1
|
Li D, Li J, Liang D, Wu Y, Xie C, Yin M, Zhu Y, Wu Y, Du L, Yue J, Li J, Guo W. Effects of degradable and non-degradable microplastics on SPNEDPR-AGS system: Sludge characteristics, nutrient transformation, key enzyme, and microbial community. BIORESOURCE TECHNOLOGY 2025; 418:131917. [PMID: 39622421 DOI: 10.1016/j.biortech.2024.131917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Revised: 11/18/2024] [Accepted: 11/29/2024] [Indexed: 12/12/2024]
Abstract
The environmental risk of microplastics (MPs) in aerobic granular sludge (AGS) system is unclear. This study evaluates the effects of non-biodegradable polyvinyl chloride microplastics (PVC-MPs) and biodegradable polylactic acid microplastics (PLA-MPs) on AGS systems. The results showed that both destroyed the performance of AGS systems, with PVC-MPs achieving this by disrupting the AGS structure, while PLA-MPs mainly by causing the expansion of filamentous bacteria induced through the stimulation by lactic acid metabolite (R0: 5.52 ± 0.49 μg/L; RPLA5: 11.67 ± 0.56 μg/L). Moreover, both MPs inhibited nitrogen removal by disrupting partial nitrification and endogenous denitrification and suppressed key microbes such as Candidatus Competibacter and Nitrosomonas. Metabolic pathway analysis and molecular docking have further confirmed the mechanisms by which MPs affect critical metabolic pathways and key enzymes. Consequently, the hazards of biodegradable MPs to the stable operation of sewage treatment plants should also be of concern.
Collapse
Affiliation(s)
- Dongyue Li
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Beijing University of Technology, Beijing 100124, China
| | - Jiarui Li
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Beijing University of Technology, Beijing 100124, China
| | - Dongbo Liang
- China Urban Construction Design & Research Institute CO., LTD., Beijing 100120, China
| | - Yanshuo Wu
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Beijing University of Technology, Beijing 100124, China
| | - Chaofan Xie
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Beijing University of Technology, Beijing 100124, China
| | - Muchen Yin
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Beijing University of Technology, Beijing 100124, China
| | - Yuhan Zhu
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Beijing University of Technology, Beijing 100124, China
| | - Yaodong Wu
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Beijing University of Technology, Beijing 100124, China
| | - Linzhu Du
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Beijing University of Technology, Beijing 100124, China
| | - Junhui Yue
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Beijing University of Technology, Beijing 100124, China
| | - Jun Li
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Beijing University of Technology, Beijing 100124, China.
| | - Wei Guo
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Beijing University of Technology, Beijing 100124, China.
| |
Collapse
|
2
|
Kedves A, Yavuz Ç, Kedves O, Haspel H, Kónya Z. The response to shock loads of Ni-MOF and NiO NPs on aerobic granular sludge and algal-bacterial aerobic granular sludge. Heliyon 2024; 10:e40796. [PMID: 39720072 PMCID: PMC11667604 DOI: 10.1016/j.heliyon.2024.e40796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 11/26/2024] [Accepted: 11/27/2024] [Indexed: 12/26/2024] Open
Abstract
Currently, the increasing use of nickel metal-organic frameworks (Ni-MOF) and nickel oxide nanoparticles (NiO NPs) has raised concerns regarding their potential environmental impact on wastewater treatment systems. Herein, the responses of aerobic granular sludge (AGS) and algal-bacterial aerobic granular sludge (AB-AGS) to Ni-MOF and NiO NPs were investigated. The results showed that Ni-MOF concentrations of 50, 100, and 200 mg/L significantly reduced nutrient removal in both systems, particularly affecting ammonia, nitrite, and phosphorus removal, while denitrification processes remained stable. AB-AGS exhibited greater tolerance to nickel than AGS, likely due to its higher content of extracellular polymeric substances (EPSs), in which the algae were embedded, indicating a robust bacterial-algal symbiotic system. Conversely, NiO NPs had no adverse effects on bioreactor performance, likely due to their insolubility and integration into the sludge matrix. This research provides valuable insights into the potential future applications of AGS and AB-AGS technologies for treating wastewater contaminated with nickel and other heavy metals, highlighting the superior resilience of AB-AGS to nickel exposure.
Collapse
Affiliation(s)
- Alfonz Kedves
- Department of Applied and Environmental Chemistry, University of Szeged, Szeged, Hungary
| | - Çağdaş Yavuz
- Department of Applied and Environmental Chemistry, University of Szeged, Szeged, Hungary
| | - Orsolya Kedves
- Department of Microbiology, Faculty of Science and Informatics, University of Szeged, Szeged, Hungary
| | - Henrik Haspel
- Department of Applied and Environmental Chemistry, University of Szeged, Szeged, Hungary
- HUN-REN Reaction Kinetics and Surface Chemistry Research Group, Szeged, Hungary
| | - Zoltán Kónya
- Department of Applied and Environmental Chemistry, University of Szeged, Szeged, Hungary
- HUN-REN Reaction Kinetics and Surface Chemistry Research Group, Szeged, Hungary
| |
Collapse
|
3
|
Kedves A, Kónya Z. Effects of nanoparticles on anaerobic, anammox, aerobic, and algal-bacterial granular sludge: A comprehensive review. Biofilm 2024; 8:100234. [PMID: 39524692 PMCID: PMC11550140 DOI: 10.1016/j.bioflm.2024.100234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 10/18/2024] [Accepted: 10/24/2024] [Indexed: 11/16/2024] Open
Abstract
Nanoparticles (NPs) are of significant interest due to their unique properties, such as large surface area and high reactivity, which have facilitated advancements in various fields. However, their increased use raises concerns about environmental impacts, including on wastewater treatment processes. This review examines the effects of different nanoparticles on anaerobic, anammox, aerobic, and algal-bacterial granular sludge used in wastewater treatment. CeO2 and Ag NPs demonstrated adverse effects on aerobic granular sludge (AGS), reducing nutrient removal and cellular function, while anaerobic granular sludge (AnGS) and anammox granular sludge (AxGS) showed greater resilience due to their higher extracellular polymeric substance (EPS) content. TiO2 NPs had fewer negative effects on algal-bacterial granular sludge (ABGS) than on AGS, as algae played a crucial role in enhancing EPS production and stabilizing the granules. The addition of Fe3O4 NPs significantly enhanced both aerobic and anammox granulation by reducing granulation time, promoting microbial interactions, improving granule stability, and increasing nitrogen removal efficiency, primarily through increased EPS production and enzyme activity. However, Cu and CuO NPs exhibited strong inhibitory effects on aerobic, anammox, and anaerobic systems, affecting EPS structure, cellular integrity, and microbial viability. ZnO NPs demonstrated dose-dependent toxicity, with higher concentrations inducing oxidative stress and reducing performance in AGS and AnGS, whereas AxGS and ABGS were more tolerant due to enhanced EPS production and algae-mediated protection. The existing knowledge gaps and directions for future research on NPs are identified and discussed.
Collapse
Affiliation(s)
- Alfonz Kedves
- Department of Applied and Environmental Chemistry, University of Szeged, Szeged, Hungary
| | - Zoltán Kónya
- Department of Applied and Environmental Chemistry, University of Szeged, Szeged, Hungary
- HUN-REN Reaction Kinetics and Surface Chemistry Research Group, Szeged, Hungary
| |
Collapse
|
4
|
Kedves A, Yavuz Ç, Kedves O, Haspel H, Kónya Z. Response to shock load of titanium dioxide nanoparticles on aerobic granular sludge and algal-bacterial granular sludge processes. NANOIMPACT 2024; 36:100532. [PMID: 39454679 DOI: 10.1016/j.impact.2024.100532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 09/09/2024] [Accepted: 10/22/2024] [Indexed: 10/28/2024]
Abstract
Titanium dioxide nanoparticles (TiO2 NPs) are extensively used in various fields and can consequently be detected in wastewater, making it necessary to study their potential impacts on biological wastewater treatment processes. In this study, the shock-load impacts of TiO2 NPs were investigated at concentrations ranging between 1 and 200 mg L-1 on nutrient removal, extracellular polymeric substances (EPSs), microbial activity in aerobic granular sludge (AGS), and algal-bacterial granular sludge (AB-AGS) bioreactors. The results indicated that low concentration (≤10 mg L-1) TiO2 NPs had no effect on microbial activity or the removal of chemical oxygen demand (COD), nitrogen, and phosphorus, due to the increased production of extracellular polymeric substances (EPSs) in the sludge. In contrast, the performance of both AGS and AB-AGS bioreactors gradually deteriorated as the concentration of TiO2 NPs in the influent increased to 50, 100, and 200 mg L-1. Specifically, the ammonia‑nitrogen removal rate in AGS decreased from 99.9 % to 88.6 %, while in AB-AGS it dropped to 91.3 % at 200 mg L-1 TiO2 NPs. Furthermore, the nitrate‑nitrogen levels remained stable in AB-AGS, while NO3-N was detected in the effluent of AGS at 100 and 200 mg L-1. Microbial activities change similarly as smaller decrease in the specific ammonia uptake rate (SAUR) and specific nitrate uptake rate (SNUR) was found in AB-AGS compared to those in AGS. Overall, the algal-bacterial sludge exhibited higher resilience against TiO2 NPs, which was attributed to a) higher EPS volume, b) smaller decrease in LB-EPS, and c) the favorable protein to polysaccharide (PN/PS) ratio. This in turn, along with the symbiotic relationship between the algae and bacteria, mitigates the toxic effects of nanoparticles.
Collapse
Affiliation(s)
- Alfonz Kedves
- Department of Applied and Environmental Chemistry, University of Szeged, Szeged, Hungary.
| | - Çağdaş Yavuz
- Department of Applied and Environmental Chemistry, University of Szeged, Szeged, Hungary
| | - Orsolya Kedves
- Department of Microbiology, Faculty of Science and Informatics, University of Szeged, Szeged, Hungary
| | - Henrik Haspel
- Department of Applied and Environmental Chemistry, University of Szeged, Szeged, Hungary; HUN-REN-SZTE Reaction Kinetics and Surface Chemistry Research Group, Szeged, Hungary
| | - Zoltán Kónya
- Department of Applied and Environmental Chemistry, University of Szeged, Szeged, Hungary; HUN-REN-SZTE Reaction Kinetics and Surface Chemistry Research Group, Szeged, Hungary
| |
Collapse
|
5
|
Shi HT, Zeng QY, Feng XC, Xiao ZJ, Jiang CY, Wang WQ, Zhang X, Wang HC, Guo WQ, Ren NQ. How denitrifiers defense ciprofloxacin: Insights from intracellular and extracellular stress response. WATER RESEARCH 2024; 259:121851. [PMID: 38851110 DOI: 10.1016/j.watres.2024.121851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 05/27/2024] [Accepted: 05/28/2024] [Indexed: 06/10/2024]
Abstract
Overuse of antibiotics has led to their existence in nitrogen-containing water. The impacts of antibiotics on bio-denitrification and the metabolic response of denitrifiers to antibiotics are unclear. We systematically analyzed the effect of ciprofloxacin (CIP) on bio-denitrification and found that 5 mg/L CIP greatly inhibited denitrification with a model denitrifier (Paracoccus denitrificans). Nitrate reduction decreased by 32.89 % and nitrous oxide emission increased by 75.53 %. The balance analysis of carbon and nitrogen metabolism during denitrification showed that CIP exposure blocked electron transfer and reduced the flow of substrate metabolism used for denitrification. Proteomics results showed that CIP exposure induced denitrifiers to use the pentose phosphate pathway more for substrate metabolism. This caused a substrate preference to generate NADPH to prevent cellular damage rather than NADH for denitrification. Notably, despite denitrifiers having antioxidant defenses, they could not completely prevent oxidative damage caused by CIP exposure. The effect of CIP exposure on denitrifiers after removal of extracellular polymeric substances (EPS) demonstrated that EPS around denitrifiers formed a barrier against CIP. Fluorescence and infrared spectroscopy revealed that the binding effect of proteins in EPS to CIP prevented damage. This study shows that denitrifiers resist antibiotic stress through different intracellular and extracellular defense strategies.
Collapse
Affiliation(s)
- Hong-Tao Shi
- State Key Laboratory of Urban Water Resource and Environment, School of Civil and Environmental Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen, Guangdong, 518055, PR China
| | - Qin-Yao Zeng
- State Key Laboratory of Urban Water Resource and Environment, School of Civil and Environmental Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen, Guangdong, 518055, PR China
| | - Xiao-Chi Feng
- State Key Laboratory of Urban Water Resource and Environment, School of Civil and Environmental Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen, Guangdong, 518055, PR China.
| | - Zi-Jie Xiao
- State Key Laboratory of Urban Water Resource and Environment, School of Civil and Environmental Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen, Guangdong, 518055, PR China
| | - Chen-Yi Jiang
- State Key Laboratory of Urban Water Resource and Environment, School of Civil and Environmental Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen, Guangdong, 518055, PR China
| | - Wen-Qian Wang
- State Key Laboratory of Urban Water Resource and Environment, School of Civil and Environmental Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen, Guangdong, 518055, PR China
| | - Xin Zhang
- State Key Laboratory of Urban Water Resource and Environment, School of Civil and Environmental Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen, Guangdong, 518055, PR China
| | - Hong-Cheng Wang
- State Key Laboratory of Urban Water Resource and Environment, School of Civil and Environmental Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen, Guangdong, 518055, PR China
| | - Wan-Qian Guo
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, PR China
| | - Nan-Qi Ren
- State Key Laboratory of Urban Water Resource and Environment, School of Civil and Environmental Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen, Guangdong, 518055, PR China
| |
Collapse
|
6
|
Huang J, Xu J, Zhang H, Liu J, He C. Combined Effects of Tetracycline and Copper Ion on Microorganisms During the Biological Phosphorus Removal. BULLETIN OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2024; 113:13. [PMID: 39012472 DOI: 10.1007/s00128-024-03920-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 06/17/2024] [Indexed: 07/17/2024]
Abstract
Tetracycline and copper ion are common pollutants in wastewater, and the effects of mixed pollutants on microorganisms in wastewater biological treatment have been less studied. In order to reveal the effects of mixed pollutants of tetracycline and copper ion on the microorganisms during the biological phosphorus removal, three ratios of tetracycline and copper ions were designed by the direct equipartition ray method. The relative abundance and diversity of microbial community were investigated, and the microbial interactions were revealed through microbiological methods. The results demonstrated that, for three different ratios, the inhibitory effect of specific phosphorus uptake rate became more significant with the increase of the tetracycline-copper ions concentration and the reaction time. The microbial community decreased with the increase of the proportion of tetracycline in different ratios. The relative abundance of Acinetobacter decreased with the increase of the proportion of tetracycline, while the relative abundance of Ca.Competibacter was higher under the conditions of low mixtures concentrations. Positive interactions and symbiotic relationships among microorganisms were predominant for three different ratios. However, as the proportion of tetracycline increased, the community structure of microorganisms shifted from phosphate-accumulating organisms to glycogen accumulating organisms and denitrifying bacteria. This study can provide a reference for the effect of mixed pollutants on microorganisms and the mechanism of wastewater treatment.
Collapse
Affiliation(s)
- Jian Huang
- College of Environmental and Energy Engineering, Anhui Jianzhu University, Hefei, 230601, PR China
- Anhui Key Laboratory of Environmental Pollution Control and Waste Resource Utilisation, Hefei, 230601, PR China
- Anhui Institute of Ecological Civilisation, Hefei, 230601, PR China
| | - Junshuai Xu
- College of Environmental and Energy Engineering, Anhui Jianzhu University, Hefei, 230601, PR China
- Anhui Key Laboratory of Environmental Pollution Control and Waste Resource Utilisation, Hefei, 230601, PR China
| | - Hua Zhang
- College of Environmental and Energy Engineering, Anhui Jianzhu University, Hefei, 230601, PR China.
- Anhui Key Laboratory of Environmental Pollution Control and Waste Resource Utilisation, Hefei, 230601, PR China.
- Anhui Institute of Ecological Civilisation, Hefei, 230601, PR China.
| | - Jun Liu
- Pollution Control and Resource Utilization in Industrial Parks Joint Laboratory, Hefei, Anhui, 230601, PR China
| | - Chunhua He
- College of Environmental and Energy Engineering, Anhui Jianzhu University, Hefei, 230601, PR China
- Anhui Key Laboratory of Environmental Pollution Control and Waste Resource Utilisation, Hefei, 230601, PR China
- Anhui Institute of Ecological Civilisation, Hefei, 230601, PR China
| |
Collapse
|
7
|
Xu H, Gao J, Cui Y, Wang Z, Zhao Y, Yuan Y, Zeng L, Fu X. The combination of ciprofloxacin and dialkyldimethyl ammonium compound synergistically proliferated intracellular resistance genes in nitrifying system. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 930:172715. [PMID: 38663595 DOI: 10.1016/j.scitotenv.2024.172715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 04/20/2024] [Accepted: 04/21/2024] [Indexed: 05/03/2024]
Abstract
Antibiotics and quaternary ammonium compounds (QACs) usually co-exist in wastewater treatment plants. Hence, three sequencing batch reactors were established and named as R1, R2 and R3, to investigate the effects of individual and combined exposure of different concentrations of ciprofloxacin (CIP) (0.2, 1.0 and 2.0 mg/L) and dialkyldimethyl ammonium compound (DADMAC) (0.4, 2.0 and 4.0 mg/L) on the performance, microbial community structures and resistance genes (RGs) in nitrifying system during 150 days. Results showed that CIP had a slight effect on ammonia oxidation activity, while 2.0 and 4.0 mg/L DADAMAC could obviously inhibit it, and the combination of CIP and DADMAC had a synergistic inhibitory effect. Besides, both CIP and DADMAC caused partial nitrification, and the order of nitrite accumulation rate was ranked as R3 > R2 > R1. The combination of CIP and DADMAC had an antagonistic effect on the increase of sludge particle size and α-Helix/(β-Sheet + Random coil) was lowest in R3 (0.40). The combination of CIP and DADMAC synergistically stimulated most intracellular RGs in sludge, and the relative abundances of target RGs (e.g., qacEdelta1-01, qacH-01 and qnrS) at the end of operation in R3 were increased by 4.61-18.19 folds compared with those in CK, which were 1.34-5.57 folds higher than the R1 and R2. Moreover, the combination of CIP and DADMAC also promoted the transfer of RGs from sludge to water and enriched more potential hosts of RGs, further promoting the spread of RGs in nitrifying system. Thus, the combined pollution of CIP and DADMAC in wastewaters should attract more attentions.
Collapse
Affiliation(s)
- Hongxin Xu
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Department of Environmental Engineering, Beijing University of Technology, Beijing 100124, China
| | - Jingfeng Gao
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Department of Environmental Engineering, Beijing University of Technology, Beijing 100124, China.
| | - Yingchao Cui
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Department of Environmental Engineering, Beijing University of Technology, Beijing 100124, China
| | - Zhiqi Wang
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Department of Environmental Engineering, Beijing University of Technology, Beijing 100124, China
| | - Yifan Zhao
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Department of Environmental Engineering, Beijing University of Technology, Beijing 100124, China
| | - Yukun Yuan
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Department of Environmental Engineering, Beijing University of Technology, Beijing 100124, China
| | - Liqin Zeng
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Department of Environmental Engineering, Beijing University of Technology, Beijing 100124, China
| | - Xiaoyu Fu
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Department of Environmental Engineering, Beijing University of Technology, Beijing 100124, China
| |
Collapse
|
8
|
Luan YN, Yin Y, Guo Z, Yang J, Wang G, Zhang F, Xiao Y, Liu C. Achieving simultaneous nitrification and endogenous denitrifying phosphorus removal in anaerobic/intermittently-aerated moving bed biofilm reactor for low carbon-to-nitrogen ratio wastewater treatment. BIORESOURCE TECHNOLOGY 2024; 394:130178. [PMID: 38072080 DOI: 10.1016/j.biortech.2023.130178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Revised: 12/05/2023] [Accepted: 12/06/2023] [Indexed: 02/04/2024]
Abstract
In this study, an anaerobic/intermittently-aerated moving bed biofilm reactor (AnIA-MBBR) was proposed to realize simultaneous nitrification and endogenous denitrifying phosphorus removal (SNEDPR) in treating low carbon-to-nitrogen (C/N) ratio wastewater. The effect of different intermittent aeration modes (short and long aeration) on nutrients' removal was investigated. With the C/N ratio around 3, the removal efficiencies of total nitrogen and phosphorus were 90% and 74%, 88% and 59%, respectively, for short aeration and long aeration. The different aeration time also altered the nutrients' degradation pathway, biofilm characteristics, microbial community, and functional metabolic pathways. The results confirmed the occurrence of aerobic denitrifiers, anoxic denitrifiers, phosphorus accumulating organisms, glycogen accumulating organisms in AnIA-MBBR systems and their synergistic performance induced the SNEDPR. These results indicated that the application of AnIA in MBBR systems was an effective strategy to achieve SNEDPR, providing better simultaneous removal performance of nitrogen and phosphorus from low C/N ratio wastewater.
Collapse
Affiliation(s)
- Ya-Nan Luan
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao 266033, China
| | - Yue Yin
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao 266033, China
| | - Zhonghong Guo
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao 266033, China
| | - Jiaqi Yang
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao 266033, China
| | - Guanglei Wang
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao 266033, China
| | - Feng Zhang
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao 266033, China
| | - Yihua Xiao
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao 266033, China
| | - Changqing Liu
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao 266033, China.
| |
Collapse
|
9
|
Liu Y, Guo L, Yang H, Wang Z. Short-term influence of polytetrafluoroethylene micro/nano-plastics on the inhibition of copper and/or ciprofloxacin on the nitrifying sludge activities based on concentration addition and independent action models. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 351:119844. [PMID: 38103424 DOI: 10.1016/j.jenvman.2023.119844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 11/29/2023] [Accepted: 12/05/2023] [Indexed: 12/19/2023]
Abstract
Short-term influence of polytetrafluoroethylene micro/nano-plastics (PTFE-MPs/NPs) on the inhibition of copper (Cu2+) and/or ciprofloxacin (CIP) on the nitrifying sludge activities was explored based on concentration addition (CA) and independent action (IA) models. The half maximal inhibitory concentration (IC50) of Cu2+, CIP, PTFE-MPs (3 μm), and PTFE-NPs (800 nm) on the specific ammonium oxidation rate (SAOR) of nitrifying sludge was 64.57, 51.29, 102.33 and 93.33 mg L-1, respectively, while those on the specific nitrite oxidation rate (SNOR) of nitrifying sludge were 77.62, 32.36, 104.70 and 97.72 mg L-1, respectively. Among the five binary mixtures and two ternary mixtures composed by Cu2+, CIP, and/or PTFE-MPs/NPs, it was found that the two joint inhibitory actions from ternary mixtures on the SAOR and SNOR of the sludge showed time-dependent characteristics by analyzing of CA and IA models, while the five combined inhibitory effects from different binary mixtures did not all have time-dependent features. The two joint inhibition actions from diverse ternary mixtures on the SAOR at the exposure time of 60 min and on the SNOR at 90 min showed always concentration-dependent features, while the combined inhibitions with concentration-dependent characteristics had never been observed in the binary Cu2+ and PTFE-NPs mixtures at different exposure time. The Cu2+, CIP, and PTFE-MPs mixtures (or Cu2+, CIP, and PTFE-NPs mixtures) had synergistic actions on the SAOR at 90 min and antagonistic effects on the SNOR at 60 min based on CA and IA models, and these combined inhibitions did not exhibit concentration-dependent characteristics. In contrast, the joint inhibitory effects (on the SAOR and SNOR) with concentration-dependent features were found in the binary mixtures of CIP and PTFE-MPs at different exposure time, and the join inhibition changed from synergism to antagonism as the increasing concentration of mixed CIP and PTFE-MPs. This study provides novel perspectives for understanding the combined influence of plastic particles with different sizes, antibiotics, and heavy metals on the biological wastewater treatment process.
Collapse
Affiliation(s)
- Yang Liu
- College of Environment Science, Liaoning University, Shenyang, China
| | - Liming Guo
- College of Environment Science, Liaoning University, Shenyang, China
| | - Huan Yang
- College of Environment Science, Liaoning University, Shenyang, China
| | - Zichao Wang
- College of Environment Science, Liaoning University, Shenyang, China.
| |
Collapse
|
10
|
Li YQ, Zhao BH, Zhang YQ, Zhang XY, Chen XT, Yang HS. Effects of polyvinylchloride microplastics on the toxicity of nanoparticles and antibiotics to aerobic granular sludge: Nitrogen removal, microbial community and resistance genes. ENVIRONMENTAL RESEARCH 2023; 238:117151. [PMID: 37716388 DOI: 10.1016/j.envres.2023.117151] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 08/30/2023] [Accepted: 09/13/2023] [Indexed: 09/18/2023]
Abstract
Copper oxide nanoparticles (CuO NPs) and ciprofloxacin (CIP) have ecological risk to humans and ecosystems. Polyvinylchloride microplastics (PVC MPs), as a representative of microplastics, may often coexist with CuO NPs and CIP in wastewater treatment systems due to their widespread application. However, the co-impact of PVC MPs in wastewater systems contained with CuO NPs and CIP on nitrogen removal and ecological risk is not clear. In this work, PVC MPs co-impacts on the toxicity of CuO NPs and CIP to aerobic granular sludge (AGS) systems and potential mechanisms were investigated. 10 mg/L PVC MPs co-addition did not significantly affect the nitrogen removal, but it definitely changed the microbial community structure and enhanced the propagation and horizontal transfer of antibiotics resistance genes (ARGs). 100 mg/L PVC MPs co-addition resulted in a raise of CuO NP toxicity to the AGS system, but reduced the co-toxicity of CuO NPs and CIP and ARGs expression. The co-impacts with different PVC MPs concentration influenced Cu2+ concentrations, cell membrane integrity, extracellular polymeric substances (EPS) contents and microbial communities in AGS systems, and lead to a change of nitrogen removal.
Collapse
Affiliation(s)
- Yu-Qi Li
- Department of Municipal Engineering, Beijing University of Technology, Beijing, 100124, PR China; Department of Environmental Science and Engineering, Fudan University, Shanghai, 200238, PR China
| | - Bai-Hang Zhao
- Department of Municipal Engineering, Beijing University of Technology, Beijing, 100124, PR China.
| | - Yu-Qing Zhang
- Department of Municipal Engineering, Beijing University of Technology, Beijing, 100124, PR China
| | - Xin-Yue Zhang
- Beijing Municipal Institute of City Management, Beijing, 100028, PR China
| | - Xiao-Tang Chen
- Department of Municipal Engineering, Beijing University of Technology, Beijing, 100124, PR China
| | - Hai-Shan Yang
- Department of Municipal Engineering, Beijing University of Technology, Beijing, 100124, PR China
| |
Collapse
|
11
|
Xiong W, Wang S, Zhang Q, Hou Y, Jin Y, Chen B, Su H. Synergistic analysis of performance, microbial community, and metabolism in aerobic granular sludge under polyacrylonitrile microplastics stress. BIORESOURCE TECHNOLOGY 2023; 385:129394. [PMID: 37369317 DOI: 10.1016/j.biortech.2023.129394] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 06/21/2023] [Accepted: 06/24/2023] [Indexed: 06/29/2023]
Abstract
Aerobic granular sludge (AGS) has proved to be a promising biotechnology for microplastics wastewater treatment. However, polyacrylonitrile microplastics (PAN MPs), the most widely used plastic in textile materials, have not been investigated. Therefore, the effect of the neglected PAN MPs on AGS at different concentrations (1, 10, and 100 mg/L) was evaluated. The results indicated that PAN MPs with 1 and 10 mg/L concentrations had no obvious effect on granular stability and nutrient removal performance, but greatly promoted the secretion of EPS. Remarkably, the granule structure was severely damaged under 100 mg/L PAN MPs. Moreover, microbial community analysis showed that phylum Proteobacteria played a dominant role in resistance to PAN MPs. Metabolic analysis further revealed that genes related to denitrification pathway (nasA, nirK, nirS and norB) and membrane transport were significantly inhibited under PAN MPs stress. This study may provide additional information on the treatment of microplastics wastewater using AGS.
Collapse
Affiliation(s)
- Wei Xiong
- State Key Laboratory of Chemical Resource Engineering, Beijing Key Laboratory of Bioprocess, and Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, People's Republic of China
| | - Shaojie Wang
- State Key Laboratory of Chemical Resource Engineering, Beijing Key Laboratory of Bioprocess, and Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, People's Republic of China
| | - Qiuhua Zhang
- State Key Laboratory of Chemical Resource Engineering, Beijing Key Laboratory of Bioprocess, and Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, People's Republic of China
| | - Yiran Hou
- State Key Laboratory of Chemical Resource Engineering, Beijing Key Laboratory of Bioprocess, and Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, People's Republic of China
| | - Yu Jin
- State Key Laboratory of Chemical Resource Engineering, Beijing Key Laboratory of Bioprocess, and Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, People's Republic of China
| | - Biqiang Chen
- State Key Laboratory of Chemical Resource Engineering, Beijing Key Laboratory of Bioprocess, and Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, People's Republic of China
| | - Haijia Su
- State Key Laboratory of Chemical Resource Engineering, Beijing Key Laboratory of Bioprocess, and Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, People's Republic of China.
| |
Collapse
|