1
|
Seridou P, Karmali V, Syranidou E, Komnitsas K, Kolliopoulos G, Kalogerakis N. Assessment of Tamarix smyrnensis for Phytoremediation Capacity of Laterite Mine Spoils. PLANTS (BASEL, SWITZERLAND) 2025; 14:491. [PMID: 39943053 PMCID: PMC11820411 DOI: 10.3390/plants14030491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/14/2024] [Revised: 01/27/2025] [Accepted: 02/03/2025] [Indexed: 02/16/2025]
Abstract
The phytoremediation potential of the halophytic plant, Tamarix smyrnensis (T. smyrnensis), was examined in toxic metal spoils assisted by biochar and irrigation by air nanobubbles. The substrate (spoil) used in the present study was derived from areas close to laterite (Ni-containing ores) mines. The efficiency of biochar addition in two rates (5 t/ha and 20 t/ha) to improve microbial properties and stabilize soil aggregates was also examined. Furthermore, the effect of irrigation with air-nanobubble-supplemented water was evaluated for the remediation of toxic metal spoils. The physiological condition of the plant species was investigated in terms of biomass, height, chlorophyll content, and antioxidant enzymes. The alkali and heavy metal accumulation and their distribution in the plant parts were assessed to explore whether toxic metals could accumulate in the root and further translocate to the aboveground tissues. The growth of T. smyrnensis was not adversely affected by its cultivation in lateritic spoil, and the highest rate of biochar exhibited a beneficial effect on plant growth in terms of weight (aerial and subterranean biomass). The highest biochar application rate led to significant increases in total chlorophyll content, showing a 97.6% increase when biochar is used alone and a 136% increase when combined with nanobubble irrigation. Remarkably, only when combining irrigation with air nanobubbles and low biochar supplementation did the translocation of the metals from soil to the aboveground tissues occur as the translocation factor was estimated to be greater than unity (TF > 1). The bioconcentration factors remained below 1.0 (BCF < 1) across all treatments, demonstrating limited mobilization from soil to plant tissues despite the application of soil amendments. Finally, the application of nanobubbles increased slightly but not substantially the total uptake of metals, which showed a significant decrease compared to the control groups when the lower dosage of biochar was utilized.
Collapse
Affiliation(s)
- Petroula Seridou
- School of Chemical and Environmental Engineering, Technical University of Crete, 73100 Chania, Greece; (P.S.); (E.S.)
| | - Vasiliki Karmali
- School of Mineral Resources Engineering, Technical University of Crete, 73100 Chania, Greece; (V.K.); (K.K.)
| | - Evdokia Syranidou
- School of Chemical and Environmental Engineering, Technical University of Crete, 73100 Chania, Greece; (P.S.); (E.S.)
| | - Konstantinos Komnitsas
- School of Mineral Resources Engineering, Technical University of Crete, 73100 Chania, Greece; (V.K.); (K.K.)
| | - Georgios Kolliopoulos
- Département de Génie des Mines, de la Métallurgie et des Matériaux, Université Laval, Québec, QC G1V 0A6, Canada;
| | - Nicolas Kalogerakis
- School of Chemical and Environmental Engineering, Technical University of Crete, 73100 Chania, Greece; (P.S.); (E.S.)
| |
Collapse
|
2
|
Long HY, Feng GF, Fang J. In-situ remediation of cadmium contamination in paddy fields: from rhizosphere soil to rice kernel. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2024; 46:404. [PMID: 39207539 DOI: 10.1007/s10653-024-02099-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Accepted: 06/24/2024] [Indexed: 09/04/2024]
Abstract
Cadmium (Cd) has become an important heavy metal pollutant because of its strong migration and high toxicity. The industrial production process aggravated the Cd pollution in rice fields. Human exposure to Cd through rice can cause kidney damage, emphysema, and various cardiovascular and metabolic diseases, posing a grave threat to health. As modern technology develops, the Cd accumulation model in rice and in-situ remediation of Cd pollution in cornfields have been extensively studied and applied, so it is necessary to sort out and summarize them systematically. Therefore, this paper reviewed the primary in-situ methods for addressing heavy metal contamination in rice paddies, including chemical remediation (inorganic-organic fertilizer remediation, nanomaterials, and composite remediation), biological remediation (phytoremediation and microbial remediation), and crop management remediation technologies. The factors that affect Cd transformation in soil and Cd migration in crops, the advantages and disadvantages of remediation techniques, remediation mechanisms, and the long-term stability of remediation were discussed. The shortcomings and future research directions of in situ remediation strategies for heavily polluted paddy fields and genetic improvement strategies for low-cadmium rice varieties were critically proposed. To sum up, this review aims to enhance understanding and serve as a reference for the appropriate selection and advancement of remediation technologies for rice fields contaminated with heavy metals.
Collapse
Affiliation(s)
- Hai Yan Long
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, 410128, China
| | - Guang Fu Feng
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, 410128, China.
| | - Jun Fang
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, 410128, China.
| |
Collapse
|
3
|
Karimi M, Parsafar G, Samouei H. Polarizing Perspectives: Ion- and Dipole-Induced Dipole Interactions Dictate Bulk Nanobubble Stability. J Phys Chem B 2024; 128:7263-7270. [PMID: 38990291 DOI: 10.1021/acs.jpcb.4c03973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/12/2024]
Abstract
The origin of the stability of bulk Nanobubbles (NBs) has been the object of scrutiny in recent years. The interplay between the surface charge on the NBs and the Laplace pressure resulting from the surface tension at the solvent-NB interface has often been evoked to explain the stability of the dispersed NBs. While the Laplace pressure is well understood in the community, the nature of the surface charge on the NBs has remained obscure. In this work, we aim to show that the solvent and the present ions can effectively polarize the NB surface by inducing a dipole moment, which in turn controls the NB stability. We show that the polarizability of the dispersed gas and the polarity of the dispersing solvent control the dipole-induced dipole interactions between the solvent and the NBs, and that, in turn, determines their stability in solution.
Collapse
Affiliation(s)
- Mohammadjavad Karimi
- Department of Petroleum Engineering, Texas A&M University, College Station, Texas 77843, United States
| | - Gholamabbas Parsafar
- Department of Petroleum Engineering, Texas A&M University, College Station, Texas 77843, United States
| | - Hamidreza Samouei
- Department of Petroleum Engineering, Texas A&M University, College Station, Texas 77843, United States
| |
Collapse
|
4
|
Singh E, Kumar A, Lo SL. Advancing nanobubble technology for carbon-neutral water treatment and enhanced environmental sustainability. ENVIRONMENTAL RESEARCH 2024; 252:118980. [PMID: 38657850 DOI: 10.1016/j.envres.2024.118980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Revised: 04/02/2024] [Accepted: 04/20/2024] [Indexed: 04/26/2024]
Abstract
Gaseous nanobubbles (NBs) with dimensions ranging from 1 to 1000 nm in the liquid phase have garnered significant interest due to their unique physicochemical characteristics, including specific surface area, low internal gas pressure, long-term stability, efficient mass transfer, interface potential, and free radical production. These remarkable properties have sparked considerable attention in the scientific community and industries alike. These hold immense promise for environmental applications, especially for carbon-neutral water remediation. Their long-lasting stability in aqueous systems and efficient mass transfer properties make them highly suitable for delivering gases in the vicinity of pollutants. This potential has prompted research into the use of NBs for targeted delivery of gases in contaminated water bodies, facilitating the degradation of harmful substances and advancing sustainable remediation practices. However, despite significant progress in understanding NBs physicochemical properties and potential applications, several challenges and knowledge gaps persist. This review thereby aims to summarize the current state of research on NBs environmental applications and potential for remediation. By discussing the generation processes, mechanisms, principles, and characterization techniques, it sheds light on the promising future of NBs in advancing environmental sustainability. It explores their role in improving oxygenation, aeration, and pollutant degradation in water systems. Finally, the review addresses future research perspectives, emphasizing the need to bridge knowledge gaps and overcome challenges to unlock the full potential of this frontier technology for enhanced environmental sustainability.
Collapse
Affiliation(s)
- Ekta Singh
- Graduate Institute of Environmental Engineering, National Taiwan University, 71 Chuo-Shan Rd., Taipei, 10673, Taiwan
| | - Aman Kumar
- Graduate Institute of Environmental Engineering, National Taiwan University, 71 Chuo-Shan Rd., Taipei, 10673, Taiwan
| | - Shang-Lien Lo
- Graduate Institute of Environmental Engineering, National Taiwan University, 71 Chuo-Shan Rd., Taipei, 10673, Taiwan; Water Innovation, Low Carbon and Environmental Sustainability Research Center, National Taiwan University, Taipei, 10617, Taiwan; Science and Technology Research Institute for DE-Carbonization (STRIDE-C), National Taiwan University, Taipei, 10617, Taiwan.
| |
Collapse
|
5
|
Yadav G, Nirmalkar N, Ohl CD. Electrochemically reactive colloidal nanobubbles by water splitting. J Colloid Interface Sci 2024; 663:518-531. [PMID: 38422977 DOI: 10.1016/j.jcis.2024.02.148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 02/07/2024] [Accepted: 02/19/2024] [Indexed: 03/02/2024]
Abstract
HYPOTHESIS The existing literature reports have conflicting views on reactive oxygen species (ROS) generation by bulk nanobubbles. Consequently, we propose the hypothesis that (i) ROS may be generated during the process of nanobubble generation through water splitting, and (ii) bulk nanobubbles possess electrochemical reactivity, which could potentially lead to continuous ROS generation even after the cessation of nanobubble production. EXPERIMENTS A comprehensive set of experiments was conducted to generate nanobubbles in pure water using the water-splitting method. The primary aims of this study are as follows: (i) nanobubble generation by electrolysis and its characterization; (ii) to provide conclusive evidence that the nano-entities are indeed nanobubbles; (iii) to quantify the production of reactive oxygen species during the process of nanobubble generation and (iv) to establish evidence for the presence of electrochemically reactive nanobubbles. The findings of our experiment suggest that bulk nanobubbles possess the ability to generate reactive oxygen species (ROS) during the process of nanobubble nucleation. Additionally, our results indicate that bulk nanobubbles are electrochemically reactive after the cessation of nanobubble production. The electron spin spectroscopy (ESR) response and degradation of the dye compound over time confirm the electrochemical reactivity of bulk nanobubbles.
Collapse
Affiliation(s)
- Gaurav Yadav
- Department of Chemical Engineering, Indian Institute of Technology Ropar, Rupnagar, 140001, Punjab, India
| | - Neelkanth Nirmalkar
- Department of Chemical Engineering, Indian Institute of Technology Ropar, Rupnagar, 140001, Punjab, India.
| | - Claus-Dieter Ohl
- Otto von Guerricke University, Institute for Physics, Universitätsplatz, Magdeburg, 39106, Germany
| |
Collapse
|
6
|
Zhang F, Li S, Wang L, Li X. An Innovative Approach to Alleviate Zinc Oxide Nanoparticle Stress on Wheat through Nanobubble Irrigation. Int J Mol Sci 2024; 25:1896. [PMID: 38339174 PMCID: PMC10855730 DOI: 10.3390/ijms25031896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 01/28/2024] [Accepted: 01/30/2024] [Indexed: 02/12/2024] Open
Abstract
The extensive utilization of zinc oxide nanoparticles in consumer products and the industry has led to their substantial entry into the soil through air and surface runoff transportation, which causes ecotoxicity in agro-ecosystems and detrimental effects on crop production. Nanobubbles (diameter size < 1 µm) have many advantages, such as a high surface area, rapid mass transfer, and long retention time. In this study, wheat seedlings were irrigated with a 500 mg L-1 zinc oxide nanoparticle solution delivered in the form of nanobubble watering (nanobubble-ZnO-NPs). We found that nanobubble watering improved the growth and nutrient status of wheat exposed to zinc oxide nanoparticles, as evidenced by increased total foliar nitrogen and phosphorus, along with enhanced leaf dry mass per area. This effect can be attributed to nanobubbles disassembling zinc oxide aggregates formed due to soil organic carbon, thereby mitigating nutrient absorption limitations in plants. Furthermore, nanobubbles improved the capability of soil oxygen input, leading to increased root activity and glycolysis efficiency in wheat roots. This work provides valuable insights into the influence of nanobubble watering on soil quality and crop production and offers an innovative approach for agricultural irrigation that enhances the effectiveness and efficiency of water application.
Collapse
Affiliation(s)
- Feng Zhang
- Key Laboratory of Black Soil Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China; (F.Z.); (S.L.)
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shuxin Li
- Key Laboratory of Black Soil Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China; (F.Z.); (S.L.)
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lichun Wang
- Key Laboratory of Crop Eco-Physiology and Farming System in the Northeastern, Institute of Agricultural Resources and Environment, Ministry of Agriculture and Rural Affair, Jilin Academy of Agricultural Sciences, Changchun 130033, China
| | - Xiangnan Li
- Key Laboratory of Black Soil Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China; (F.Z.); (S.L.)
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
7
|
Yan D, Xue S, Zhang Z, Xu G, Zhang Y, Gao J, Zhang W. Air nanobubble water improves plant uptake and tolerance toward cadmium in phytoremediation. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 337:122577. [PMID: 37722479 DOI: 10.1016/j.envpol.2023.122577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 09/12/2023] [Accepted: 09/16/2023] [Indexed: 09/20/2023]
Abstract
Heavy metal contamination continues to be a persistent environmental problem. To address this issue, this study evaluated the impact of air nanobubbles (NBs) in water on the uptake of heavy metals by Alternanthera philoxeroides (A. philoxeroides), a common aquatic plant in China known for its rapid growth, strong vitality, and high capacity for heavy metal remediation. This study found that diluted air NBs (25% concentration) boosted cadmium uptake of A. philoxeroides by 17.39%. They also enhanced plant growth (25-50%) and photosynthetic pigments (10-20%) even at low cadmium levels (0.1 mM). Furthermore, the incorporation of 25% air NBs has been demonstrated to significantly amplify the performance of key antioxidant enzymes, such as superoxide dismutase and catalase, alongside heightened levels of crucial antioxidants such as malondialdehyde. This heightened activity of antioxidant defenses offers a compelling explanation for the potential amelioration of cadmium toxicity and concurrent enhancements in overall plant growth rates. Notably, a comprehensive analysis utilizing the excitation emission matrix-parallel factor analysis (EEM-PARAFAC) technique has revealed alterations in the composition of rhizosphere dissolved organic matter due to the presence of NBs. This ncomposition change of the rhizosphere dissolved organic mattermposition has subsequently exerted an influence on plant complexation processes and the subsequent uptake of cadmium. This study demonstrates that the strategic implementation of air NBs in water systems holds the potential to significantly enhance the plant's ability to detoxify cadmium and improve the uptake of heavy metals during phytoremediation processes.
Collapse
Affiliation(s)
- Dajiang Yan
- School of Municipal and Environmental Engineering, Shandong Jianzhu University, Jinan, 250101, China
| | - Shan Xue
- John A. Reif, Jr. Department of Civil and Environmental Engineering, New Jersey Institute of Technology, 323 Martin Luther King Blvd., Newark, NJ, 07102, USA
| | - Zhibin Zhang
- School of Municipal and Environmental Engineering, Shandong Jianzhu University, Jinan, 250101, China.
| | - Guodong Xu
- School of Municipal and Environmental Engineering, Shandong Jianzhu University, Jinan, 250101, China
| | - Yanhao Zhang
- School of Municipal and Environmental Engineering, Shandong Jianzhu University, Jinan, 250101, China
| | - Jianan Gao
- John A. Reif, Jr. Department of Civil and Environmental Engineering, New Jersey Institute of Technology, 323 Martin Luther King Blvd., Newark, NJ, 07102, USA
| | - Wen Zhang
- John A. Reif, Jr. Department of Civil and Environmental Engineering, New Jersey Institute of Technology, 323 Martin Luther King Blvd., Newark, NJ, 07102, USA.
| |
Collapse
|