1
|
Wang Z, Gao L, Chen X, Jin H, Wei H, Ma L, Gu Q, Liu X. Hollow layered double hydroxide nanoreactor activated peroxymonosulfate to efficiently degrade dye wastewater. J Colloid Interface Sci 2025; 689:137205. [PMID: 40054264 DOI: 10.1016/j.jcis.2025.02.213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Revised: 02/26/2025] [Accepted: 02/28/2025] [Indexed: 03/26/2025]
Abstract
The conventional preparation of layered double hydroxide (LDH) often limits its catalytic effectiveness in advanced oxidation processes due to agglomeration and inadequate exposure of active sites. In this work, we present a simplified synthesis approach that utilizes zeolitic imidazolate frameworks (ZIF)-67 (Co) as a sacrificial template to in situ fabricate hollow polyhedral CoFe-LDH (HP-LDH), aimed at enhancing the degradation of dye contaminants in aqueous systems. The unique porous and polyhedral structure of HP-LDH, derived from the template, facilitates contact efficiency between the substrate and active metal sites, acting as an effective nanoreactor. The comparative degradation experiments of Acid Red 27 (AR27) in peroxymonosulfate (PMS) revealed that the degradation efficiency of HP-LDH was nearly twice that of conventional flake LDH (F-LDH). Under optimal conditions, the HP-LDH/PMS system attained a removal rate of 95% in just 15 min. The degradation of the dye relies on the action of both radical and non-radical species, particularly 1O2. Furthermore, the robust adaptability and versatility of HP-LDH/PMS to real water bodies, with a wide range of pH levels and coexisting inorganic anions, demonstrates its potential as a superior catalyst in wastewater treatment, offering a novel pathway for structural innovation of LDH materials in environmental applications.
Collapse
Affiliation(s)
- Ziwei Wang
- Beijing Key Laboratory of Fuels Cleaning and Advanced Catalytic Emission Reduction Technology/College of New Materials and Chemical Engineering, Beijing Institute of Petrochemical Technology, Beijing 102617, China
| | - Liansong Gao
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Xiaofei Chen
- Chen Ping Laboratory of TIANS Engineering Technology Group Co., Ltd., Shijiazhuang 050000 Hebei, China
| | - Haibo Jin
- Beijing Key Laboratory of Fuels Cleaning and Advanced Catalytic Emission Reduction Technology/College of New Materials and Chemical Engineering, Beijing Institute of Petrochemical Technology, Beijing 102617, China
| | - Huangzhao Wei
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Lei Ma
- Beijing Key Laboratory of Fuels Cleaning and Advanced Catalytic Emission Reduction Technology/College of New Materials and Chemical Engineering, Beijing Institute of Petrochemical Technology, Beijing 102617, China.
| | - Qingyang Gu
- Beijing Key Laboratory of Fuels Cleaning and Advanced Catalytic Emission Reduction Technology/College of New Materials and Chemical Engineering, Beijing Institute of Petrochemical Technology, Beijing 102617, China.
| | - Xiaowei Liu
- Division of Physical Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia.
| |
Collapse
|
2
|
Lou J, Han H, Zhang Z, Feng C, An J, Wang X. Citric acid modulated strong magnetic CoFe-LDH/CoFe 2O 4 coupled dielectric barrier discharge plasma for efficient levofloxacin degradation: Enhanced internal electric field and accelerated electron migration. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:136077. [PMID: 39405687 DOI: 10.1016/j.jhazmat.2024.136077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 08/06/2024] [Accepted: 10/04/2024] [Indexed: 12/01/2024]
Abstract
A novel citric acid (CA) modulation strategy was developed to prepare strong magnetic CoFe-LDH/CoFe2O4-C composites, which were combined with dielectric barrier discharge (DBD) to effectively degrade levofloxacin (LEV) in wastewater. Kelvin probe force microscopy (KPFM) test showed that CA modulation facilitated a more powerful internal electric field to drive rapid charge migration. The addition of CoFe-LDH/CoFe2O4-C increased LEV degradation from 78.2 % to 98.6 % and reduced energy efficiency from 24.77 to 8.93 kWh m-3. Quenching experiments and electron paramagnetic resonance (EPR) spectra showed the CoFe-LDH/CoFe2O4-C could take full advantage of the active substances originating from DBD plasma and highlighted the role of 1O2 and ·O2-. Density functional theory (DFT) calculation revealed that the heterojunction can not only drive faster electron migration but also reduce the energy barrier of O3 decomposition. Possible degradation pathways for LEV were proposed. This study opened up a new avenue for the synthesis of applicable catalysts for plasma systems in water treatment areas.
Collapse
Affiliation(s)
- Jing Lou
- School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo 255000, China
| | - Hao Han
- College of Resources and Environment Engineering, Shandong University of Technology, Zibo 255000, China
| | - Zihan Zhang
- School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo 255000, China
| | - Chao Feng
- State Key Laboratory of Heavy Oil Processing, College of Chemical Engineering, China University of Petroleum (East China), Qingdao 266580, China
| | - Jiutao An
- College of Resources and Environment Engineering, Shandong University of Technology, Zibo 255000, China.
| | - Xiangyou Wang
- School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo 255000, China.
| |
Collapse
|
3
|
Zhang N, Zhang B, Wang C, Sui H, Zhang N, Wen Z, He A, Zhang R, Xue R. Magnetic CoFe hydrotalcite composite Co metal-organic framework material efficiently activating peroxymonosulfate to degrade sulfamethoxazole: Oxygen vacancy-mediated radical and non-radical pathways. J Colloid Interface Sci 2024; 671:110-123. [PMID: 38795532 DOI: 10.1016/j.jcis.2024.05.166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 05/15/2024] [Accepted: 05/22/2024] [Indexed: 05/28/2024]
Abstract
Herein, a novel rich oxygen vacancy (Ov) cobalt-iron hydrotalcite composite cobalt metal-organic framework material (ZIF-67/CoFe-LDH) was prepared by simple urea water and heat reduction approach and utilized for the peroxymonosulfate (PMS) system to remove sulfamethoxazole (SMX). 95 ± 1.32 % SMX (20 mg/L) was able to degraded in 20 min with TOC removal of 53 ± 1.56 % in ZIF-67/CoFe-LDH/PMS system. The system maintained a fantastic catalytic capability with wide pH range (3-9) and common interfering substances (Cl-, NO3-, CO32-, PO42- and humic acid (HA)), and the degradation efficiency could even remain 80.2 ± 1.48 % at the fifth cycle. Meanwhile, the applicability and feasibility of the catalysts for practical water treatment was verified by the degradation effects of SMX in different water environments and several other typical pollutants. Co and Fe bimetallic active centers synergistically activate PMS, and density functional theory (DFT) predicted adsorption energy about Ov in ZIF-67/CoFe-LDH for PMS was 1.335 eV, and OO bond length of PMS was stretched to 1.826 Å. As a result, PMS was more easily activated and broken, which accelerated the singlet oxygen (1O2), sulfate radical (SO4•-), high-valent metals and other reactive oxygen species (ROS). Radical and non-radical jointly degrading the pollutants improved the catalytic effect. Finally, SMX degradation intermediates were analyzed to explain the degradation pathway and their biotoxicity was also evaluated. This paper provides a new research perspective of oxygen vacancy activating PMS to degrade pollutants.
Collapse
Affiliation(s)
- Nianbo Zhang
- College of Environmental Science and Engineering, Qilu University of Technology (Shandong Academy of Science), 3501 University Road, Jinan 250353, China
| | - Baoyong Zhang
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education, China), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Chen Wang
- College of Environmental Science and Engineering, Qilu University of Technology (Shandong Academy of Science), 3501 University Road, Jinan 250353, China
| | - Huiying Sui
- College of Environmental Science and Engineering, Qilu University of Technology (Shandong Academy of Science), 3501 University Road, Jinan 250353, China
| | - Na Zhang
- College of Environmental Science and Engineering, Qilu University of Technology (Shandong Academy of Science), 3501 University Road, Jinan 250353, China
| | - Zunqing Wen
- College of Environmental Science and Engineering, Qilu University of Technology (Shandong Academy of Science), 3501 University Road, Jinan 250353, China
| | - Ao He
- College of Environmental Science and Engineering, Qilu University of Technology (Shandong Academy of Science), 3501 University Road, Jinan 250353, China
| | - Ruiyan Zhang
- College of Environmental Science and Engineering, Qilu University of Technology (Shandong Academy of Science), 3501 University Road, Jinan 250353, China
| | - Rong Xue
- College of Environmental Science and Engineering, Qilu University of Technology (Shandong Academy of Science), 3501 University Road, Jinan 250353, China.
| |
Collapse
|
4
|
Sharmin A, Asif MB, Zhang G, Bhuiyan MA, Pramanik B. Ranitidine degradation in layered double hydroxide activated peroxymonosulfate system: impact of transition metal composition and reaction mechanisms. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024:10.1007/s11356-024-34331-5. [PMID: 39007978 DOI: 10.1007/s11356-024-34331-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 07/04/2024] [Indexed: 07/16/2024]
Abstract
Ranitidine, a competitive inhibitor of histamine H2 receptors, has been identified as an emerging micropollutant in water and wastewater, raising concerns about its potential impact on the environment and human health. This study aims to address this issue by developing an effective removal strategy using two types of layered double hydroxide (LDH) catalysts (i.e., CoFeLDH and CoCuLDH). Characterization results show that CoFeLDH catalyst has superior catalytic properties due to its stronger chemical bond compared to CoCuLDH. The degradation experiment shows that 100% degradation of ranitidine could be achieved within 20 min using 25 mg/L of CoFeLDH and 20 mg/L of peroxymonosulfate (PMS). On the other hand, CoCuLDH was less effective, achieving only 70% degradation after 60 min at a similar dosage. The degradation rate constant of CoFeLDH was 10 times higher than the rate constant of CoCuLDH at different pH range. Positive zeta potential of CoFeLDH made it superior over CoCuLDH regarding catalytic oxidation of PMS. The catalytic degradation mechanism shows that sulfate radicals played a more dominant role than hydroxyl radicals in the case of LDH catalysts. Also, CoFeLDH demonstrated a stronger radical pathway than CoCuLDH. XPS analysis of CoFeLDH revealed the cation percentages at different phases and proved the claim of being reusable even after 8 cycles. Overall, the findings suggest that CoFeLDH/PMS system proves to be a suitable choice for attaining high degradation efficiency and good stability in the remediation of ranitidine in wastewater.
Collapse
Affiliation(s)
- Afia Sharmin
- School of Engineering, RMIT University, Melbourne, VIC, 3001, Australia
| | - Muhammad Bilal Asif
- Advanced Membranes and Porous Materials Center (AMPMC), Physical Sciences and Engineering (PSE), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955, Saudi Arabia
| | - Guomin Zhang
- School of Engineering, RMIT University, Melbourne, VIC, 3001, Australia
| | | | - Biplob Pramanik
- School of Engineering, RMIT University, Melbourne, VIC, 3001, Australia.
| |
Collapse
|
5
|
Ara M, Ghafuri H. Design and preparation of a novel Mg-Al LDH@EDTA-Melamine nanocomposite for effective adsorptive removal of methylene blue and rhodamine B dyes from water. Heliyon 2024; 10:e32447. [PMID: 38994068 PMCID: PMC11237852 DOI: 10.1016/j.heliyon.2024.e32447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 05/31/2024] [Accepted: 06/04/2024] [Indexed: 07/13/2024] Open
Abstract
This paper deals with the preparation of a novel nanocomposite consisted of magnesium-aluminum layered double hydroxide (Mg-Al LDH) and ethylenediaminetetraacetic acid (EDTA) as well as melamine (MA) as an adsorbent. This nanocomposite was utilized to adsorb different dyes such as rhodamine B (RhB) and methylene blue (MB) from water. The prepared adsorbent was characterized using FT-IR, EDS, XRD, TGA, and FE-SEM analyses. The effects of various parameters such as concentration, time, adsorbent dosage, temperature, and pH were tested to investigate their influence on adsorption conditions. Both methylene blue and rhodamine B dyes showed pseudo-second-order adsorption kinetics, and their adsorption followed the Langmuir isotherm. Moreover, the maximum adsorption capacities for methylene blue and rhodamine B were found to be 1111.103 mg/g at 45 °C and 232.558 mg/g at 60 °C, respectively. Additionally, the adsorption processes were found to be spontaneous (ΔG°< 0, for both dyes) and exothermic (ΔH° = -12.42 kJ/mol for methylene blue and ΔH° = -25.84 kJ/mol for rhodamine B) for both dyes. Hydrogen bonding and electrostatic forces are responsible for the interactions occur between the nanocomposite and the functional groups in the dyes. The experimental findings demonstrated a greater adsorption rate of MB than RhB, suggesting the adsorbent's stronger affinity for MB. This preference is likely due to MB's size, specific functional groups, and smaller molecule size, enabling stronger interactions and more efficient access to adsorption sites compared to RhB. Even after recycling 4 times, the dye adsorption percentages of the adsorbent for MB and RhB dyes were 90 % and 87 %, but the desorption percentages of the adsorbate dyes were 85 % and 80 %, respectively. The prepared adsorbent boasts several unique properties, such as the swift and effortless adsorption of MB and RhB dyes, straightforward synthesis, mild adsorption conditions, remarkable efficiency, and the ability to be recycled up to 4 times without a significant decrease in activity.
Collapse
Affiliation(s)
- Mohammad Ara
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran, 16846-13114, Iran
| | - Hossein Ghafuri
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran, 16846-13114, Iran
| |
Collapse
|
6
|
Li Y, Jin X, Qi B. Activation of peroxydisulfate via BiCoFe-layered double hydroxide for effective degradation of aniline. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:23979-23994. [PMID: 38436846 DOI: 10.1007/s11356-024-32735-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 02/27/2024] [Indexed: 03/05/2024]
Abstract
The sulfate radical-based advanced oxidation processes (SR-AOPs) is a promising method for the degradation of pollutants, with the development of highly efficient catalysts for persulfate activation has been widely concerned. The novel BiCoFe-LDH (BCF-x) was synthesized successfully by coprecipitation method, which can activate peroxydisulfate (PDS) efficiently to degrade aniline. Comparative analysis with pure CoFe-LDH revealed a remarkable increase in reaction rate constant by approximately 14.66 times; the degradation rate of aniline (10 mg/L) was 100% in 60 min with the condition of 0.5 g/L BCF-1.5 and 0.5 g/L PDS, due to BCF-1.5 which was characterized as a complex of CoFe-LDH and Bi2O2CO3, promoting electron transport to improve the efficiency of activated PDS. In the reaction system, SO4•-, ·OH, and 1O2 were responsible for the aniline degradation and ·OH was the primary one. Furthermore, this work proposes a reaction electron transfer catalytic mechanism, which provided a new insight and good application prospect for efficient activation of PDS for pollutant degradation.
Collapse
Affiliation(s)
- Yutong Li
- College of Environmental Science and Safety Engineering, Tianjin University of Technology, Tianjin, 300384, China
| | - Xinglong Jin
- College of Environmental Science and Safety Engineering, Tianjin University of Technology, Tianjin, 300384, China.
| | - Buying Qi
- College of Environmental Science and Safety Engineering, Tianjin University of Technology, Tianjin, 300384, China
| |
Collapse
|
7
|
Dung NT, Ha DTH, Thao VD, Thao NP, Lam TD, Lan PT, Trang TT, Ngan LV, Nhi BD, Thuy NT, Lin KYA, Huy NN. Effective activation of peroxymonosulfate by CoCr-LDH for removing organic contaminants in water: from lab-scale to practical applications. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:26773-26789. [PMID: 38456975 DOI: 10.1007/s11356-024-32776-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 03/01/2024] [Indexed: 03/09/2024]
Abstract
In this study, CoCr layered double hydroxide material (CoCr-LDH) was prepared and used as an effective catalyst for peroxymonosulfate (PMS) activation to degrade organics in water. The prepared CoCr-LDH material had a crystalline structure and relatively porous structure, as determined by various surface analyses. In Rhodamine B (RhB) removal, the most outstanding PMS activation ability belongs to the material with a Co:Cr molar ratio of 2:1. The removal of RhB follows pseudo-first-order kinetics (R2 > 0.99) with an activation energy of 38.23 kJ/mol and efficiency of 98% after 7 min of treatment, and the total organic carbon of the solution reduced 47.2% after 10 min. The activation and oxidation mechanisms were proposed and the RhB degradation pathways were suggested with the key contribution of O2•- and 1O2. Notably, CoCr-LDH can activate PMS over a wide pH range of 4 - 9, and apply to a wide range of organic pollutants and aqueous environments. The material has high stability and good recovery, which can be reused for 5 cycles with a stable efficiency of above 88%, suggesting a high potential for practical recalcitrant water treatment via PMS activation by heterogeneous catalysts.
Collapse
Affiliation(s)
- Nguyen Trung Dung
- Faculty of Physics and Chemical Engineering, Le Quy Don Technical University, 236 Hoang Quoc Viet St., Bac Tu Liem District, Hanoi, Vietnam
| | - Do Thi Hong Ha
- Faculty of Physics and Chemical Engineering, Le Quy Don Technical University, 236 Hoang Quoc Viet St., Bac Tu Liem District, Hanoi, Vietnam
| | - Vu Dinh Thao
- Faculty of Physics and Chemical Engineering, Le Quy Don Technical University, 236 Hoang Quoc Viet St., Bac Tu Liem District, Hanoi, Vietnam
| | - Nguyen Phuong Thao
- Faculty of Physics and Chemical Engineering, Le Quy Don Technical University, 236 Hoang Quoc Viet St., Bac Tu Liem District, Hanoi, Vietnam
| | - Tran Dai Lam
- Institute for Tropical Technology, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Cau Giay, Hanoi, Vietnam
| | - Pham Thi Lan
- Institute for Tropical Technology, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Cau Giay, Hanoi, Vietnam
| | - Tran Thi Trang
- Institute of Environmental Technology, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet Street, Cau Giay District, Hanoi, Viet Nam
| | - Le Viet Ngan
- National Institute for Food Control, 65 Pham Than Duat Street, Mai Dich Ward, Cau Giay District, Hanoi, Vietnam
| | - Bui Dinh Nhi
- Faculty of Environmental Technology, Viet Tri University of Industry, 9 Tien Sơn Street, Tien Cat District, Phu Tho, Viet Nam
| | - Nguyen Thi Thuy
- School of Environmental Engineering, International University, Quarter 6, Linh Trung Ward, Thu Duc City, Ho Chi Minh City, Vietnam
- Vietnam National University Ho Chi Minh City, Linh Trung Ward, Thu Duc City, Ho Chi Minh City, Vietnam
| | - Kun-Yi Andrew Lin
- Innovation and Development Center of Sustainable Agriculture and Department of Environmental Engineering, National Chung Hsing University, 250 Kuo-Kuang Road, Taichung, Taiwan
| | - Nguyen Nhat Huy
- Vietnam National University Ho Chi Minh City, Linh Trung Ward, Thu Duc City, Ho Chi Minh City, Vietnam.
- Faculty of Environment and Natural Resources, Ho Chi Minh City University of Technology (HCMUT), 268 Ly Thuong Kiet Street, District 10, Ho Chi Minh City, Vietnam.
| |
Collapse
|
8
|
Xie M, Liang M, Liu C, Xu Z, Yu Y, Xu J, You S, Wang D, Rad S. Peroxymonosulfate activation by CuMn-LDH for the degradation of bisphenol A: Effect, mechanism, and pathway. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 270:115929. [PMID: 38194810 DOI: 10.1016/j.ecoenv.2024.115929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 12/05/2023] [Accepted: 01/01/2024] [Indexed: 01/11/2024]
Abstract
The remediation of water contaminated with bisphenol A (BPA) has gained significant attention. In this study, a hydrothermal composite activator of Cu3Mn-LDH containing coexisting phases of cupric nitrate (Cu(NO3)2) and manganous nitrate (Mn(NO3)2) was synthesized. Advanced oxidation processes were employed as an effective approach for BPA degradation, utilizing Cu3Mn-LDH as the catalyst to activate peroxymonosulfate (PMS). The synthesis of the Cu3Mn-LDH material was characterized using X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), and transmission electron microscopy (TEM). According to the characterization data and screening experiments, Cu3Mn-LDH was selected as the best experimental material. Cu3Mn-LDH exhibits remarkable catalytic ability with PMS, demonstrating good degradation efficiency of BPA under neutral and alkaline conditions. With a PMS dosage of 0.25 g·L-1 and Cu3Mn-LDH dosage of 0.10 g·L-1, 10 mg·L-1 BPA (approximately 17.5 μM) can be completely degraded within 40 min, of which the TOC removal reached 95%. The reactive oxygen species present in the reaction system were analyzed by quenching experiments and EPR. Results showed that sulfate free radicals (SO4•-), hydroxyl free radicals (•OH), superoxide free radicals (•O2-), and nonfree radical mono-oxygen were generated, while mono-oxygen played a key role in degrading BPA. Cu3Mn-LDH exhibits excellent reproducibility, as it can still completely degrade BPA even after four consecutive cycles. The degradation intermediates of BPA were detected by GCMS, and the possible degradation pathways were reasonably predicted. This experiment proposes a nonradical degradation mechanism for BPA and analyzes the degradation pathways. It provides a new perspective for the treatment of organic pollutants in water.
Collapse
Affiliation(s)
- Mingqi Xie
- College of Environmental Science and Engineering, Guilin University of Technology, Guilin 541004, China; Guangxi Key Laboratory of Theory & Technology for Environmental Pollution Control, Guilin University of Technology, Guilin 541004, China
| | - Meina Liang
- College of Environmental Science and Engineering, Guilin University of Technology, Guilin 541004, China; Guangxi Key Laboratory of Theory & Technology for Environmental Pollution Control, Guilin University of Technology, Guilin 541004, China
| | - Chongmin Liu
- College of Environmental Science and Engineering, Guilin University of Technology, Guilin 541004, China; Guangxi Key Laboratory of Theory & Technology for Environmental Pollution Control, Guilin University of Technology, Guilin 541004, China; Collaborative Innovation Center for Water Pollution Control and Water Safety in Karst Area, Guilin University of Technology, Guilin 541006, China.
| | - Zejing Xu
- College of Environmental Science and Engineering, Guilin University of Technology, Guilin 541004, China; Guangxi Key Laboratory of Theory & Technology for Environmental Pollution Control, Guilin University of Technology, Guilin 541004, China
| | - Youkuan Yu
- College of Environmental Science and Engineering, Guilin University of Technology, Guilin 541004, China; Guangxi Key Laboratory of Theory & Technology for Environmental Pollution Control, Guilin University of Technology, Guilin 541004, China
| | - Jie Xu
- College of Environmental Science and Engineering, Guilin University of Technology, Guilin 541004, China; Guangxi Key Laboratory of Theory & Technology for Environmental Pollution Control, Guilin University of Technology, Guilin 541004, China
| | - Shaohong You
- College of Environmental Science and Engineering, Guilin University of Technology, Guilin 541004, China; Guangxi Key Laboratory of Theory & Technology for Environmental Pollution Control, Guilin University of Technology, Guilin 541004, China
| | - Dunqiu Wang
- College of Environmental Science and Engineering, Guilin University of Technology, Guilin 541004, China; Guangxi Key Laboratory of Theory & Technology for Environmental Pollution Control, Guilin University of Technology, Guilin 541004, China
| | - Saeed Rad
- College of Environmental Science and Engineering, Guilin University of Technology, Guilin 541004, China; Guangxi Key Laboratory of Theory & Technology for Environmental Pollution Control, Guilin University of Technology, Guilin 541004, China
| |
Collapse
|
9
|
Ma H, Feng G, Zhang X, Song C, Xu R, Shi Y, Wang P, Xu Z, Wang G, Fan X, Pan Z. New insights into Co 3O 4-carbon nanotube membrane for enhanced water purification: Regulated peroxymonosulfate activation mechanism via nanoconfinement. CHEMOSPHERE 2024; 347:140698. [PMID: 37967680 DOI: 10.1016/j.chemosphere.2023.140698] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Revised: 10/05/2023] [Accepted: 11/10/2023] [Indexed: 11/17/2023]
Abstract
Co-based peroxymonosulfate (PMS) activation system with fascinating catalytic performance has become a promising technology for water purification, but it always suffers from insufficient mass transfer, less exposed active sites and toxic metal leaching. In this work, a carbon nanotube membrane confining Co3O4 inside (Co3O4-in-CNT) was prepared and was coupled with PMS activation (catalytic membrane process) for sulfamethoxazole (SMX) removal. Compared with counterpart with surface-loaded Co3O4 (Co3O4-out-CNT), the Co3O4-in-CNT catalytic membrane process exhibited enhanced SMX removal (99.5% vs. 89.1%) within residence time of 2.89 s, reduced Co leaching (20 vs. 147 μg L-1) and more interestingly, the nonradical-to-radical mechanism transformation (from 1O2 and electron transfer to SO4•- and •OH). These phenomena were ascribed to the nanoconfinement effect in CNT, which enhanced mass transfer (2.80 × 10-4 vs. 5.98 × 10-5 m s-1), accelerated Co3+/Co2+ cycling (73.4% vs. 65.0%) and showed higher adsorption energy for PMS (cleavage of O-O bond). Finally, based on the generated abundant reactive oxygen species (ROS), the seven degradation pathways of SMX were formed in system.
Collapse
Affiliation(s)
- Huanran Ma
- College of Environmental Science and Engineering, Dalian Maritime University, 1 Linghai Road, Dalian, 116026, China
| | - Guoqing Feng
- College of Environmental Science and Engineering, Dalian Maritime University, 1 Linghai Road, Dalian, 116026, China
| | - Xiao Zhang
- College of Environmental Science and Engineering, Dalian Maritime University, 1 Linghai Road, Dalian, 116026, China
| | - Chengwen Song
- College of Environmental Science and Engineering, Dalian Maritime University, 1 Linghai Road, Dalian, 116026, China.
| | - Ruisong Xu
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, 2 Linggong Road, Dalian, 116024, China
| | - Yawei Shi
- College of Environmental Science and Engineering, Dalian Maritime University, 1 Linghai Road, Dalian, 116026, China
| | - Pengcheng Wang
- Department of Mechanical Engineering, University of Houston, Houston, TX, 77204, USA
| | - Zhouhang Xu
- School of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian, 116034, China
| | - Guanlong Wang
- School of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian, 116034, China.
| | - Xinfei Fan
- College of Environmental Science and Engineering, Dalian Maritime University, 1 Linghai Road, Dalian, 116026, China
| | - Zonglin Pan
- College of Environmental Science and Engineering, Dalian Maritime University, 1 Linghai Road, Dalian, 116026, China.
| |
Collapse
|
10
|
Chen D, Li R, Nan F, Li H, Huang P, Zhan W. Co-adsorption mechanisms of As(V) and Cd(II) by three-dimensional flower-like Mg/Al/Fe-CLDH synthesized by "memory effect". ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:103044-103061. [PMID: 37676456 DOI: 10.1007/s11356-023-29673-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 08/30/2023] [Indexed: 09/08/2023]
Abstract
Due to the different physical and chemical properties such as surface charge and ion morphology between As(V) and Cd(II), it is challenging to remove As(V) and Cd(II), especially at low concentrations. This study constructed a novel three-dimension nanocomposite adsorbent Mg/Al/Fe-CLDH (CFMA) by "hydrothermal + calcination method". And different initial concentration ratios (Cd: As=1: 2, 1: 1, 2: 1) were used to investigate the removal performance of CFMA for Cd(II) and As(V). When the concentration ratio Cd: As=1: 2, the residual concentrations of As(V) and Cd(II) were 8.7 μg/L and 4.2 μg/L, respectively, which met the drinking water standard; In the co-adsorption system, As(V) and Cd(II) influence each other's adsorption behavior due to the anionic bridge and shielding effect of As(V) on Cd(II), As(V) gradually changed from monolayer adsorption to multi-layer adsorption dominant, while Cd(II) gradually changed from multi-layer adsorption to monolayer adsorption dominant. In this paper, the structure-activity relationship between material structure and synchronous removal of arsenic and cadmium was clarified, and the mechanism of synchronous removal was revealed, which provided technical guidance for synchronous removal of As(V) and Cd(II) from non-ferrous metal smelting wastewater.
Collapse
Affiliation(s)
- Donghui Chen
- School of Resource and Environmental Science, South-Central Minzu University, Wuhan, 430074, China
- Engineering Research Center for Heavy Metal Pollution Control of Hubei Province, Wuhan, 430074, China
| | - Ruiyue Li
- School of Resource and Environmental Science, South-Central Minzu University, Wuhan, 430074, China
- Engineering Research Center for Heavy Metal Pollution Control of Hubei Province, Wuhan, 430074, China
| | - Fangming Nan
- School of Resource and Environmental Science, South-Central Minzu University, Wuhan, 430074, China
- Engineering Research Center for Heavy Metal Pollution Control of Hubei Province, Wuhan, 430074, China
| | - Hong Li
- School of Resource and Environmental Science, South-Central Minzu University, Wuhan, 430074, China
- Engineering Research Center for Heavy Metal Pollution Control of Hubei Province, Wuhan, 430074, China
| | - Ping Huang
- School of Resource and Environmental Science, South-Central Minzu University, Wuhan, 430074, China
- Engineering Research Center for Heavy Metal Pollution Control of Hubei Province, Wuhan, 430074, China
| | - Wei Zhan
- School of Resource and Environmental Science, South-Central Minzu University, Wuhan, 430074, China.
- Engineering Research Center for Heavy Metal Pollution Control of Hubei Province, Wuhan, 430074, China.
| |
Collapse
|