty of Science, King Khalid University, P.O. Box 9004, Abha, 61413, Saudi Arabia
| | - Sundas Riaz
- Institute of Chemistry, The Islamia University of Bahawalpur, Bahawalpur, 63100, Pakistan
| | - Md Rezaul Karim
- School of Chemical Engineering, Yeungnam University, 280 Daehak-ro, Gyeongsan, Gyeongbuk, 38541, Republic of Korea.
| | - Syed Shoaib Ahmad Shah
- Department of Chemistry, School of Natural Sciences, National University of Sciences and Technology, Islamabad, 44000, Pakistan.
| | - Muhammad Altaf Nazir
- Institute of Chemistry, The Islamia University of Bahawalpur, Bahawalpur, 63100, Pakistan.
| |
Collapse
|
3
|
Essalmi S, Lotfi S, BaQais A, Saadi M, Arab M, Ait Ahsaine H. Design and application of metal organic frameworks for heavy metals adsorption in water: a review. RSC Adv 2024; 14:9365-9390. [PMID: 38510487 PMCID: PMC10951820 DOI: 10.1039/d3ra08815d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Accepted: 03/07/2024] [Indexed: 03/22/2024] Open
Abstract
The growing apprehension surrounding heavy metal pollution in both environmental and industrial contexts has spurred extensive research into adsorption materials aimed at efficient remediation. Among these materials, Metal-Organic Frameworks (MOFs) have risen as versatile and promising contenders due to their adjustable properties, expansive surface areas, and sustainable characteristics, compared to traditional options like activated carbon and zeolites. This exhaustive review delves into the synthesis techniques, structural diversity, and adsorption capabilities of MOFs for the effective removal of heavy metals. The article explores the evolution of MOF design and fabrication methods, highlighting pivotal parameters influencing their adsorption performance, such as pore size, surface area, and the presence of functional groups. In this perspective review, a thorough analysis of various MOFs is presented, emphasizing the crucial role of ligands and metal nodes in adapting MOF properties for heavy metal removal. Moreover, the review delves into recent advancements in MOF-based composites and hybrid materials, shedding light on their heightened adsorption capacities, recyclability, and potential for regeneration. Challenges for optimization, regeneration efficiency and minimizing costs for large-scale applications are discussed.
Collapse
Affiliation(s)
- S Essalmi
- Laboratoire de Chimie Appliquée des Matériaux, Centre des Sciences des Matériaux, Faculty of Sciences, MohammedV University in Rabat Morocco
- Université de Toulon, AMU, CNRS, IM2NP CS 60584 Toulon Cedex 9 France
| | - S Lotfi
- Laboratoire de Chimie Appliquée des Matériaux, Centre des Sciences des Matériaux, Faculty of Sciences, MohammedV University in Rabat Morocco
| | - A BaQais
- Department of Chemistry, College of Science, Princess Nourah Bint Abdulrahman University P. O. Box 84428 Riyadh 11671 Saudi Arabia
| | - M Saadi
- Laboratoire de Chimie Appliquée des Matériaux, Centre des Sciences des Matériaux, Faculty of Sciences, MohammedV University in Rabat Morocco
| | - M Arab
- Université de Toulon, AMU, CNRS, IM2NP CS 60584 Toulon Cedex 9 France
| | - H Ait Ahsaine
- Laboratoire de Chimie Appliquée des Matériaux, Centre des Sciences des Matériaux, Faculty of Sciences, MohammedV University in Rabat Morocco
| |
Collapse
|
4
|
Yan M, Fu LL, Feng HC, Namadchian M. Application of Ag nanoparticles decorated on graphene nanosheets for electrochemical sensing of CEA as an important cancer biomarker. ENVIRONMENTAL RESEARCH 2023; 239:117363. [PMID: 37838192 DOI: 10.1016/j.envres.2023.117363] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 10/03/2023] [Accepted: 10/09/2023] [Indexed: 10/16/2023]
Abstract
In this research, a novel biosensing platform is described based on graphene nano-sheets decorated with Ag nano-particles (GNSs@Ag NPs). The designed electrochemical aptasensor was employed to determine carcinoembryonic antigen (CEA), an important cancer biomarker. Inherently, aptasensing interfaces provide high sensitivity for CEA tumor marker because of the high specific surface area and excellent conductivity of the prepared GNSs@Ag NPs composite. The established assay demonstrated a wide linear range from 0.001 pg/mL to 10 pg/mL with a correlation coefficient of 0.9958 and low detection limit (DL) of 0.5 fg/mL based on S/N = 3 protocol. The derived biosensor illustrated acceptable selectivity towards common interfering species including HER2, VEGF, IgG, MUC1 and CFP10. In addition, the aptsensor showed good reproducibility and fast response time. The applicability of the suggested strategy in human serum samples was also examined and compared to the commercial enzyme-linked immunosorbent assay (ELISA). Based on the experimental data, it was found that the discussed sensing platform can be exerted in the monitoring of CEA in different cancers for early diagnosis.
Collapse
Affiliation(s)
- Ming Yan
- Department of Oral and Maxillofacial Surgery, Guiyang Hospital of Stomatology, Guiyang, 550002, Guizhou, China
| | - Ling-Ling Fu
- Department of Oral and Maxillofacial Surgery, Guiyang Hospital of Stomatology, Guiyang, 550002, Guizhou, China
| | - Hong-Chao Feng
- Department of Oral and Maxillofacial Surgery, Guiyang Hospital of Stomatology, Guiyang, 550002, Guizhou, China.
| | - Melika Namadchian
- Department of Medicinal Chemistry, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
5
|
Zheng H, Meng X, Wu J, Liu D, Huo S. Photoelectrocatalytic modification of nanofiltration membranes with SrF 2/Ti 3C 2T x to simultaneously enhance heavy metal ions rejection and permeability. CHEMOSPHERE 2023; 342:140152. [PMID: 37714470 DOI: 10.1016/j.chemosphere.2023.140152] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 08/30/2023] [Accepted: 09/11/2023] [Indexed: 09/17/2023]
Abstract
Heavy metal pollution can significantly harm water systems and human health. Combining photoelectrocatalytic (PEC) and nanofiltration (NF) membrane separation technologies can effectively remove heavy metal ions from wastewater. In this study, a water bath method was used to form SrF2/Ti3C2Tx (ST) nanoparticles on the surface of polyvinylidene fluoride (PVDF) membranes and an additional polyamide (PA) functional layer was formed at the interface by crosslinking. ST@PA composite NF membranes (STPP) with good photocatalytic performance were obtained. The separation and catalytic properties of the STPP membranes were controlled by the ST content, which modifies the surface structure and properties of the membranes. The membrane with optimal ST crosslinking exhibited a water contact angle of 50.8°, pure water flux of 24.6 L·m-2·h-1·bar-1, and rejection rates of Mn2+, Ni2+, Cu2+, and Zn2+ of 98.8%, 95.3%, 95.7%, and 97.3%, respectively, under PEC-assisted separation with visible light illumination from a Xe lamp (300 W) and an applied voltage (2 V). The STPP membranes showed improved rejection rates of heavy metal ions under PEC-assisted operation. The mechanism for the improved membrane performance under PEC conditions was preliminarily clarified considering the relationship between the photocatalytic and filtration properties of STPP membranes along with the influence of light irradiation and an external voltage on the heavy metal ions. The generation of electrons, holes, superoxide radicals, and hydroxyl radicals during membrane operation enhances the rejection rates of heavy metal ions. Based on these results, STPP membranes are considered a promising technology for industrial applications in heavy metal removal.
Collapse
Affiliation(s)
- Huiqi Zheng
- School of Chemistry and Chemical Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Xiaorong Meng
- School of Chemistry and Chemical Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Key Laboratory of Membrane Separation of Shaanxi Province, Xi'an University of Architecture and Technology, Xi'an 710055, China.
| | - Jiao Wu
- School of Chemistry and Chemical Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Danghao Liu
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Shanshan Huo
- Research Institute of Membrane Separation Technology of Shaanxi Province Co., Ltd, Xi'an 710055, China
| |
Collapse
|
6
|
Nambikkattu J, Thomas AA, Kaleekkal NJ, Arumugham T, Hasan SW, Vigneswaran S. ZnO/PDA/Mesoporous Cellular Foam Functionalized Thin-Film Nanocomposite Membrane towards Enhanced Nanofiltration Performance. MEMBRANES 2023; 13:membranes13050486. [PMID: 37233547 DOI: 10.3390/membranes13050486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 04/21/2023] [Accepted: 04/26/2023] [Indexed: 05/27/2023]
Abstract
Thin-film nanocomposite (TFN) membranes are the third-generation membranes being explored for nanofiltration applications. Incorporating nanofillers in the dense selective polyamide (PA) layer improves the permeability-selectivity trade-off. The mesoporous cellular foam composite Zn-PDA-MCF-5 was used as a hydrophilic filler in this study to prepare TFN membranes. Incorporating the nanomaterial onto the TFN-2 membrane resulted in a decrease in the water contact angle and suppression of the membrane surface roughness. The pure water permeability of 6.40 LMH bar-1 at the optimal loading ratio of 0.25 wt.% obtained was higher than the TFN-0 (4.20 LMH bar-1). The optimal TFN-2 demonstrated a high rejection of small-sized organics (>95% rejection for 2,4-dichlorophenol over five cycles) and salts-Na2SO4 (≈95%) > MgCl2 (≈88%) > NaCl (86%) through size sieving and Donnan exclusion mechanisms. Furthermore, the flux recovery ratio for TFN-2 increased from 78.9 to 94.2% when challenged with a model protein foulant (bovine serum albumin), indicating improved anti-fouling abilities. Overall, these findings provided a concrete step forward in fabricating TFN membranes that are highly suitable for wastewater treatment and desalination applications.
Collapse
Affiliation(s)
- Jenny Nambikkattu
- Membrane Separation Group, Department of Chemical Engineering, National Institute of Technology Calicut (NITC), Kozhikode 673601, India
| | - Anoopa Ann Thomas
- Membrane Separation Group, Department of Chemical Engineering, National Institute of Technology Calicut (NITC), Kozhikode 673601, India
| | - Noel Jacob Kaleekkal
- Membrane Separation Group, Department of Chemical Engineering, National Institute of Technology Calicut (NITC), Kozhikode 673601, India
| | - Thanigaivelan Arumugham
- Department of Chemical Engineering, Khalifa University, Abu Dhabi P.O. Box 127788, United Arab Emirates
- Center for Membranes and Advanced Water Technology (CMAT), Khalifa University of Science and Technology, Abu Dhabi P.O. Box 127788, United Arab Emirates
| | - Shadi W Hasan
- Department of Chemical Engineering, Khalifa University, Abu Dhabi P.O. Box 127788, United Arab Emirates
- Center for Membranes and Advanced Water Technology (CMAT), Khalifa University of Science and Technology, Abu Dhabi P.O. Box 127788, United Arab Emirates
| | - Saravanamuthu Vigneswaran
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, NSW 2007, Australia
- Faculty of Sciences &, Technology (RealTek), Norwegian University of Life Sciences, P.O. Box 5003, 1432 As, Norway
| |
Collapse
|