1
|
Lu Y, Xing X, Jiang Y, Xia J. Fabrication of a Novel PES/CNTs@TiO 2 Membrane Combining Photo-Electrocatalysis and Filtration for Organic Pollutant Removal. MEMBRANES 2025; 15:90. [PMID: 40137042 PMCID: PMC11943504 DOI: 10.3390/membranes15030090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2025] [Revised: 03/04/2025] [Accepted: 03/05/2025] [Indexed: 03/27/2025]
Abstract
Membrane filtration has been widely used in wastewater treatment; contaminants attached to the membrane surface led to flux loss and service life reduction. In the present study, a photo-electrocatalysis membrane was fabricated with CNTs@TiO2 deposited on a commercial polyethersulfone (PES) membrane (PES/CNTs@TiO2). XRD and SEM characterization proved that the CNTs@TiO2 composites were successfully fabricated using the one-pot hydrothermal method. Additionally, vacuum filtration was used to distribute the as-prepared powder on the PES membrane. In CNTs@TiO2, TiO2 particles were deposited on the outer layer of CNTs, which benefits light adsorption and photocatalytic reaction. The hydrophilicity, light absorption ability, and electron transfer rate of the PES/CNTs@TiO2 membrane were enhanced compared with the pristine PES membranes. Organic compound removal was improved in the photo-electrocatalysis filtration system with the improvement of 32.41% for methyl orange (MO), 26.24% for methyl blue (MB), 7.86% for sulfamethoxazole (SMZ), and 25.19% for florfenicol (FF), respectively. Moreover, the hydrophilicity and removal rate could be restored after pure water cleaning, demonstrating excellent reusability. The quenching experiment showed that ·OH and ·O2- were the main reactive oxygen species. This work provides a convenient form of photo-electrocatalysis filtration technology using modified commercial membranes, which has great potential for practical application.
Collapse
Affiliation(s)
- Yue Lu
- College of Life and Environmental Science, Minzu University of China, Beijing 100081, China;
- College of Chemistry and Environmental Engineering, Hohhot Minzu College, Hohhot 010051, China
| | - Xuan Xing
- College of Life and Environmental Science, Minzu University of China, Beijing 100081, China;
| | - Yi Jiang
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong;
| | - Jianxin Xia
- College of Life and Environmental Science, Minzu University of China, Beijing 100081, China;
| |
Collapse
|
2
|
Farhoodi AM, Hassani AH, Kashi G, Javid AH, Mansouri N. Optimization of the electro-photocatalytic process for the removal of formaldehyde from water using the Taguchi model. Heliyon 2024; 10:e38442. [PMID: 39391498 PMCID: PMC11466591 DOI: 10.1016/j.heliyon.2024.e38442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 09/18/2024] [Accepted: 09/24/2024] [Indexed: 10/12/2024] Open
Abstract
The most significant environmental issue in many nations across the world is industrial wastewater contamination with formaldehyde (a priority pollutant). Any natural water that has had industrial effluent discharged into with formaldehyde concentrations between 100 and 1000 mg/l is deemed toxic to humans. This is an applied analytical research project aimed at examining formaldehyde removal from urban drinking water using a batch electro-photocatalytic (EPC) reactor that uses ultraviolet-A (UV-A) lamp dynode and immobilized ZnO NPs on a zinc sheet-copper electrode. pH, formaldehyde content, lamp intensity, radiation duration, lamp-electrode distance, ZnO NP stacking, and current density are the factors under investigation. They were found to be in the ranges 3-11, 110-330 mg/l, 480-720 mW/cm2, 8-32 min, 1.5 cm, 1-3, and 4-12 mA/cm2, respectively. The findings demonstrate the relationship between UV-A lamp intensity, radiation duration, and current density with the elimination of formaldehyde. The experimental data better fit a first-order reaction (R2 = 0.9982). The most optimal conditions elimination (0 mg/l) of formaldehyde are achieved at pH = 11, radiation period = 8 min, two layers of ZnO NPs, and current density = 8 mA/cm2 by the Taguchi model. The results show that increasing pH, radiation period, lamp intensity, and current density all increase removal efficiency. The results show that EPC is a practical and efficient method for treating formaldehyde-contaminated drinking water at high concentrations.
Collapse
Affiliation(s)
- Amir Mohammad Farhoodi
- Department of Environmental Engineering, Faculty of Natural Resources and Environment, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Amir Hessam Hassani
- Department of Environmental Engineering, Faculty of Natural Resources and Environment, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Giti Kashi
- Department of Environmental Health Engineering, Faculty of Health, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
- Water Purification Research Center, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Amir Hossein Javid
- Department of Environmental Engineering, Faculty of Natural Resources and Environment, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Nabiollah Mansouri
- Department of Environmental Engineering, Faculty of Natural Resources and Environment, Science and Research Branch, Islamic Azad University, Tehran, Iran
| |
Collapse
|
3
|
Ma H, Li H, Wang J, Wang X, Wang G, Liu X. Developing Z-scheme Bi 2MoO 6@α-MnO 2 beaded core-shell heterostructure in photoelectrocatalytic treatment of organic wastewater. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 367:121964. [PMID: 39067335 DOI: 10.1016/j.jenvman.2024.121964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Revised: 06/25/2024] [Accepted: 07/17/2024] [Indexed: 07/30/2024]
Abstract
Photoelectrocatalysis (PEC) oxidation technology with the combination of electrocatalysis and photocatalysis is an ideal candidate for treatment of dyeing wastewater containing multifarious intractable organic compounds with high chroma. Constructing high-quality heterojunction photoelectrodes can effectively suppress the recombination of photo-generated carriers, thereby achieving efficient removal of pollution. Herein, a beaded Bi2MoO6@α-MnO2 core-shell architecture with tunable hetero-interface was prepared by simple hydrothermal-solvothermal process. The as-synthesized Bi2MoO6@α-MnO2 had larger electrochemically active surface area, smaller charge transfer resistance and negative flat band potential, and higher separation efficiency of e-/h+ pairs than pure α-MnO2 or Bi2MoO6. It is noteworthy that the as-synthesized Bi2MoO6@α-MnO2 showed Z-scheme heterostructure as demonstrated by the free radical quenching experiments. The optimized Bi2MoO6@α-MnO2-2.5 exhibited the highest degradation rate of 88.64% in 120 min for reactive brilliant blue (KN-R) and accelerated stability with long-term(∼10000s) at the current density of 50 mA cm-2 in 1.0 mol L-1 H2SO4 solution. This study provides valuable insights into the straightforward preparation of heterogeneous electrodes, offering a promising approach for the treatment of wastewater in various industrial applications.
Collapse
Affiliation(s)
- Hongchao Ma
- School of Light Industry & Chemical Engineering, Dalian Polytechnic University, No. 1 Qinggongyuan, Ganjingzi District, Dalian, 116034, PR China
| | - Huijun Li
- School of Light Industry & Chemical Engineering, Dalian Polytechnic University, No. 1 Qinggongyuan, Ganjingzi District, Dalian, 116034, PR China
| | - Jiaxin Wang
- School of Light Industry & Chemical Engineering, Dalian Polytechnic University, No. 1 Qinggongyuan, Ganjingzi District, Dalian, 116034, PR China; Science and Technology on Aerospace Chemical Power Laboratory, Hubei Institute of Aerospace Chemotechnology, Xiangyang, 441003, PR China
| | - Xinyue Wang
- School of Textile and Material Engineering, Dalian Polytechnic University, No. 1 Qinggongyuan, Ganjingzi District, Dalian, 116034, PR China.
| | - Guowen Wang
- School of Light Industry & Chemical Engineering, Dalian Polytechnic University, No. 1 Qinggongyuan, Ganjingzi District, Dalian, 116034, PR China
| | - Xinghui Liu
- Science and Technology on Aerospace Chemical Power Laboratory, Hubei Institute of Aerospace Chemotechnology, Xiangyang, 441003, PR China.
| |
Collapse
|
4
|
Ai QY, Xu BF, Xu F, Wang AJ, Mei LP, Wu L, Song P, Feng JJ. Dual amplification for PEC ultrasensitive aptasensing of biomarker HER-2 based on Z-scheme UiO-66/CdIn 2S 4 heterojunction and flower-like PtPdCu nanozyme. Talanta 2024; 274:126034. [PMID: 38604040 DOI: 10.1016/j.talanta.2024.126034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 03/25/2024] [Accepted: 04/02/2024] [Indexed: 04/13/2024]
Abstract
As an important prognostic indicator in breast cancer, human epithelial growth factor receptor-2 (HER-2) is of importance for assessing prognosis of breast cancer patients, whose accurate and facile analysis are imperative in clinical diagnosis and treatment. Herein, photoactive Z-scheme UiO-66/CdIn2S4 heterojunction was constructed by a hydrothermal method, whose optical property and photoactivity were critically investigated by a range of techniques, combined by elucidating the interfacial charge transfer mechanism. Meanwhile, PtPdCu nanoflowers (NFs) were fabricated by a simple aqueous wet-chemical method, whose peroxidase (POD)-mimicking catalytic activity was scrutinized by representative tetramethylbenzidine (TMB) oxidation in H2O2 system. Taken together, the UiO-66/CdIn2S4 based photoelectrochemical (PEC) aptasensor was established for quantitative analysis of HER-2, where the detection signals were further magnified through catalytic precipitation reaction towards 4-chloro-1-naphthol (4-CN) oxidation (assisted by the PtPdCu NFs nanozyme). The PEC aptasensor presented a broader linear range within 0.1 pg mL-1-0.1 μg mL-1 and a lower limit of detection of 0.07 pg mL-1. This work developed a new PEC aptasensor for ultrasensitive determination of HER-2, holding substantial promise for clinical diagnostics.
Collapse
Affiliation(s)
- Qing-Ying Ai
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Materials Science, College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, 321004, China
| | - Ben-Fang Xu
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Materials Science, College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, 321004, China
| | - Fan Xu
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Materials Science, College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, 321004, China
| | - Ai-Jun Wang
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Materials Science, College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, 321004, China
| | - Li-Ping Mei
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Materials Science, College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, 321004, China
| | - Liang Wu
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Materials Science, College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, 321004, China.
| | - Pei Song
- Central Laboratory, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, 321000, China.
| | - Jiu-Ju Feng
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Materials Science, College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, 321004, China.
| |
Collapse
|
5
|
Petruleviciene M, Savickaja I, Juodkazyte J, Grinciene G, Ramanavicius A. Investigation of BiVO 4-based advanced oxidation system for decomposition of organic compounds and production of reactive sulfate species. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 875:162574. [PMID: 36871709 DOI: 10.1016/j.scitotenv.2023.162574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 02/09/2023] [Accepted: 02/27/2023] [Indexed: 06/18/2023]
Abstract
Growth of population and expansion of industries lead to increasing contamination of environment with various organic pollutants. If not properly cleaned, wastewater contaminates freshwater resources, aquatic environment and has huge negative impact on ecosystems, quality of drinking water and human health, therefore new and effective purification systems are in demand. In this work bismuth vanadate-based advanced oxidation system (AOS) for the decomposition of organic compounds and production of reactive sulfate species (RSS) was investigated. Pure and Mo-doped BiVO4 coatings were synthesized using sol-gel process. Composition and morphology of coatings were characterized using X-ray diffraction and scanning electron microscopy techniques. Optical properties were analyzed using UV-vis spectrometry. Photoelectrochemical performance was studied using linear sweep voltammetry, chronoamperometry and electrochemical impedance spectroscopy. It was shown that increase in Mo content affects the morphology of BiVO4 films, reduces charge transfer resistance and enhances the photocurrent in the solutions of sodium borate buffer (with and without glucose) and Na2SO4. Mo-doping of 5-10 at.% leads to 2- to 3-fold increase in photocurrents. Faradaic efficiencies of RSS formation ranged between 70 and 90 % for all samples irrespective of Mo content. All studied coatings demonstrated high stability in long-lasting photoelectrolysis. In addition, effective light-assisted bactericidal performance of the films in deactivation of Gram positive Bacillus sp. bacteria was demonstrated. Advanced oxidation system designed in this work can be applied in sustainable and environmentally friendly water purification systems.
Collapse
Affiliation(s)
- Milda Petruleviciene
- Centre for Physical Sciences and Technology, Sauletekio av. 3, LT-10257 Vilnius, Lithuania
| | - Irena Savickaja
- Centre for Physical Sciences and Technology, Sauletekio av. 3, LT-10257 Vilnius, Lithuania
| | - Jurga Juodkazyte
- Centre for Physical Sciences and Technology, Sauletekio av. 3, LT-10257 Vilnius, Lithuania
| | - Giedre Grinciene
- Centre for Physical Sciences and Technology, Sauletekio av. 3, LT-10257 Vilnius, Lithuania
| | - Arunas Ramanavicius
- Centre for Physical Sciences and Technology, Sauletekio av. 3, LT-10257 Vilnius, Lithuania; Department of Physical Chemistry, Faculty of Chemistry, Vilnius University, Vilnius, Lithuania.
| |
Collapse
|