1
|
Lv C, Cheng H, Fan R, Sun J, Liu X, Ji Y. Fabrication of rGO/BiOI photocathode and its catalytic performance in the degradation of 4-Fluoroaniline. Heliyon 2024; 10:e37024. [PMID: 39286232 PMCID: PMC11402956 DOI: 10.1016/j.heliyon.2024.e37024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Revised: 08/26/2024] [Accepted: 08/26/2024] [Indexed: 09/19/2024] Open
Abstract
Organic fluorine compounds are acute carcinogenic and mutagenic to humans. Photoelectrocatalysis (PEC) treatment is an innovative technology in the field of the removal of fluorine compounds, and thus current research focused on improving stability and catalytic ability of photoanode. In this study, it has been synthesized a rGO/BiOI photocathode for the efficient degradation of 4-Fluoroaniline (4-FA). The physical characterization and photoelectrochemical properties of the photocathode was determined. The results indicate that the PEC treatment with the rGO/BiOI photocathode was more efficient compared with individual processes. During the optimization experiments, the PEC treatment achieved 99.58 % and 72.12 % of 4-FA degradation and defluorination within 1 h. Cyclic stability experiments show that rGO/BiOI photocathode was efficient and stable, which reached 96.91 % and 67.64 % of 4-FA degradation and defluorination after five cycles. Mechanism analysis indicates that the PEC process was based on an electrochemical reaction and photo-induced processes. The degradation product of 4-FA was mainly 2,4-di-t-butylphenol, and trapping experiments indicates that h+ is the primary oxidizing species. Therefore, PEC treatment with rGO/BiOI photocathode is a competitive green approach to remove fluorine compounds pollutants and brings new insights into development of PEC treatment.
Collapse
Affiliation(s)
- Chenhan Lv
- College of Chemical and Materials Engineering, Quzhou University, Quzhou, 324000, PR China
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, 310014, PR China
| | - Haixiang Cheng
- College of Chemical and Materials Engineering, Quzhou University, Quzhou, 324000, PR China
| | - Rui Fan
- College of Chemical and Materials Engineering, Quzhou University, Quzhou, 324000, PR China
| | - Jingyu Sun
- College of Chemical and Materials Engineering, Quzhou University, Quzhou, 324000, PR China
| | - Xinghai Liu
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, 310014, PR China
| | - Yinghui Ji
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, 310014, PR China
| |
Collapse
|
2
|
Chu Z, Han Z, Liu H, Chen T, Zou X, Wang H, Sun F, Wang H, Chen D. Autocatalytic degradation of Cu-EDTA in the Calcite/PMS system: Singlet oxygen and Cu(III). JOURNAL OF HAZARDOUS MATERIALS 2024; 477:135286. [PMID: 39047573 DOI: 10.1016/j.jhazmat.2024.135286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 05/28/2024] [Accepted: 07/20/2024] [Indexed: 07/27/2024]
Abstract
The simultaneous removal of heavy metal complexes (HMCs) and heavy metal ions presents a significant challenge in treating wastewater. To address this, we propose a Calcite/Peroxymonosulfate (Calcite/PMS) system aimed at simultaneously decomplexing Cu-EDTA and removing Cu ions. Calcite/PMS system could achieve 99.5 % Cu-EDTA decomplexation and 61.9 % Cu ions removal within 60 min under initial conditions of Cu-EDTA (10 mg/L), Calcite (3 g/L), and PMS (2 mM). Singlet oxygen (1O2) emerged as the predominant reactive species responsible for Cu-EDTA decomplexation, which selectively targeted the N-C bonds in the Cu-EDTA structure to produce intermediates with lower biotoxicity than EDTA. Interestingly, solid phase Cu(III) (≡Cu(III)) promoted the generation of superoxide radicals (O2•-) with a contribution of up to 72.8 %. Subsequently, nascent ≡Cu(III) and O2•- accelerated the degradation of intermediates. Besides, coexisting organic substances inhibited Cu-EDTA decomplexation, whereas inorganic ions had a weak impact. After five cycles of use, the Calcite/PMS system retained 99.3 % efficiency in decomplexing Cu-EDTA. This investigation provides valuable insights into using calcite to remove HMCs and enhances our comprehension of the decomplexation intermediates accelerating HMCs degradation.
Collapse
Affiliation(s)
- Ziyang Chu
- Key Laboratory of Nano-minerals and Pollution Control of Anhui Higher Education Institutes, Hefei University of Technology, Hefei 230009, China; Institute of Environmental Minerals and Materials, School of Resources and Environmental Engineering, Hefei University of Technology, Hefei 230009, China
| | - Zhengyan Han
- Key Laboratory of Nano-minerals and Pollution Control of Anhui Higher Education Institutes, Hefei University of Technology, Hefei 230009, China; Institute of Environmental Minerals and Materials, School of Resources and Environmental Engineering, Hefei University of Technology, Hefei 230009, China
| | - Haibo Liu
- Key Laboratory of Nano-minerals and Pollution Control of Anhui Higher Education Institutes, Hefei University of Technology, Hefei 230009, China; Institute of Environmental Minerals and Materials, School of Resources and Environmental Engineering, Hefei University of Technology, Hefei 230009, China.
| | - Tianhu Chen
- Key Laboratory of Nano-minerals and Pollution Control of Anhui Higher Education Institutes, Hefei University of Technology, Hefei 230009, China; Institute of Environmental Minerals and Materials, School of Resources and Environmental Engineering, Hefei University of Technology, Hefei 230009, China
| | - Xuehua Zou
- Key Laboratory of Nano-minerals and Pollution Control of Anhui Higher Education Institutes, Hefei University of Technology, Hefei 230009, China; Institute of Environmental Minerals and Materials, School of Resources and Environmental Engineering, Hefei University of Technology, Hefei 230009, China
| | - Hanlin Wang
- Key Laboratory of Nano-minerals and Pollution Control of Anhui Higher Education Institutes, Hefei University of Technology, Hefei 230009, China; Institute of Environmental Minerals and Materials, School of Resources and Environmental Engineering, Hefei University of Technology, Hefei 230009, China
| | - Fuwei Sun
- Key Laboratory of Nano-minerals and Pollution Control of Anhui Higher Education Institutes, Hefei University of Technology, Hefei 230009, China; Institute of Environmental Minerals and Materials, School of Resources and Environmental Engineering, Hefei University of Technology, Hefei 230009, China; School of Environmental and Energy Engineering, Anhui Jianzhu University, Hefei 230031, China
| | - Hao Wang
- Key Laboratory of Nano-minerals and Pollution Control of Anhui Higher Education Institutes, Hefei University of Technology, Hefei 230009, China; Institute of Environmental Minerals and Materials, School of Resources and Environmental Engineering, Hefei University of Technology, Hefei 230009, China
| | - Dong Chen
- Key Laboratory of Nano-minerals and Pollution Control of Anhui Higher Education Institutes, Hefei University of Technology, Hefei 230009, China; Institute of Environmental Minerals and Materials, School of Resources and Environmental Engineering, Hefei University of Technology, Hefei 230009, China
| |
Collapse
|
3
|
Chen L, Xie N, Yuan S, Shao H. Adsorption mechanism of hexavalent chromium on electron beam-irradiated aged microplastics: Novel aging processes and environmental factors. CHEMOSPHERE 2024; 363:142741. [PMID: 38977247 DOI: 10.1016/j.chemosphere.2024.142741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 05/28/2024] [Accepted: 06/28/2024] [Indexed: 07/10/2024]
Abstract
Microplastics are widely present in the natural environment and exhibit a strong affinity for heavy metals in water, resulting in the formation of microplastics composite heavy metal pollutants. This study investigated the adsorption of heavy metals by electron beam-aged microplastics. For the first time, electron beam irradiation was employed to degrade polypropylene, demonstrating its ability to rapidly age microplastics and generate a substantial number of oxygen-containing functional groups on aged microplastics surface. Adsorption experiments revealed that the maximum adsorption equilibrium capacity of hexavalent chromium by aged microplastics reached 9.3 mg g-1. The adsorption process followed second-order kinetic model and Freundlich model, indicating that the main processes of heavy metal adsorption by aged microplastics are chemical adsorption and multilayer adsorption. The adsorption of heavy metals on aged microplastics primarily relies on the electrostatic and chelation effects of oxygen-containing functional groups. The study results demonstrate that environmental factors, such as pH, salinity, coexisting metal ions, humic acid, and water matrix, exert inhibitory effects on the adsorption of heavy metals by microplastics. Theoretical calculations confirm that the aging process of microplastics primarily relies on hydroxyl radicals breaking carbon chains and forming oxygen-containing functional groups on the surface. The results indicate that electron beam irradiation can simultaneously oxidize and degrade microplastics while reducing hexavalent chromium levels by approximately 90%, proposing a novel method for treating microplastics composite pollutants. Gas chromatography-mass spectrometry analysis reveals that electron beam irradiation can oxidatively degrade microplastics into esters, alcohols, and other small molecules. This study proposes an innovative and efficient approach to treat both microplastics composite heavy metal pollutants while elucidating the impact of environmental factors on the adsorption of heavy metals by electron beam-aged microplastics. The aim is to provide a theoretical basis and guidance for controlling microplastics composite pollution.
Collapse
Affiliation(s)
- Lei Chen
- School of Future Membrane Technology, Fuzhou University, Fuzhou, 350108, China
| | - Nan Xie
- School of Environmental Science and Engineering, University of Lisbon, Lisbon 1649-004, Portugal
| | - Shanning Yuan
- School of Environmental Science and Engineering, University of Lisbon, Lisbon 1649-004, Portugal
| | - Haiyang Shao
- School of Future Membrane Technology, Fuzhou University, Fuzhou, 350108, China.
| |
Collapse
|
4
|
Mavaddatiyan L, Zeynizadeh B. A new strategy for immobilization of copper on the Fe 3O 4@EDTA nanocomposite and its efficient catalytic applications in reduction and one-pot reductive acetylation of nitroarenes and also N-acetylation of arylamines. Heliyon 2024; 10:e35062. [PMID: 39166007 PMCID: PMC11334667 DOI: 10.1016/j.heliyon.2024.e35062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Revised: 07/21/2024] [Accepted: 07/22/2024] [Indexed: 08/22/2024] Open
Abstract
A new and efficient Cu(II)-containing mesoporous nanocatalytic system was synthesized by direct immobilization of copper metal powder on the Fe3O4@EDTA nanocomposite. The as-prepared Fe3O4@EDTA@Cu(II) nanocomposite was then characterized by FT-IR, XRD, SEM, TEM, SEM-based EDX and elemental mapping, XPS, TGA, VSM, and also BET and BJH analyses. The resulting Fe3O4@EDTA@Cu(II) mesoporous nanocomposite exhibited satisfactory catalytic activity towards the reduction and one-pot reductive acetylation of nitroarenes and also N-acetylation of arylamines in water at 60 °C. Notably, the applied Cu(II)-containing nanocatalyst was efficiently recovered from the reaction mixture using an external magnetic field and could be reused successfully for five cycles. The protocol developed in this study offers several advantages in terms of mild reaction conditions, simple workflows, using water as a green solvent, and easy recovery and catalyst reuse, making it more ecologically and economically attractive.
Collapse
Affiliation(s)
- Leila Mavaddatiyan
- Department of Organic Chemistry, Faculty of Chemistry, Urmia University, Urmia, Iran
| | - Behzad Zeynizadeh
- Department of Organic Chemistry, Faculty of Chemistry, Urmia University, Urmia, Iran
| |
Collapse
|
5
|
Sun W, Li J, Chen Z, Wang S, Lichtfouse E, Liu H. Decomposition of metal-organic complexes and metal recovery in wastewater: A systematic review and meta-synthesis. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 914:169582. [PMID: 38154646 DOI: 10.1016/j.scitotenv.2023.169582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 12/09/2023] [Accepted: 12/20/2023] [Indexed: 12/30/2023]
Abstract
Metals are rarely found as free ions in natural and anthropogenic environments, but they are often associated with organic matter and minerals. Under the context of circular economy, metals should be recycled, yet they are difficult to extract for their complex forms in real situations. Based on the protocols of review methodology and the analysis of VOS viewer, there are few reviews on the properties of metal-organic complexes, decomplexation methods, the effect of coexisting ions, the pH influence, and metal recovery methods for the increasingly complicated metal-organic complexes wastewater. Conventional treatment methods such as flocculation, adsorption, biological degradation, and ion exchange fail to decompose metal-organic complexes completely without causing secondary pollution in wastewater. To enhance comprehension of the behavior and morphology exhibited by metal-organic complexes within aqueous solutions, we presented the molecular structure and properties of metal-organic complexes, the decomplexation mechanisms that encompassed both radical and non-radical oxidizing species, including hydroxyl radical (OH), sulfate radical (SO˙4-), superoxide radical (O˙2-), hydrogen peroxide (H2O2), ozone (O3), and singlet oxygen (1O2). More importantly, we reviewed novel aspects that have not been covered by previous reviews considering the impact of operational parameters and coexisting ions. Finally, the potential avenues and challenges were proposed for future research.
Collapse
Affiliation(s)
- Wenhui Sun
- School of Environment and Architecture, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Jiao Li
- School of Environment and Architecture, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Ziang Chen
- School of Environment and Architecture, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Shuwen Wang
- School of Environment and Architecture, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Eric Lichtfouse
- State Key Laboratory of Multiphase Flow in Power Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
| | - Hongbo Liu
- School of Environment and Architecture, University of Shanghai for Science and Technology, Shanghai 200093, China.
| |
Collapse
|