1
|
Sun H, Ding Y, Wang Z, Luo J, Wang N. Identification of a root-specific expression promoter in poplar and its application in genetic engineering for cadmium phytoremediation. PLANT CELL REPORTS 2025; 44:89. [PMID: 40133648 DOI: 10.1007/s00299-025-03479-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2025] [Accepted: 03/11/2025] [Indexed: 03/27/2025]
Abstract
KEY MESSAGE A promoter, PRSEP7, was identified and confirmed to be specifically expressed in poplar roots. Poplar PRSEP7::CadWp transgenic lines showed high phytoremediation of Cd(II)-contaminated WPM and soil. Cadmium ions (Cd(II)) are heavy metals that are difficult for organisms to decompose in our natural environment. The generation of plants by genetic engineering with a high ability to phytoremediate Cd(II) from the soil is an ideal biological remediation strategy. Here, we identified and confirmed a promoter, PRSEP7, that is specifically expressed in poplar (Populus L.) roots. The promoter of PRSEP7 was then used to construct the poplar root expression vector 2301S-root. The CadW gene encoding a carbonic anhydrase (CA) was reported to play important roles in the phytoremediation of Cd(II) in microorganisms in a previous study. The sequence of CadW was optimized for plants, and the resulting gene CadWp also showed high activity for sequestration of Cd(II). CadWp was then introduced to 2301S-root to generate the PRSEP7::CadWp construct. This construct was used to transform poplar via Agrobacterium-mediated transformation. A number of stable transgenic poplar lines were generated, and two lines were randomly selected to test their ability to phytoremediate Cd(II). With several parameter measurements, the two transgenic lines showed high phytoremediation of Cd(II) under multiple growth conditions. Overall, we generated elite plant materials for the phytoremediation of Cd(II) in this study.
Collapse
Affiliation(s)
- Huanxi Sun
- College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yiwei Ding
- College of Forestry, Xinyang Agriculture and Forestry University, Xinyang, 464000, China
| | - Ziwei Wang
- College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, China
| | - Jie Luo
- College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, China
| | - Nian Wang
- College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, China.
| |
Collapse
|
2
|
Pham MDT, Bui XT, Vo TKQ, Dao TS, Le LT, Vo TDH, Huynh KPH, Nguyen TB, Lin C, Visvanathan C. Microalgae - bacteria based wastewater treatment systems: Granulation, influence factors and pollutants removal. BIORESOURCE TECHNOLOGY 2025; 418:131973. [PMID: 39672237 DOI: 10.1016/j.biortech.2024.131973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 10/21/2024] [Accepted: 12/10/2024] [Indexed: 12/15/2024]
Abstract
Wastewater treatment based on microalgae and bacteria symbiosis is an environmentally friendly, sustainable technology that has attracted attention recently because of its high efficiency in treating pollutants, saving energy, and short-term biomass recovery. Among them, the granular microalgae and bacteria combination emerges with the advantages of rapid gravity settling, good resistance to adverse environmental conditions, outstanding wastewater treatment performance, and easy biomass recovery. This review aims to clarify the microalgal-bacterial granule (MBG) - based process for wastewater treatment. In particular, MBG characteristics, granulation mechanism, and influence factors on the process are also discussed. The review contributes to the knowledge system related to MBG research in recent years, thereby pointing out research gaps that need to be filled in the future.
Collapse
Affiliation(s)
- Mai-Duy-Thong Pham
- Key Laboratory of Advanced Waste Treatment Technology & Faculty of Environment and Natural Resources, Ho Chi Minh City University of Technology (HCMUT), 268 Ly Thuong Kiet Street, District 10, Ho Chi Minh City, Vietnam; Vietnam National University Ho Chi Minh City (VNU-HCM), Linh Trung ward, Ho Chi Minh City 700000, Vietnam
| | - Xuan-Thanh Bui
- Key Laboratory of Advanced Waste Treatment Technology & Faculty of Environment and Natural Resources, Ho Chi Minh City University of Technology (HCMUT), 268 Ly Thuong Kiet Street, District 10, Ho Chi Minh City, Vietnam; Vietnam National University Ho Chi Minh City (VNU-HCM), Linh Trung ward, Ho Chi Minh City 700000, Vietnam.
| | - Thi-Kim-Quyen Vo
- Ho Chi Minh City University of Industry and Trade (HUIT), 140 Le Trong Tan street, Tay Thanh ward, Tan Phu district, Ho Chi Minh City, Vietnam
| | - Thanh-Son Dao
- Key Laboratory of Advanced Waste Treatment Technology & Faculty of Environment and Natural Resources, Ho Chi Minh City University of Technology (HCMUT), 268 Ly Thuong Kiet Street, District 10, Ho Chi Minh City, Vietnam; Vietnam National University Ho Chi Minh City (VNU-HCM), Linh Trung ward, Ho Chi Minh City 700000, Vietnam
| | - Linh-Thy Le
- Key Laboratory of Advanced Waste Treatment Technology & Faculty of Environment and Natural Resources, Ho Chi Minh City University of Technology (HCMUT), 268 Ly Thuong Kiet Street, District 10, Ho Chi Minh City, Vietnam; Faculty of Public Health, University of Medicine and Pharmacy at Ho Chi Minh City (UMP), ward 11, district 5, Ho Chi Minh City, Vietnam
| | - Thi-Dieu-Hien Vo
- Institute of Applied Technology and Sustainable Development, Nguyen Tat Thanh University, Ho Chi Minh City, Vietnam
| | - Ky-Phuong-Ha Huynh
- Key Laboratory of Advanced Waste Treatment Technology & Faculty of Environment and Natural Resources, Ho Chi Minh City University of Technology (HCMUT), 268 Ly Thuong Kiet Street, District 10, Ho Chi Minh City, Vietnam; Vietnam National University Ho Chi Minh City (VNU-HCM), Linh Trung ward, Ho Chi Minh City 700000, Vietnam
| | - Thanh-Binh Nguyen
- Institute of Aquatic Science and Technology, National Kaohsiung University of Science and Technology, Kaohsiung City 81157, Taiwan
| | - Chitsan Lin
- Institute of Aquatic Science and Technology, National Kaohsiung University of Science and Technology, Kaohsiung City 81157, Taiwan
| | - Chettiyappan Visvanathan
- Department of Civil and Environmental Engineering, Mahidol University, Salaya, Nakhon Pathom, Thailand
| |
Collapse
|
3
|
Choudhary S, Tiwari M, Poluri KM. A Biorefinery Approach Integrating Lipid and EPS Augmentation Along with Cr (III) Mitigation by Chlorella minutissima. Cells 2024; 13:2047. [PMID: 39768139 PMCID: PMC11674128 DOI: 10.3390/cells13242047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Revised: 12/06/2024] [Accepted: 12/09/2024] [Indexed: 01/11/2025] Open
Abstract
The quest for cleaner and sustainable energy sources is crucial, considering the current scenario of a steep rise in energy consumption and the fuel crisis, exacerbated by diminishing fossil fuel reserves and rising pollutants. In particular, the bioaccumulation of hazardous substances like trivalent chromium has not only disrupted the fragile equilibrium of the ecological system but also poses significant health hazards to humans. Microalgae emerged as a promising solution for achieving sustainability due to their ability to remediate contaminants and produce greener alternatives such as biofuels. This integrated approach provides an ambitious strategy to address global concerns pertaining to economic stability, environmental degradation, and the energy crisis. This study investigates the intricate defense mechanisms deployed by freshwater microalgae Chlorella minutissima in response to Cr (III) toxicity. The microalga achieved an impressive 92% removal efficiency with an IC50 value of 200 ppm, illustrating its extraordinary resilience towards chromium-induced stress. Furthermore, this research embarked on thorough explorations encompassing morphological, pigment-centric, and biochemical analyses, aimed at revealing the adaptive strategies associated with Cr (III) resilience, as well as the dynamics of carbon pool flow that contribute to enhanced lipid and extracellular polysaccharide (EPS) synthesis. The FAME profile of the biodiesel produced complies with the benchmark established by American and European fuel regulations, emphasizing its suitability as a high-quality vehicular fuel. Elevated levels of ROS, TBARS, and osmolytes (such as glycine-betaine), along with the increased activity of antioxidant enzymes (CAT, GR, and SOD), reveal the activation of robust defense mechanisms against oxidative stress caused by Cr (III). The finding of this investigation presents an effective framework for an algal-based biorefinery approach, integrating pollutant detoxification with the generation of vehicular-quality biodiesel and additional value-added compounds vital for achieving sustainability under the concept of a circular economy.
Collapse
Affiliation(s)
- Sonia Choudhary
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee 247667, India; (S.C.); (M.T.)
- Centre for Transportation System, Indian Institute of Technology Roorkee, Roorkee 247667, India
| | - Mansi Tiwari
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee 247667, India; (S.C.); (M.T.)
| | - Krishna Mohan Poluri
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee 247667, India; (S.C.); (M.T.)
| |
Collapse
|
4
|
Luo J, Zhao M. Self-flocculating Chlorella vulgaris: A high-efficiency purification mechanism of radioactive Th 4+ in an aquatic environment. JOURNAL OF HAZARDOUS MATERIALS 2024; 477:135294. [PMID: 39059294 DOI: 10.1016/j.jhazmat.2024.135294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 07/12/2024] [Accepted: 07/21/2024] [Indexed: 07/28/2024]
Abstract
This study aimed to investigate the purification of radioactive thorium (Th4+) by Chlorella vulgaris in aquatic environments. Single-factor experiments and response surface optimization tests identified optimal purification conditions. The purification and metabolic response mechanisms of Chlorella to Th4+ were elucidated using physiological and biochemical analyses, three-dimensional excitation-emission matrix (3D-EEM) analysis, and metabolomic profiling. Increases in the Th4+ concentration caused Chlorella to self-flocculate, significantly improving the Th4+ purification efficiency. Under optimal conditions, the Th4+ purification efficiency for Th4+ in wastewater by Chlorella stabilized between 94.3 % and 98.2 %. Morphological analysis revealed that the purified Th4+ existed mainly in a stable residual state. Chlorella efficiently purified wastewater during treatment by regulating environmental pH, performing redox reactions, and utilizing extracellular polymeric substances (EPS) to interact with Th4+. Metabolomic analysis indicated that Chlorella adapted to the Th4+-contaminated environment and enhanced its purification function by adjusting the synthesis of metabolites, such as carbohydrates, nucleotides, and amino acids. Chlorella demonstrated a remarkable self-flocculation phenomenon and a high-efficiency purification capability for Th4+, offering new possibilities for environmental remediation. Its purification mechanism involves environmental regulation, redox reactions, and complex metabolic adjustments. The results presented here provide theoretical support for environmental remediation using Chlorella.
Collapse
Affiliation(s)
- Jing Luo
- College of Life Science, Northeast Forestry University, No. 26, Hexing Road, Harbin 150040, China
| | - Min Zhao
- College of Life Science, Northeast Forestry University, No. 26, Hexing Road, Harbin 150040, China.
| |
Collapse
|
5
|
Yeheyo HA, Ealias AM, George G, Jagannathan U. Bioremediation potential of microalgae for sustainable soil treatment in India: A comprehensive review on heavy metal and pesticide contaminant removal. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 363:121409. [PMID: 38861884 DOI: 10.1016/j.jenvman.2024.121409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 05/26/2024] [Accepted: 06/05/2024] [Indexed: 06/13/2024]
Abstract
The escalating environmental concerns arising from soils contamination with heavy metals (HMs) and pesticides (PSTs) necessitate the development of sustainable and effective remediation strategies. These contaminants, known for their carcinogenic properties and toxicity even at small amounts, pose significant threats to both environmental ecology and human health. While various chemical and physical treatments are employed globally, their acceptance is often hindered by prolonged remediation times, high costs, and inefficacy in areas with exceptionally high pollutant concentrations. A promising emerging trend in addressing this issue is the utilization of microalgae for bioremediation. Bioremediation, particularly through microalgae, presents numerous benefits such as high efficiency, low cost, easy accessibility and an eco-friendly nature. This approach has gained widespread use in remediating HM and PST pollution, especially in large areas. This comprehensive review systematically explores the bioremediation potential of microalgae, shedding light on their application in mitigating soil pollutants. The paper summarizes the mechanisms by which microalgae remediate HMs and PSTs and considers various factors influencing the process, such as pH, temperature, pollutant concentration, co-existing pollutants, time of exposure, nutrient availability, and light intensity. Additionally, the review delves into the response and tolerance of various microalgae strains to these contaminants, along with their bioaccumulation capabilities. Challenges and future prospects in the microalgal bioremediation of pollutants are also discussed. Overall, the aim is to offer valuable insights to facilitate the future development of commercially viable and efficient microalgae-based solutions for pollutant bioremediation.
Collapse
Affiliation(s)
- Hillary Agaba Yeheyo
- Department of Civil Engineering, Koneru Lakshmaiah Education Foundation, Green Fields, Vaddeswaram, A.P, 522302, India.
| | - Anu Mary Ealias
- Department of Civil Engineering, Koneru Lakshmaiah Education Foundation, Green Fields, Vaddeswaram, A.P, 522302, India.
| | - Giphin George
- Department of Mechanical Engineering, Koneru Lakshmaiah Education Foundation, Green Fields, Vaddeswaram, A.P, 522302, India.
| | - Umamaheswari Jagannathan
- Department of Civil Engineering, Priyadarshini Engineering College, Vaniyambadi, Tirupattur, TN, 635751, India.
| |
Collapse
|
6
|
Wang X, Li S, Mi R, Dong Y, Jiang J, Guan X, Wang X, Ye B, Liu D, Zhao Z, Gao X, Zhou Z. Performance enhancement, bacterial communities optimization and emerging pollutants elimination by microalgal-bacterial consortium for treating aquaculture pond sediments. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 359:121013. [PMID: 38723495 DOI: 10.1016/j.jenvman.2024.121013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Revised: 04/15/2024] [Accepted: 04/23/2024] [Indexed: 05/22/2024]
Abstract
Aquaculture pond sediments have a notable influence on the ecosystem balance and farmed animal health. In this study, microalgal-bacterial immobilization (MBI) was designed to improve aquaculture pond sediments via synergistic interactions. The physicochemical characteristics, bacterial communities, and the removal efficiencies of emerging pollutants were systematically investigated. The consortium containing diatom Navicula seminulum and Alcaligenes faecalis was cultivated and established in the free and immobilized forms for evaluating the treatment performance. The results indicated that the immobilized group exhibited superior performance in controlling nutrient pollutants, shaping and optimizing the bacterial community compositions with the enrichment of functional bacteria. Additionally, it showed a stronger positive correlation between the bacterial community shifts and nutrient pollutants removal compared to free cells. Furthermore, the immobilized system maintained the higher removal performance of emerging pollutants (heavy metals, antibiotics, and pathogenic Vibrios) than free group. These findings confirmed that the employment of immobilized N. seminulum and A. faecalis produced more synergistic benefits and exerted more improvements than free cells in ameliorating aquaculture pond sediments, suggesting the potential for engineering application of functional microalgal-bacterial consortium in aquaculture.
Collapse
Affiliation(s)
- Xuda Wang
- Liaoning Key Laboratory of Marine Fishery Molecular Biology, Key Laboratory of Protection and Utilization of Aquatic Germplasm Resources, Ministry of Agriculture and Rural Affairs, Liaoning Ocean and Fisheries Science Research Institute, Dalian, Liaoning, 116023, PR China
| | - Shilei Li
- Liaoning Key Laboratory of Marine Fishery Molecular Biology, Key Laboratory of Protection and Utilization of Aquatic Germplasm Resources, Ministry of Agriculture and Rural Affairs, Liaoning Ocean and Fisheries Science Research Institute, Dalian, Liaoning, 116023, PR China
| | - Rui Mi
- Liaoning Key Laboratory of Marine Fishery Molecular Biology, Key Laboratory of Protection and Utilization of Aquatic Germplasm Resources, Ministry of Agriculture and Rural Affairs, Liaoning Ocean and Fisheries Science Research Institute, Dalian, Liaoning, 116023, PR China
| | - Ying Dong
- Liaoning Key Laboratory of Marine Fishery Molecular Biology, Key Laboratory of Protection and Utilization of Aquatic Germplasm Resources, Ministry of Agriculture and Rural Affairs, Liaoning Ocean and Fisheries Science Research Institute, Dalian, Liaoning, 116023, PR China
| | - Jingwei Jiang
- Liaoning Key Laboratory of Marine Fishery Molecular Biology, Key Laboratory of Protection and Utilization of Aquatic Germplasm Resources, Ministry of Agriculture and Rural Affairs, Liaoning Ocean and Fisheries Science Research Institute, Dalian, Liaoning, 116023, PR China
| | - Xiaoyan Guan
- Liaoning Key Laboratory of Marine Fishery Molecular Biology, Key Laboratory of Protection and Utilization of Aquatic Germplasm Resources, Ministry of Agriculture and Rural Affairs, Liaoning Ocean and Fisheries Science Research Institute, Dalian, Liaoning, 116023, PR China
| | - Xiaoyue Wang
- Liaoning Key Laboratory of Marine Fishery Molecular Biology, Key Laboratory of Protection and Utilization of Aquatic Germplasm Resources, Ministry of Agriculture and Rural Affairs, Liaoning Ocean and Fisheries Science Research Institute, Dalian, Liaoning, 116023, PR China
| | - Bo Ye
- Liaoning Key Laboratory of Marine Fishery Molecular Biology, Key Laboratory of Protection and Utilization of Aquatic Germplasm Resources, Ministry of Agriculture and Rural Affairs, Liaoning Ocean and Fisheries Science Research Institute, Dalian, Liaoning, 116023, PR China
| | - Danni Liu
- Liaoning Key Laboratory of Marine Fishery Molecular Biology, Key Laboratory of Protection and Utilization of Aquatic Germplasm Resources, Ministry of Agriculture and Rural Affairs, Liaoning Ocean and Fisheries Science Research Institute, Dalian, Liaoning, 116023, PR China
| | - Zhenjun Zhao
- Liaoning Key Laboratory of Marine Fishery Molecular Biology, Key Laboratory of Protection and Utilization of Aquatic Germplasm Resources, Ministry of Agriculture and Rural Affairs, Liaoning Ocean and Fisheries Science Research Institute, Dalian, Liaoning, 116023, PR China
| | - Xuewen Gao
- Liaoning Key Laboratory of Marine Fishery Molecular Biology, Key Laboratory of Protection and Utilization of Aquatic Germplasm Resources, Ministry of Agriculture and Rural Affairs, Liaoning Ocean and Fisheries Science Research Institute, Dalian, Liaoning, 116023, PR China
| | - Zunchun Zhou
- Liaoning Key Laboratory of Marine Fishery Molecular Biology, Key Laboratory of Protection and Utilization of Aquatic Germplasm Resources, Ministry of Agriculture and Rural Affairs, Liaoning Ocean and Fisheries Science Research Institute, Dalian, Liaoning, 116023, PR China.
| |
Collapse
|
7
|
Huang J, Su B, Fei X, Che J, Yao T, Zhang R, Yi S. Enhanced microalgal biomass and lipid production with simultaneous effective removal of Cd using algae-bacteria-activated carbon consortium added with organic carbon source. CHEMOSPHERE 2024; 350:141088. [PMID: 38163470 DOI: 10.1016/j.chemosphere.2023.141088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 12/27/2023] [Accepted: 12/29/2023] [Indexed: 01/03/2024]
Abstract
Recently, using microalgae to remediate heavy metal polluted water has been attained a huge attention. However, heavy metals are generally toxic to microalgae and consequently decrease biomass accumulation. To address this issue, the feasibility of adding exogenous glucose, employing algae-bacteria system and algae-bacteria-activated carbon consortium to enhance microalgae growth were evaluated. The result showed that Cd2+ removal efficiency was negatively correlated with microalgal specific growth rate. The exogenous glucose alleviated the heavy metal toxicity to algal cells and thus increased the microalgae growth rate. Among the different treatments, the algae-bacteria-activated carbon combination had the highest biomass concentration (1.15 g L-1) and lipid yield (334.97 mg L-1), which were respectively 3.03 times of biomass (0.38 g L-1) and 4.92 times of lipid yield (68.08 mg L-1) in the single microalgae treatment system. Additionally, this algae-bacteria-activated carbon consortium remained a high Cd2+ removal efficiency (91.61%). In all, the present study developed an approach that had a great potential in simultaneous heavy metal wastewater treatment and microalgal lipid production.
Collapse
Affiliation(s)
- Jianke Huang
- Jiangsu Province Engineering Research Center for Marine Bio-resources Sustainable Utilization, Hohai University, Nanjing, 210024, China; College of Oceanography, Hohai University, Nanjing, 210024, China.
| | - Bocheng Su
- Jiangsu Province Engineering Research Center for Marine Bio-resources Sustainable Utilization, Hohai University, Nanjing, 210024, China; College of Oceanography, Hohai University, Nanjing, 210024, China
| | - Xingyi Fei
- Jiangsu Province Engineering Research Center for Marine Bio-resources Sustainable Utilization, Hohai University, Nanjing, 210024, China; College of Oceanography, Hohai University, Nanjing, 210024, China
| | - Jiayi Che
- Jiangsu Province Engineering Research Center for Marine Bio-resources Sustainable Utilization, Hohai University, Nanjing, 210024, China; College of Oceanography, Hohai University, Nanjing, 210024, China
| | - Ting Yao
- Jiangsu Province Engineering Research Center for Marine Bio-resources Sustainable Utilization, Hohai University, Nanjing, 210024, China; College of Oceanography, Hohai University, Nanjing, 210024, China
| | - Ruizeng Zhang
- Jiangsu Province Engineering Research Center for Marine Bio-resources Sustainable Utilization, Hohai University, Nanjing, 210024, China; College of Oceanography, Hohai University, Nanjing, 210024, China
| | - Sanjiong Yi
- Jiangsu Province Engineering Research Center for Marine Bio-resources Sustainable Utilization, Hohai University, Nanjing, 210024, China; College of Oceanography, Hohai University, Nanjing, 210024, China
| |
Collapse
|
8
|
Thabet J, Elleuch J, Martínez F, Abdelkafi S, Hernández LE, Fendri I. Characterization of cellular toxicity induced by sub-lethal inorganic mercury in the marine microalgae Chlorococcum dorsiventrale isolated from a metal-polluted coastal site. CHEMOSPHERE 2023; 338:139391. [PMID: 37414298 DOI: 10.1016/j.chemosphere.2023.139391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 06/29/2023] [Accepted: 06/30/2023] [Indexed: 07/08/2023]
Abstract
Mercury (Hg) is a global pollutant that affects numerous marine aquatic ecosystems. We isolated Chlorococcum dorsiventrale Ch-UB5 microalga from coastal areas of Tunisia suffering from metal pollution and analyzed its tolerance to Hg. This strain accumulated substantial amounts of Hg and was able to remove up to 95% of added metal after 24 and 72 h in axenic cultures. Mercury led to lesser biomass growth, higher cell aggregation, significant inhibition of photochemical activity, and appearance of oxidative stress and altered redox enzymatic activities, with proliferation of starch granules and neutral lipids vesicles. Such changes matched the biomolecular profile observed using Fourier Transformed Infrared spectroscopy, with remarkable spectral changes corresponding to lipids, proteins and carbohydrates. C. dorsiventrale accumulated the chloroplastic heat shock protein HSP70B and the autophagy-related ATG8 protein, probably to counteract the toxic effects of Hg. However, long-term treatments (72 h) usually resulted in poorer physiological and metabolic responses, associated with acute stress. C. dorsiventrale has potential use for Hg phycoremediation in marine ecosystems, with the ability to accumulating energetic reserves that could be used for biofuel production, supporting the notion of using of C. dorsiventrale for sustainable green chemistry in parallel to metal removal.
Collapse
Affiliation(s)
- Jihen Thabet
- Laboratoire de Biotechnologies Végétales Appliquées à l'Amélioration des Cultures, Faculté des Sciences de Sfax, Université de Sfax, Sfax, Tunisia; Laboratory of Plant Physiology-Department of Biology, Universidad Autónoma Madrid, Darwin 2, ES28049, Madrid, Spain
| | - Jihen Elleuch
- Laboratoire de Génie Enzymatique et Microbiologie, Equipe Biotechnologie des Algues, Ecole Nationale d'Ingénieurs de Sfax, Université de Sfax, Sfax, Tunisia
| | - Flor Martínez
- Laboratory of Plant Physiology-Department of Biology, Universidad Autónoma Madrid, Darwin 2, ES28049, Madrid, Spain
| | - Slim Abdelkafi
- Laboratoire de Génie Enzymatique et Microbiologie, Equipe Biotechnologie des Algues, Ecole Nationale d'Ingénieurs de Sfax, Université de Sfax, Sfax, Tunisia
| | - Luis Eduardo Hernández
- Laboratory of Plant Physiology-Department of Biology, Universidad Autónoma Madrid, Darwin 2, ES28049, Madrid, Spain.
| | - Imen Fendri
- Laboratoire de Biotechnologies Végétales Appliquées à l'Amélioration des Cultures, Faculté des Sciences de Sfax, Université de Sfax, Sfax, Tunisia
| |
Collapse
|
9
|
Ren X, Wang Y, Zhang K, Ding Y, Zhang W, Wu M, Xiao B, Gu P. Transmission of Microcystins in Natural Systems and Resource Processes: A Review of Potential Risks to Humans Health. Toxins (Basel) 2023; 15:448. [PMID: 37505717 PMCID: PMC10467081 DOI: 10.3390/toxins15070448] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 07/01/2023] [Accepted: 07/04/2023] [Indexed: 07/29/2023] Open
Abstract
The rapid rise of microcystins (MCs) poses a serious threat to global freshwater ecosystems and has become an important issue of global public health. MCs have considerable stability and are the most widely distributed hepatotoxins. It cannot only accumulate in aquatic organisms and transfer to higher nutrients and levels, but also be degraded or transferred during the resource utilization of cyanobacteria. No matter which enrichment method, it will lead to the risk of human exposure. This review summarizes the research status of MCs, and introduces the distribution of MCs in different components of aquatic ecosystems. The distribution of MCs in different aquatic organisms was summarized, and the potential risks of MCs in the environment to human safety were summarized. MCs have polluted all areas of aquatic ecosystems. In order to protect human life from the health threats caused by MCs, this paper also proposes some future research directions to promote MCs control and reduce human exposure to MCs.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Peng Gu
- School of Environment and Civil Engineering, Jiangnan University, Wuxi 214122, China; (X.R.); (Y.W.); (K.Z.); (Y.D.); (W.Z.); (M.W.); (B.X.)
| |
Collapse
|