1
|
Zhang Y, Wen X, Zhou W, Yang Y, Zhou Z, Chen J, Wang X, Wang Y, Tian J, Yuan Y, You P, Liu Y, Yin L. Retention and migration of microplastics in stepped paddy fields: A study on microplastic dynamics in the special irrigation system. ENVIRONMENTAL RESEARCH 2025; 269:120909. [PMID: 39842754 DOI: 10.1016/j.envres.2025.120909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2024] [Revised: 01/13/2025] [Accepted: 01/19/2025] [Indexed: 01/24/2025]
Abstract
The stepped paddy fields (SPFs) are important for food security and sustainable development. The unique spatial structure and complex hydrological processes in this system make it difficult to understand the migration of pollutants. In this study, microplastic pollution was investigated in the water and soil from Ziquejie SPFs, China. Samples were taken according to different stages of rice cultivation, different altitudes, and soil depths. Before rice planting, the average abundance in the water and soil samples was 1.3 ± 1.1 items/L and 292.2 ± 260.8 items/kg, respectively. After rice harvesting, the average abundance in soil increased to 495.37 ± 175.46 items/kg. More microplastics were found in depths of 0-15 cm than that of 15-30 cm, but the difference was not significant. Major microplastics were small (<1 mm) polyethylene (PE) and polypropylene (PP) fibers, with the main color of blue and transparent. The study found that SPFs hindered the migration of microplastics in irrigation water and hydraulic conditions affected the accumulation of microplastics. The edge areas in paddy fields where the water flowed slowly and were prone to vortices made it easier for microplastics to stay. Most of the microplastics accumulated in the upper SPF. After rice harvesting, the overall abundance of microplastics in the SPFs increased. Fibers and fragments exhibited different characteristics in migration. This study attempts to draw attention to the ecological risks caused by microplastic pollution in SPFs, especially in the upper paddy field and the effluent. The results are helpful for the protection of the SPF ecosystem and provide valuable references for future research.
Collapse
Affiliation(s)
- You Zhang
- School of Hydraulic and Environmental Engineering, Changsha University of Science &Technology, Changsha, 410114, China; Key Laboratory of Dongting Lake Aquatic Eco-Environmental Control and Restoration of Hunan Province, Changsha, 410114, China; Key Laboratory of Water-Sediment Sciences and Water Disaster Prevention of Hunan Province, Changsha, 410114, China
| | - Xiaofeng Wen
- School of Hydraulic and Environmental Engineering, Changsha University of Science &Technology, Changsha, 410114, China; Key Laboratory of Dongting Lake Aquatic Eco-Environmental Control and Restoration of Hunan Province, Changsha, 410114, China; Key Laboratory of Water-Sediment Sciences and Water Disaster Prevention of Hunan Province, Changsha, 410114, China.
| | - Weicheng Zhou
- School of Chemistry and Environmental Science, Xiangnan University, Chenzhou, 423000, China
| | - Yang Yang
- Hunan Water Conservancy and Hydropower Research Institute, Changsha, 410007, China
| | - Zhilin Zhou
- School of Hydraulic and Environmental Engineering, Changsha University of Science &Technology, Changsha, 410114, China; Key Laboratory of Dongting Lake Aquatic Eco-Environmental Control and Restoration of Hunan Province, Changsha, 410114, China; Key Laboratory of Water-Sediment Sciences and Water Disaster Prevention of Hunan Province, Changsha, 410114, China
| | - Jianyong Chen
- School of Hydraulic and Environmental Engineering, Changsha University of Science &Technology, Changsha, 410114, China; Key Laboratory of Dongting Lake Aquatic Eco-Environmental Control and Restoration of Hunan Province, Changsha, 410114, China; Key Laboratory of Water-Sediment Sciences and Water Disaster Prevention of Hunan Province, Changsha, 410114, China
| | - Xinyu Wang
- School of Hydraulic and Environmental Engineering, Changsha University of Science &Technology, Changsha, 410114, China; Key Laboratory of Dongting Lake Aquatic Eco-Environmental Control and Restoration of Hunan Province, Changsha, 410114, China; Key Laboratory of Water-Sediment Sciences and Water Disaster Prevention of Hunan Province, Changsha, 410114, China
| | - Ying Wang
- School of Hydraulic and Environmental Engineering, Changsha University of Science &Technology, Changsha, 410114, China; Key Laboratory of Dongting Lake Aquatic Eco-Environmental Control and Restoration of Hunan Province, Changsha, 410114, China; Key Laboratory of Water-Sediment Sciences and Water Disaster Prevention of Hunan Province, Changsha, 410114, China
| | - Jiayi Tian
- Hunan Water Conservancy and Hydropower Research Institute, Changsha, 410007, China
| | - Yu Yuan
- School of Hydraulic and Environmental Engineering, Changsha University of Science &Technology, Changsha, 410114, China; Key Laboratory of Dongting Lake Aquatic Eco-Environmental Control and Restoration of Hunan Province, Changsha, 410114, China; Key Laboratory of Water-Sediment Sciences and Water Disaster Prevention of Hunan Province, Changsha, 410114, China
| | - Pengling You
- School of Hydraulic and Environmental Engineering, Changsha University of Science &Technology, Changsha, 410114, China; Key Laboratory of Dongting Lake Aquatic Eco-Environmental Control and Restoration of Hunan Province, Changsha, 410114, China; Key Laboratory of Water-Sediment Sciences and Water Disaster Prevention of Hunan Province, Changsha, 410114, China
| | - Yingxing Liu
- School of Hydraulic and Environmental Engineering, Changsha University of Science &Technology, Changsha, 410114, China; Key Laboratory of Dongting Lake Aquatic Eco-Environmental Control and Restoration of Hunan Province, Changsha, 410114, China; Key Laboratory of Water-Sediment Sciences and Water Disaster Prevention of Hunan Province, Changsha, 410114, China
| | - Lingshi Yin
- College of Water Resources & Civil Engineering, Hunan Agricultural University, Changsha, 410128, China
| |
Collapse
|
2
|
Yin L, Nie X, Deng G, Tian J, Xiang Z, Abbasi S, Chen H, Zhang W, Xiao R, Gan C, Zhang Y, Wen X. Hydrodynamic driven microplastics in Dongting Lake, China: Quantification of the flux and transportation. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:136049. [PMID: 39368360 DOI: 10.1016/j.jhazmat.2024.136049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 09/25/2024] [Accepted: 10/02/2024] [Indexed: 10/07/2024]
Abstract
Hydrodynamic conditions have a significant effect on the fate of microplastics (MPs). Moreover, research on the relation between hydrodynamic conditions and MPs in freshwater environments is critical and unquantified. In this regard, herein, a methodological framework integrating system monitoring with numerical simulation has been developed and successfully implemented for Dongting Lake, a large freshwater lake fed by multiple rivers. According to time-series monitoring and hydrological data, 199.29/128.50 trillion MP items entered or exited Dongting Lake in 2021. In addition, a coupled numerical model identified four key areas of MP accumulation, which overlap with nature reserves and agricultural zones, posing considerable risks to the ecological gene pool and food security. The quantitative results obtained using the developed framework enable calculation of MP inflow and outflow fluxes and facilitate analysis of MP transportation. Overall, this study provides a scientific basis for preventing and controlling MP pollution in Dongting Lake and offers valuable insights for future research on related issues in freshwater ecosystems.
Collapse
Affiliation(s)
- Lingshi Yin
- College of Water Resources & Civil Engineering, Hunan Agricultural University, Changsha 410128, China; College of Environmental Science and Engineering, Hunan University, Changsha 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, China.
| | - Xiuzhen Nie
- College of Water Resources & Civil Engineering, Hunan Agricultural University, Changsha 410128, China
| | - Guanying Deng
- School of Hydraulic and Environmental Engineering, Changsha University of Science and Technology, Changsha 410114, China; Key Laboratory of Dongting Lake Aquatic Eco-Environmental Control and Restoration of Hunan Province, Changsha 410114, China
| | - Jiayi Tian
- College of Water Resources & Civil Engineering, Hunan Agricultural University, Changsha 410128, China
| | - Ziyi Xiang
- School of Hydraulic and Environmental Engineering, Changsha University of Science and Technology, Changsha 410114, China; Key Laboratory of Dongting Lake Aquatic Eco-Environmental Control and Restoration of Hunan Province, Changsha 410114, China
| | - Sajjad Abbasi
- Department of Earth Sciences, College of Science, Shiraz University, Shiraz 71454, Iran; Centre for Environmental Studies and Emerging Pollutants (ZISTANO), Shiraz University, Shiraz, Iran
| | - Haojie Chen
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, China
| | - Wenping Zhang
- College of Water Resources & Civil Engineering, Hunan Agricultural University, Changsha 410128, China
| | - Ruihao Xiao
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, China
| | - Chuneng Gan
- College of Water Resources & Civil Engineering, Hunan Agricultural University, Changsha 410128, China
| | - You Zhang
- School of Hydraulic and Environmental Engineering, Changsha University of Science and Technology, Changsha 410114, China; Key Laboratory of Dongting Lake Aquatic Eco-Environmental Control and Restoration of Hunan Province, Changsha 410114, China
| | - Xiaofeng Wen
- School of Hydraulic and Environmental Engineering, Changsha University of Science and Technology, Changsha 410114, China; Key Laboratory of Dongting Lake Aquatic Eco-Environmental Control and Restoration of Hunan Province, Changsha 410114, China.
| |
Collapse
|
3
|
Jing X, Shao Y, Wang H, Han G, Zhang J, Wang N, Xu J, Liu L, Chen G. Aging of polypropylene plastic and impacts on microbial community structure in constructed wetlands. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 347:123433. [PMID: 38278405 DOI: 10.1016/j.envpol.2024.123433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 01/19/2024] [Accepted: 01/21/2024] [Indexed: 01/28/2024]
Abstract
The COVID-19 pandemic has resulted in a substantial surge in the usage of disposable plastic masks, generating a significant volume of waste and contributing to environmental pollution. Wetland ecosystems function as crucial repositories for terrestrial pollutants and are highly effective in retaining disposable masks composed mainly of PP material. These masks can endure extended periods in wetlands, experiencing natural degradation that may have potential implications on wetland ecosystems. Our findings demonstrate the natural aging process of disposable masks, resulting in the generation of microplastics (MPs) ranging in diameter from 10 to 30 μm over a 180-day timeframe. Examination of 16S rDNA data unveiled temporal fluctuations in microbial diversity in the wetland ecosystem. Initially, microbial diversity displayed a modest incline, which was succeeded by a subsequent decrease. With the progressive accumulation of plastic within the wetland, an ongoing decline in microbial diversity linked to nitrogen transformation was observed. This study provides valuable insights into the retention of disposable masks by wetlands amidst the COVID-19 pandemic, along with their consequential effects on wetland ecosystems, specifically pertaining to nitrogen cycling. It underscores the urgency of augmenting the safeguarding measures for wetland ecosystems.
Collapse
Affiliation(s)
- Xinxin Jing
- School of Municipal and Environmental Engineering, Shandong Jianzhu University, Jinan, 250101, China
| | - Yuanyuan Shao
- School of Municipal and Environmental Engineering, Shandong Jianzhu University, Jinan, 250101, China.
| | - Hongbo Wang
- School of Municipal and Environmental Engineering, Shandong Jianzhu University, Jinan, 250101, China
| | - Guolan Han
- School of Municipal and Environmental Engineering, Shandong Jianzhu University, Jinan, 250101, China
| | - Jian Zhang
- School of Municipal and Environmental Engineering, Shandong Jianzhu University, Jinan, 250101, China
| | - Ning Wang
- School of Municipal and Environmental Engineering, Shandong Jianzhu University, Jinan, 250101, China
| | - Jingtao Xu
- School of Municipal and Environmental Engineering, Shandong Jianzhu University, Jinan, 250101, China
| | - Lei Liu
- School of Municipal and Environmental Engineering, Shandong Jianzhu University, Jinan, 250101, China
| | - Gao Chen
- Institute of Crop Germplasm Resources, Shandong Academy of Agricultural Sciences, Jinan, 250100, China; State Key Laboratory of Nutrient Use and Management, Jinan, 250100, China
| |
Collapse
|
4
|
Ding S, Gu X, Sun S, He S. Optimization of microplastic removal based on the complementarity of constructed wetland and microalgal-based system. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:169081. [PMID: 38104829 DOI: 10.1016/j.scitotenv.2023.169081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 11/06/2023] [Accepted: 12/01/2023] [Indexed: 12/19/2023]
Abstract
As one of the emblematic emerging contaminants, microplastics (MPs) have aroused great public concern. Nevertheless, the global community still insufficiently acknowledges the ecological health risks and resolution strategies of MP pollution. As the nature-based biotechnologies, the constructed wetland (CW) and microalgal-based system (MBS) have been applied in exploring the removal of MPs recently. This review separately presents the removal research (mechanism, interactions, implications, and technical defects) of MPs by a single method of CWs or MBS. But one thing with certitude is that the exclusive usage of these techniques to combat MPs has non-negligible and formidable challenges. The negative impacts of MP accumulation on CWs involve toxicity to macrophytes, substrates blocking, and nitrogen-removing performance inhibition. While MPs restrict MBS practical application by making troubles for separation difficulties of microalgal-based aggregations from effluent. Hence the combined strategy of microalgal-assisted CWs is proposed based on the complementarity of biotechnologies, in an attempt to expand the removing size range of MPs, create more biodegradable conditions and improve the effluent quality. Our work evaluates and forecasts the potential of integrating combination for strengthening micro-polluted wastewater treatment, completing the synergistic removal of MP-based co-pollutants and achieving long-term stability and sustainability, which is expected to provide new insights into MP pollution regulation and control.
Collapse
Affiliation(s)
- Shaoxuan Ding
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, PR China
| | - Xushun Gu
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, PR China
| | - Shanshan Sun
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, PR China
| | - Shengbing He
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, PR China; Shanghai Engineering Research Center of Landscape Water Environment, Shanghai 200031, PR China.
| |
Collapse
|
5
|
Long Y, Zhang Y, Zhou Z, Liu R, Qiu Z, Qiu Y, Li J, Wang W, Li X, Yin L, Wen X. Are microplastics in livestock and poultry manure an emerging threat to agricultural soil safety? ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:11543-11558. [PMID: 38212564 DOI: 10.1007/s11356-024-31857-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 01/01/2024] [Indexed: 01/13/2024]
Abstract
Microplastics (MPs) have attracted much attention in recent years, due to the difficulty of degradation and threats to ecological systems and humans. Based on the analysis of 1429 articles on MPs in soil, we found that we know little about the behavior and fate of manure-born MPs from the livestock and poultry production systems to agriculture soils. This review summarizes the analytical methods for sampling, separation, and identification and the occurrence of MPs in livestock and poultry manure, mainly based on 7 surveys related to manure-born MPs. Then, the sources, fate, and environmental risks of MPs in livestock and poultry manure are discussed. MPs, heavy metals, pathogens, antibiotic resistance genes, and persistent organic pollutants are common pollutants in livestock and poultry manure. Worse, manure-born MPs will become smaller, rougher, and more numerous and could easily form more toxic compound pollution after complicated processes of manure treatment, which seriously threatens agricultural soil safety. Finally, an outlook is offered for future research. We hope this article to attract attention to the risks of MPs in livestock and poultry manure and provide a reference for future research.
Collapse
Affiliation(s)
- Yuannan Long
- School of Hydraulic and Environmental Engineering, Changsha University of Science &Technology, Changsha, 410114, China
- Key Laboratory of Dongting Lake Aquatic Eco-Environmental Control and Restoration of Hunan Province, Changsha, 410114, China
- Key Laboratory of Water-Sediment Sciences and Water Disaster Prevention of Hunan Province, Changsha, 410114, China
| | - You Zhang
- School of Hydraulic and Environmental Engineering, Changsha University of Science &Technology, Changsha, 410114, China
- Key Laboratory of Dongting Lake Aquatic Eco-Environmental Control and Restoration of Hunan Province, Changsha, 410114, China
- Key Laboratory of Water-Sediment Sciences and Water Disaster Prevention of Hunan Province, Changsha, 410114, China
| | - Zhenyu Zhou
- School of Hydraulic and Environmental Engineering, Changsha University of Science &Technology, Changsha, 410114, China
- Key Laboratory of Dongting Lake Aquatic Eco-Environmental Control and Restoration of Hunan Province, Changsha, 410114, China
- Key Laboratory of Water-Sediment Sciences and Water Disaster Prevention of Hunan Province, Changsha, 410114, China
| | - Ruyi Liu
- School of Hydraulic and Environmental Engineering, Changsha University of Science &Technology, Changsha, 410114, China
- Key Laboratory of Dongting Lake Aquatic Eco-Environmental Control and Restoration of Hunan Province, Changsha, 410114, China
- Key Laboratory of Water-Sediment Sciences and Water Disaster Prevention of Hunan Province, Changsha, 410114, China
| | - Ziyi Qiu
- School of Hydraulic and Environmental Engineering, Changsha University of Science &Technology, Changsha, 410114, China
- Key Laboratory of Dongting Lake Aquatic Eco-Environmental Control and Restoration of Hunan Province, Changsha, 410114, China
- Key Laboratory of Water-Sediment Sciences and Water Disaster Prevention of Hunan Province, Changsha, 410114, China
| | - Yiming Qiu
- School of Hydraulic and Environmental Engineering, Changsha University of Science &Technology, Changsha, 410114, China
- Key Laboratory of Dongting Lake Aquatic Eco-Environmental Control and Restoration of Hunan Province, Changsha, 410114, China
- Key Laboratory of Water-Sediment Sciences and Water Disaster Prevention of Hunan Province, Changsha, 410114, China
| | - Juan Li
- School of Hydraulic and Environmental Engineering, Changsha University of Science &Technology, Changsha, 410114, China
- Key Laboratory of Dongting Lake Aquatic Eco-Environmental Control and Restoration of Hunan Province, Changsha, 410114, China
- Key Laboratory of Water-Sediment Sciences and Water Disaster Prevention of Hunan Province, Changsha, 410114, China
| | - Wenming Wang
- Hunan Pilot Yanghu Reclaimed Water Co. Ltd, Changsha, 410006, China
| | - Xiwei Li
- Hunan Pilot Yanghu Reclaimed Water Co. Ltd, Changsha, 410006, China
| | - Lingshi Yin
- Key Laboratory of Dongting Lake Aquatic Eco-Environmental Control and Restoration of Hunan Province, Changsha, 410114, China
- Key Laboratory of Water-Sediment Sciences and Water Disaster Prevention of Hunan Province, Changsha, 410114, China
- College of Water Resources & Civil Engineering, Hunan Agricultural University, Changsha, 410128, Hunan, China
| | - Xiaofeng Wen
- School of Hydraulic and Environmental Engineering, Changsha University of Science &Technology, Changsha, 410114, China.
- Key Laboratory of Dongting Lake Aquatic Eco-Environmental Control and Restoration of Hunan Province, Changsha, 410114, China.
- Key Laboratory of Water-Sediment Sciences and Water Disaster Prevention of Hunan Province, Changsha, 410114, China.
| |
Collapse
|
6
|
Gupta N, Parsai T, Kulkarni HV. A review on the fate of micro and nano plastics (MNPs) and their implication in regulating nutrient cycling in constructed wetland systems. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 350:119559. [PMID: 38016236 DOI: 10.1016/j.jenvman.2023.119559] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 10/06/2023] [Accepted: 11/04/2023] [Indexed: 11/30/2023]
Abstract
This review discusses the micro-nano plastics (MNPs) and their interaction with physical, chemical and biological processes in a constructed wetland (CW) system that is typically used as a nature-based tertiary wastewater treatment for municipal as well as industrial applications. Individual components of the CW system such as substrate, microorganisms and plants were considered to assess how MNPs influence the CW processes. One of the main functions of a CW system is removal of nutrients like nitrogen (N) and phosphorus (P) and here we highlight the pathways through which the MNPs influence CW's efficacy of nutrient removal. The presence of morphologically (size and shape) and chemically different MNPs influence the growth rate of microorganisms important in N and P cycling, invertebrates, decomposers, and the plants which affect the overall efficiency of a CW treatment system. Certain plant species take up the MNPs, and some toxicity has been observed. This review focuses on two significant aspects: (1) the presence of MNPs in a significant concentration affects the efficiency of N and P removal, and (2) the removal of MNPs. Because MNPs reduce the enzyme activities in abundance and overproduction of ROS oxidizes the enzyme active sites, resulting in the depletion of proteins, ultimately inhibiting nitrogen and phosphorus removal within the substrate layer. The review found that the majority of the studies used sand-activated carbon (SAC), granular-activated carbon (GAC), rice straw, granular limestone, and calcium carbonate, as a substrate for CW treatment systems. Common plant species used in the CW include Phragmites, Arabidopsis thaliana, Lepidium sativum, Thalia dealbata, and Canna indica, which were also found to be dominant in the uptake of the MNPs in the CWs. The MNPs were found to affect earthworms such as Eisenia fetida, Caenorhabditis elegans, and, Enchytraeus crypticus, whereas Metaphire vulgaris were found unaffected. Though various mechanisms take place during the removal process, adsorption and uptake mechanism effectively emphasize the removal of MNPs and nitrogen and phosphorus in CW. The MNPs characteristics (type, size, and concentration) play a crucial role in the removal efficiency of nano-plastics (NPs) and micro-plastics (MPs). The enhanced removal efficiency of NPs compared to MPs can be attributed to their smaller size, resulting in a faster reaction rate. However, NPs dose variation showed fluctuating removal efficiency, whereas MPs dose increment reduces removal efficiency. MP and NPs dose variation also affected toxicity to plants and earthworms as observed from data. Understanding the fate and removal of microplastics in wetland systems will help determine the reuse potential of wastewater and restrict the release of microplastics. This study provides information on various aspects and highlights future gaps and needs for MNP fate study in CW systems.
Collapse
Affiliation(s)
- Nikita Gupta
- School of Civil and Environmental Engineering, Indian Institute of Technology (IIT) Mandi, Kamand, Himachal Pradesh, 175005, India.
| | - Tanushree Parsai
- Department of Civil Engineering, Indian Institute of Technology Madras, Chennai, 600036, India.
| | - Harshad Vijay Kulkarni
- School of Civil and Environmental Engineering, Indian Institute of Technology (IIT) Mandi, Kamand, Himachal Pradesh, 175005, India.
| |
Collapse
|
7
|
Wang X, Dai Y, Li Y, Yin L. Application of advanced oxidation processes for the removal of micro/nanoplastics from water: A review. CHEMOSPHERE 2024; 346:140636. [PMID: 37949189 DOI: 10.1016/j.chemosphere.2023.140636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 11/03/2023] [Accepted: 11/05/2023] [Indexed: 11/12/2023]
Abstract
Micro/nanoplastics (MNPs) have been increasingly found in environments, food, and organisms, arousing wide public concerns. MNPs may enter food chains through water, posing a threat to human health. Therefore, efficient and environmentally friendly technologies are needed to remove MNPs from contaminated aqueous environments. Advanced oxidation processes (AOPs) produce a vast amount of active species, such as hydroxyl radicals (·OH), known for their strong oxidation capacity. As a result, an increasing number of researchers have focused on using AOPs to decompose and remove MNPs from water. This review summarizes the progress in researches on the removal of MNPs from water by AOPs, including ultraviolet photolysis, ozone oxidation, photocatalysis, Fenton oxidation, electrocatalysis, persulfate oxidation, and plasma oxidation, etc. The removal efficiencies of these AOPs for MNPs in water and the influencing factors are comprehensively analyzed, meanwhile, the oxidation mechanisms and reaction pathways are also discussed in detail. Most AOPs can achieve the degradation of MNPs, mainly manifest as the decrease of particle size and the increase of mass loss, but the mineralization rate is low, thus requiring further optimization for improved performance. Investigating various AOPs is crucial for achieving the complete decomposition of MNPs in water. AOPs will undoubtedly play a vital role in the future for the removal of MNPs from water.
Collapse
Affiliation(s)
- Xiaojie Wang
- School of Water Resources and Environment, Beijing Key Laboratory of Water Resources & Environmental Engineering, MOE Key Laboratory of Groundwater Circulation and Environmental Evolution, China University of Geosciences (Beijing), Beijing, 100083, China.
| | - Yunrong Dai
- School of Water Resources and Environment, Beijing Key Laboratory of Water Resources & Environmental Engineering, MOE Key Laboratory of Groundwater Circulation and Environmental Evolution, China University of Geosciences (Beijing), Beijing, 100083, China.
| | - Yang Li
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing, 100875, China.
| | - Lifeng Yin
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing, 100875, China.
| |
Collapse
|
8
|
Büngener L, Postila H, Löder MGJ, Laforsch C, Ronkanen AK, Heiderscheidt E. The fate of microplastics from municipal wastewater in a surface flow treatment wetland. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 903:166334. [PMID: 37591375 DOI: 10.1016/j.scitotenv.2023.166334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 08/14/2023] [Accepted: 08/14/2023] [Indexed: 08/19/2023]
Abstract
Microplastics (MPs) are an anthropogenic pollutant of emerging concern prominent in both raw and treated municipal wastewater as well as urban and agricultural run-off. There is a critical need for the mitigation of both point- and diffuse sources, with treatment wetlands a possible sustainable nature-based solution. In this study, the possible retention of MPs in treatment wetlands of the widely used surface flow (SF) type was investigated. In- and outflow water, as well as atmospheric deposition, at a full-scale reed-based SF wetland (operating as a polishing phase of municipal wastewater treatment) was analyzed for MPs in a size range of 25-1000 μm. FPA-based μFT-IR spectroscopic imaging was used in combination with automated data analysis software, allowing for an unbiased assessment of MP numbers, polymer types and size distribution. Inflow water samples (secondary treated wastewater) contained 104 MPs m-3 and 56 MPs m-3 in sampling campaigns 1 and 2, respectively. Passage through the SF wetland increased the MP concentration in the water by 92 % during a rain intense period (campaign 1) and by 43 % during a low precipitation period (campaign 2). The MP particle numbers, size and polymer type distribution varied between the two sampling campaigns, making conclusions around the fate of specific types of MPs in SF wetlands difficult. Atmospheric deposition was measured to be 590 MPs m-2 week-1 during the rain-intense period. Our findings point towards atmospheric deposited MPs as an important factor in the fate of MPs in SF wetlands, causing an increase of MP concentrations, and potentially explaining the variations observed in MP concentrations in wetland effluent and removal efficiency. Furthermore, atmospheric deposition might also be a reason for the considerable inter-study variation regarding MPs removal efficiency in SF wetlands found in the available literature.
Collapse
Affiliation(s)
- Lina Büngener
- Water, Energy and Environmental Engineering, Faculty of Technology, 90014 University of Oulu, Finland.
| | - Heini Postila
- Water, Energy and Environmental Engineering, Faculty of Technology, 90014 University of Oulu, Finland
| | - Martin G J Löder
- Department of Animal Ecology I and BayCEER, University of Bayreuth, Bayreuth 95440, Germany
| | - Christian Laforsch
- Department of Animal Ecology I and BayCEER, University of Bayreuth, Bayreuth 95440, Germany
| | - Anna-Kaisa Ronkanen
- Water, Energy and Environmental Engineering, Faculty of Technology, 90014 University of Oulu, Finland; Finnish Environment Institute, Marine and freshwater solutions, Paavo Havaksen Tie 3, P. O. Box 413, FI-90014 Oulu, Finland
| | - Elisangela Heiderscheidt
- Water, Energy and Environmental Engineering, Faculty of Technology, 90014 University of Oulu, Finland
| |
Collapse
|
9
|
Bayo J, López-Castellanos J, Olmos S, Rojo D. Characterization and removal efficiencies of microplastics discharged from sewage treatment plants in Southeast Spain. WATER RESEARCH 2023; 244:120479. [PMID: 37634462 DOI: 10.1016/j.watres.2023.120479] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 08/08/2023] [Accepted: 08/10/2023] [Indexed: 08/29/2023]
Abstract
Microplastics (MPs) are ubiquitous pollutants that can effectively harm different ecosystems. The information on the relative contribution of wastewater treatment plants (WWTPs) to the surrounding environment is important, in order to understand ecological health risks and implement measures to reduce their presence. This focus article presents a quantitative assessment on the relative concentration and types of MPs delivered from four WWTPs located at the Southeast of Spain. Samples from WWTPs were collected throughout a four-year period, comprising more than 1,200 L of analyzed wastewater and 3,215 microparticles isolated. Density extraction with 1.08 g/mL NaCl salt solution was systematically used as the main separation method, in a simple and reliable manner, and repeat extraction cycles did not play any significant impact on the study outcomes. The four WWTPs had removal efficiencies between 64.3% and 89.2% after primary, secondary, and tertiary treatment phases, without diurnal or daily variations. Advanced treatment methods displayed a lower removal rate for fibers than for particulate MPs. The abundance of MPs was always higher and with a lower mean size in wastewater samples collected in Autumn than for the rest of seasons. MPs dumped from WWTPs in large quantities into the environment are meant to be regarded as an important point source for aquatic and terrestrial environments.
Collapse
Affiliation(s)
- Javier Bayo
- Department of Chemical and Environmental Engineering, Technical University of Cartagena, Paseo Alfonso XIII 44 E-30203 Cartagena, Spain.
| | - Joaquín López-Castellanos
- Department of Chemical and Environmental Engineering, Technical University of Cartagena, Paseo Alfonso XIII 44 E-30203 Cartagena, Spain
| | - Sonia Olmos
- Department of Chemical and Environmental Engineering, Technical University of Cartagena, Paseo Alfonso XIII 44 E-30203 Cartagena, Spain
| | - Dolores Rojo
- Department of Chemical and Environmental Engineering, Technical University of Cartagena, Paseo Alfonso XIII 44 E-30203 Cartagena, Spain
| |
Collapse
|