1
|
Kadirgama G, Ramasamy D, Kadirgama K, Samylingam L, Aslfattahi N, Chalak Qazani MR, Kok CK, Yusaf T, Schmirler M. Characterization and machine learning analysis of hybrid alumina-copper oxide nanoparticles in therminol 55 for medium temperature heat transfer fluid. Sci Rep 2025; 15:8383. [PMID: 40069266 PMCID: PMC11897237 DOI: 10.1038/s41598-025-92461-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Accepted: 02/27/2025] [Indexed: 03/15/2025] Open
Abstract
Efficient heat dissipation is crucial for various industrial and technological applications, ensuring system reliability and performance. Advanced thermal management systems rely on materials with superior thermal conductivity and stability for effective heat transfer. This study investigates the thermal conductivity, viscosity, and stability of hybrid Al2O3-CuO nanoparticles dispersed in Therminol 55, a medium-temperature heat transfer fluid. The nanofluid formulations were prepared with CuO-Al2O3 mass ratios of 10:90, 20:80, and 30:70 and tested at nanoparticle concentrations ranging from 0.1 wt% to 1.0 wt%. Experimental results indicate that the hybrid nanofluids exhibit enhanced thermal conductivity, with a maximum improvement of 32.82% at 1.0 wt% concentration, compared to the base fluid. However, viscosity increases with nanoparticle loading, requiring careful optimization for practical applications. To further analyze and predict thermal conductivity, a Type-2 Fuzzy Neural Network (T2FNN) was employed, demonstrating a correlation coefficient of 96.892%, ensuring high predictive accuracy. The integration of machine learning enables efficient modeling of complex thermal behavior, reducing experimental costs and facilitating optimization. These findings provide insights into the potential application of hybrid nanofluids in solar thermal systems, heat exchangers, and industrial cooling applications.
Collapse
Affiliation(s)
- G Kadirgama
- Faculty of Mechanical and Automotive Engineering Technology, Universiti Malaysia Pahang, Pekan, 26600, Pahang, Malaysia
| | - D Ramasamy
- Faculty of Mechanical and Automotive Engineering Technology, Universiti Malaysia Pahang, Pekan, 26600, Pahang, Malaysia
| | - K Kadirgama
- Faculty of Mechanical and Automotive Engineering Technology, Universiti Malaysia Pahang, Pekan, 26600, Pahang, Malaysia.
- Center of Excellence for Advanced Research in Fluid Flow, Universiti Malaysia Pahang, Pekan, 26600, Pahang, Malaysia.
- Centre for Sustainable Materials & Surface Metamorphosis (CSMSM), Chennai Institute of Technology, Chennai, India.
| | - L Samylingam
- Centre for Advanced Mechanical and Green Technology, Faculty of Engineering and Technology, Multimedia University, Jalan Ayer Keroh Lama, Bukit Beruang, Melaka, 75450, Malaysia
| | - Navid Aslfattahi
- Institute of Fluid Dynamics and Thermodynamics, Faculty of Mechanical Engineering, Czech Technical University in Prague, Technická 4, Prague, 166 07, Czech Republic
| | | | - Chee Kuang Kok
- Centre for Advanced Mechanical and Green Technology, Faculty of Engineering and Technology, Multimedia University, Jalan Ayer Keroh Lama, Bukit Beruang, Melaka, 75450, Malaysia.
| | - Talal Yusaf
- School of Engineering and Technology, Central Queensland University, Brisbane, QLD, 4008, Australia
| | - Michal Schmirler
- Institute of Fluid Dynamics and Thermodynamics, Faculty of Mechanical Engineering, Czech Technical University in Prague, Technická 4, Prague, 166 07, Czech Republic
| |
Collapse
|
2
|
Nisha, Kohli S, Singh S, Sharma N, Chandra R. Fe 3O 4/PANI/CuI as a sustainable heterogeneous nanocatalyst for A 3 coupling. NANOSCALE ADVANCES 2024; 6:4842-4851. [PMID: 39323424 PMCID: PMC11421548 DOI: 10.1039/d4na00448e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Accepted: 07/19/2024] [Indexed: 09/27/2024]
Abstract
The prepared copper iodide nanoparticles were impregnated on the support of ferrite nanoparticles functionalized with polyaniline, resulting in a magnetically recoverable heterogeneous nanocomposite. The activity of the prepared nanocomposite was investigated in the synthesis of propargylamine derivatives via A3 coupling under mild conditions. Techniques such as FESEM, EDAX, XRD, XPS, TEM, BET and FTIR were used to characterize the effective and unique heterogeneous Fe3O4/PANI/CuI nanocomposite developed in this work. This method used in the current study has several advantages, including a short reaction time, neat conditions, good product yield, ideal green matrices values, reusability for up to seven cycles, and magnetic retrievability.
Collapse
Affiliation(s)
- Nisha
- Drug Discovery & Development Laboratory, Department of Chemistry, University of Delhi Delhi-110007 India
| | - Sahil Kohli
- Department of Chemistry, School of Basic Sciences, Galgotias University Greater Noida-203201 Uttar Pradesh India
- Manav Rachna International Institute of Research & Studies Faridabad Haryana-121004 India
| | - Snigdha Singh
- Drug Discovery & Development Laboratory, Department of Chemistry, University of Delhi Delhi-110007 India
| | - Neera Sharma
- Department of Chemistry, Hindu College, University of Delhi Delhi-110019 India
| | - Ramesh Chandra
- Drug Discovery & Development Laboratory, Department of Chemistry, University of Delhi Delhi-110007 India
- Dr. B. R. Ambedkar Centre for Biomedical Research (ACBR), University of Delhi Delhi-110007 India
- Institute of Nanomedical Science (INMS), University of Delhi Delhi-110007 India
- Maharaja Surajmal Brij University Bharatpur-321201 Rajasthan India
| |
Collapse
|
3
|
Ahmad A, Khan M, Osman SM, Haassan AM, Javed MH, Ahmad A, Rauf A, Luque R. Benign-by-design plant extract-mediated preparation of copper oxide nanoparticles for environmentally related applications. ENVIRONMENTAL RESEARCH 2024; 247:118048. [PMID: 38160981 DOI: 10.1016/j.envres.2023.118048] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 12/21/2023] [Accepted: 12/24/2023] [Indexed: 01/03/2024]
Abstract
A facile, cost-competitive, scalable and novel synthetic approach is used to prepare copper oxide (CuO) nanoparticles (NPs) using Betel leaf (Piper betle) extracts as reducing, capping, and stabilizing agents. CuO-NPs were characterized using various analytical techniques, including Fourier-transform infrared (FTIR) spectroscopy, ultraviolet-visible (UV-Vis) spectroscopy, scanning electron microscopy (SEM), X-ray diffraction (XRD), high-resolution transmission electron microscopy (HRTEM), as well as photoluminescence (PL) measurements. The activity of CuO-NPs was investigated towards Congo red dye degradation, supercapacitor energy storage and antibacterial activity. A maximum of 89% photodegradation of Congo red dye (CR) was obtained. The nanoparticle modified electrode also exhibited a specific capacitance (Csp) of 179 Fg-1. Furthermore, the antibacterial potential of CuO NPs was evaluated against Bacillus subtilis and Pseudomonas aeruginosa, both strains displaying high antibacterial performance.
Collapse
Affiliation(s)
- Awais Ahmad
- Departamento de Quimica Organica, Universidad de Cordoba, Edificio Marie Curie (C-3), Ctra Nnal IV-A, Km 396, E14104, Cordoba, Spain.
| | - Mariam Khan
- School of Applied Sciences and Humanity (NUSASH), National University of Technology, Islamabad, 44000, Pakistan
| | - Sameh M Osman
- Department of Chemistry, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Ahmad M Haassan
- Faculty of Engineering and Technology, Future University in Egypt, New Cairo, 11835, Egypt
| | - Muhammad Hassan Javed
- Sustainable Development Study Centre, Government College University, Lahore, 54000, Pakistan
| | - Anees Ahmad
- Sustainable Development Study Centre, Government College University, Lahore, 54000, Pakistan
| | - Abdul Rauf
- Sustainable Development Study Centre, Government College University, Lahore, 54000, Pakistan
| | - Rafael Luque
- Peoples Friendship University of Russia (RUDN University), 6 Miklukho-Maklaya Str., 117198, Moscow, Russian Federation; Universidad ECOTEC, Km 13.5 Samborondón, Samborondón EC092302, Ecuador
| |
Collapse
|
4
|
Ahmad A, Khan S, Javed MS, Osman S, Li H, Majeed S, Luque R. Improved Electrochemical Performance of Aqueous Hybrid Supercapacitors Using CrCo 2O 4 Mesoporous Nanowires: An Innovative Strategy toward Sustainable Energy Devices. ACS APPLIED MATERIALS & INTERFACES 2024; 16:6920-6930. [PMID: 38305213 DOI: 10.1021/acsami.3c10311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2024]
Abstract
High-rate aqueous hybrid supercapacitors (AHSCs) have attracted relevant scientific significance owing to their expected energy density, supercapacitor-level power density, and battery-level energy density. In this work, a bimetallic nanostructured material with chromium-incorporated cobalt oxide (CCO, i.e., CoCr2O4) was prepared via a hydrothermal method to form a stable cubic obelisk structure. Compared with CCO materials prepared using traditional methods, CCO displayed a nanowire structure (50 nm diameter), suggesting an enhanced specific surface area and a large number of active sites for chemical reactions. The electrode possessed a high specific capacitance (2951 F g-1) at a current density of 1 A g-1, minimum Rct (0.135 Ω), and the highest capacitance retention (98.7%), making it an ideal electrode material for AHSCs. Ex situ analysis based on X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS) showed a favorable stability of CCO after 10,000 cycles without any phase changes being detected. GGA and GGA + U methods employed in density functional theory (DFT) also highlighted the enhanced metallic properties of CCO originating from the synergistic effect of semiconducting Cr2O3 and Co3O4 materials.
Collapse
Affiliation(s)
- Awais Ahmad
- Departmento de Quimica Organica, Universidad de Cordoba, Edificio Marie Curie (C-3), Ctra Nnal IV-A, Km 396, E14104 Cordoba, Spain
| | - Safia Khan
- Shandong Technology Centre of Nanodevices and Integration, School of Microelectronics, Shandong University, Jinan 250101, China
| | - Muhammad Sufyan Javed
- School of Physical Science and Technology, Lanzhou University, Lanzhou 730000, China
| | - Sameh Osman
- Chemistry Department, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Hu Li
- Shandong Technology Centre of Nanodevices and Integration, School of Microelectronics, Shandong University, Jinan 250101, China
| | - Saadat Majeed
- Institute of Chemical Sciences, Department of Chemistry, Bahauddin Zakariya University, Multan, Multan 60800, Pakistan
| | - Rafael Luque
- Universidad ECOTEC, Km. 13.5 Samborondón, Samborondón EC092302, Ecuador
- Peoples Friendship University of Russia (RUDN University), 6 Miklukho-Maklaya Str., Moscow 117198, Russian Federation
| |
Collapse
|
5
|
Abduh NAY, Al-Kahtani AA, Amer MS, Algarni TS, Al-Odayni AB. Fabricated Gamma-Alumina-Supported Zinc Ferrite Catalyst for Solvent-Free Aerobic Oxidation of Cyclic Ethers to Lactones. Molecules 2023; 28:7192. [PMID: 37894671 PMCID: PMC10609177 DOI: 10.3390/molecules28207192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Revised: 10/15/2023] [Accepted: 10/17/2023] [Indexed: 10/29/2023] Open
Abstract
The aim of this work was to fabricate a new heterogeneous catalyst as zinc ferrite (ZF) supported on gamma-alumina (γ-Al2O3) for the conversion of cyclic ethers to the corresponding, more valuable lactones, using a solvent-free method and O2 as an oxidant. Hence, the ZF@γ-Al2O3 catalyst was prepared using a deposition-coprecipitation method, then characterized using TEM, SEM, EDS, TGA, FTIR, XRD, ICP, XPS, and BET surface area, and further applied for aerobic oxidation of cyclic ethers. The structural analysis indicated spherical, uniform ZF particles of 24 nm dispersed on the alumina support. Importantly, the incorporation of ZF into the support influenced its texture, i.e., the surface area and pore size were reduced while the pore diameter was increased. The product identification indicated lactone compound as the major product for saturated cyclic ether oxidation. For THF as a model reaction, it was found that the supported catalyst was 3.2 times more potent towards the oxidation of cyclic ethers than the unsupported one. Furthermore, the low reactivity of the six-membered ethers can be tackled by optimizing the oxidant pressure and the reaction time. In the case of unsaturated ethers, deep oxidation and polymerization reactions were competitive oxidations. Furthermore, it was found that the supported catalyst maintained good stability and catalytic activity, even after four cycles.
Collapse
Affiliation(s)
- Naaser A. Y. Abduh
- Department of Chemistry, King Saud University, Riyadh 11451, Saudi Arabia; (A.A.A.-K.); (M.S.A.)
| | - Abdullah A. Al-Kahtani
- Department of Chemistry, King Saud University, Riyadh 11451, Saudi Arabia; (A.A.A.-K.); (M.S.A.)
| | - Mabrook S. Amer
- Department of Chemistry, King Saud University, Riyadh 11451, Saudi Arabia; (A.A.A.-K.); (M.S.A.)
| | - Tahani Saad Algarni
- Department of Chemistry, King Saud University, Riyadh 11451, Saudi Arabia; (A.A.A.-K.); (M.S.A.)
| | - Abdel-Basit Al-Odayni
- Restorative Dental Sciences Department, College of Dentistry, King Saud University, Riyadh 11545, Saudi Arabia
| |
Collapse
|