1
|
Meng Q, Wang Z, Sun K, Wen Z, Xue H. Screening and risk assessment of priority organic micropollutants for control in reclaimed water in China. JOURNAL OF HAZARDOUS MATERIALS 2025; 491:137883. [PMID: 40101638 DOI: 10.1016/j.jhazmat.2025.137883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Revised: 03/02/2025] [Accepted: 03/06/2025] [Indexed: 03/20/2025]
Abstract
Organic micropollutants (OMPs) in reclaimed water have been frequently detected over the past decades, posing significant risks to ecosystems and human health. Given the complexity of these pollutants and the differences in their risk and toxicity, current assessments remain incomplete. This study conducted a large-scale investigation of OMPs in reclaimed water across China and developed a comprehensive multi-criteria integrated scoring method based on OMP toxicity and exposure potential. This method aims to protect aquatic organisms and human health by screening and prioritizing OMPs in reclaimed water, classifying their priority levels, and creating a prioritized control list. The study quantified OMP exposure potential, environmental persistence, bioaccumulation, and impacts on ecology and human health. The survey detected 369 OMPs from 11 chemical classes, with 325 compounds passing pre-selection. According to the prioritization scheme, 29 OMPs were identified as high priority, 171 as medium priority, and 125 as low priority. The BPs and Other Industrial Chemicals categories had the highest average maximum concentrations, followed by HPCCs and PAEs. High-priority pollutants were dominated by PAHs and PCBs, each comprising 31.03 %. Medium- and low-priority groups were mainly composed of Pesticides. PAHs and PCBs showed higher risk quotients, indicating significant ecological risks, while PCB 126, BaP, and PFOA exhibited high toxicity and potential health risks. This study provides valuable information for controlling priority pollutants in Chinese reclaimed water and establishes a foundation for OMP risk management. Future research should intensify monitoring to ensure the safe and sustainable use of water resources.
Collapse
Affiliation(s)
- Qingling Meng
- Key Laboratory of Songliao Aquatic Environment, Ministry of Education, Jilin Jianzhu University, Changchun 130118, China.
| | - Zijian Wang
- Key Laboratory of Songliao Aquatic Environment, Ministry of Education, Jilin Jianzhu University, Changchun 130118, China
| | - Kaicheng Sun
- Key Laboratory of Songliao Aquatic Environment, Ministry of Education, Jilin Jianzhu University, Changchun 130118, China
| | - Zhao Wen
- Key Laboratory of Songliao Aquatic Environment, Ministry of Education, Jilin Jianzhu University, Changchun 130118, China
| | - Honghai Xue
- Key Laboratory of Songliao Aquatic Environment, Ministry of Education, Jilin Jianzhu University, Changchun 130118, China
| |
Collapse
|
2
|
Buckenmaier S, Riemenschneider C, Schächtele A, Sölter S. Chromatographic Techniques for Improving the LC/MS Quantification of PFAS. J Sep Sci 2025; 48:e70155. [PMID: 40361260 DOI: 10.1002/jssc.70155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/15/2025]
Abstract
The liquid chromatography / mass spectrometry (LC/MS) quantification of per- and polyfluoroalkyl substances (PFAS) in complex matrices presents challenges. Despite advanced sample preparation techniques to isolate analytes, residual matrix components can still interfere with MS detection. Additionally, extracts often contain high levels of organic solvents limiting the volume that can be injected when using reversed-phase HPLC. Yet, increasing the injection volume could be a simple path to lower detection limits. Feeding PFAS samples, dissolved in pure acetonitrile, at controlled speed into the stream of mobile phase resulted in an analyte focusing effect on the column. By using this approach, the injection volume could be increased 10 times compared to the conventional injection mode, as did the detection sensitivity. Feed injection was coupled to two-dimensional liquid chromatography (2D-LC) in a configuration in which the same triple quadrupole MS could be used for detection in both separation dimensions. The improved separation markedly reduced ion suppression effects and allowed to distinguish the critical PFAS compound perfluorobutanoic acid (PFBA) from isomeric matrix components within tomato extracts interfering with its quantification when only LC/MS was used. This 2D-LC/MS approach therefore fulfilled recommendations that PFBA should be analyzed using a secondary LC approach, without adding a marked amount of time to the analysis.
Collapse
Affiliation(s)
| | | | - Alexander Schächtele
- State Institute for Chemical and Veterinary Analysis Freiburg, Freiburg, Germany
| | - Susanne Sölter
- Agilent Technologies Deutschland GmbH, Waldbronn, Germany
| |
Collapse
|
3
|
Pan Z, Li S, Zhao Q, Li J, Dong Y, Borthwick AGL, Sun W, Xu N. Anthropogenic PFAS or Natural Products? Natural Products Cause Overestimation of C2-C5 Perfluoroalkyl Carboxylic Acid Levels. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2025. [PMID: 40307975 DOI: 10.1021/acs.est.4c12934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2025]
Abstract
The increasing environmental concentrations of C2-C5 perfluoroalkyl carboxylic acids (PFCAs) have raised concerns about their global threat. However, analytical interference has been reported to cause overestimation of PFCA concentrations. Recently, we discovered that a human metabolite, γ-carboxyethyl hydroxychroman, caused overestimation of the perfluoropentanoic acid (PFPeA) concentration by 454 times due to its similar retention time and ion pair mass with those of PFPeA in low-resolution mass spectrometry. Using this interference mechanism, we developed a semitargeted screening method to identify all possible interferents of C2-C5 PFCAs in surface water, groundwater, wastewater, soil, fish, and human serum samples. Nine interferents were discovered, resulting in a 2.18-454 times overestimate of the concentration. Through the screening of 289 serum samples, most interferents were recognized as carboxylic acid natural products, possibly originating from human metabolism. Adjustment of the mobile phase to acidic or use of a pentafluorophenyl column can eliminate interferences. Retrospective screening against both 41 studies from 16 countries with significant concentrations of C2-C5 PFCAs and a public data repository revealed the global prevalence of analytical interferents. Our findings highlighted the necessity to re-evaluate the concentrations of C2-C5 PFCAs and subsequently their migration, transformation, and bioconcentration properties to accurately understand their environmental significance.
Collapse
Affiliation(s)
- Zhile Pan
- Eco-environment and Resource Efficiency Research Laboratory, School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen 518055, P. R. China
- Key Laboratory of Water and Sediment Sciences, Ministry of Education, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, P. R. China
- State Environmental Protection Key Laboratory of All Material Fluxes in River Ecosystems, Beijing 100871, P. R. China
| | - Shaoyang Li
- Eco-environment and Resource Efficiency Research Laboratory, School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen 518055, P. R. China
- Key Laboratory of Water and Sediment Sciences, Ministry of Education, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, P. R. China
- State Environmental Protection Key Laboratory of All Material Fluxes in River Ecosystems, Beijing 100871, P. R. China
| | - Qiyu Zhao
- Eco-environment and Resource Efficiency Research Laboratory, School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen 518055, P. R. China
| | - Junjie Li
- Eco-environment and Resource Efficiency Research Laboratory, School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen 518055, P. R. China
| | - Yanran Dong
- Eco-environment and Resource Efficiency Research Laboratory, School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen 518055, P. R. China
| | - Alistair G L Borthwick
- School of Engineering, Computing and Mathematics, University of Plymouth, Drake Circus, Plymouth PL4 8AA, U.K
| | - Weiling Sun
- Key Laboratory of Water and Sediment Sciences, Ministry of Education, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, P. R. China
- State Environmental Protection Key Laboratory of All Material Fluxes in River Ecosystems, Beijing 100871, P. R. China
| | - Nan Xu
- Eco-environment and Resource Efficiency Research Laboratory, School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen 518055, P. R. China
| |
Collapse
|
4
|
Jones SE, Gutkowski N, Demick S, Curello M, Pavia A, Robuck AR, Li ML. Assessing Bivalves as Biomonitors of Per- and Polyfluoroalkyl Substances in Coastal Environments. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2025; 59:5202-5213. [PMID: 40036337 DOI: 10.1021/acs.est.4c11215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/06/2025]
Abstract
Per- and polyfluoroalkyl substances (PFAS) are widely used chemicals that enter coastal ecosystems through various pathways. Despite the ecological and economic significance of coastal environments, monitoring efforts to identify PFAS in these regions are limited. Bivalves have been used as biomonitors for many pollutants, but their effectiveness in reflecting environmental PFAS contamination and the mechanisms of PFAS bioaccumulation is poorly understood. This study examined the impact of biological, chemical, and ecological variables on PFAS bioaccumulation in two bivalve species (i.e., Eastern oyster and Atlantic ribbed mussel) and developed a statistical model to predict the PFAS content in wild bivalves. Overall, the summed PFAS concentration in the bivalves closely mirrors that in water. We observed higher bioaccumulation factors for some perfluoroalkyl sulfonamides and branched PFAS isomers than for terminal PFAS of equivalent chain length. The isomer distribution and precursor-to-terminal compound ratios provide compelling evidence that the biotransformation of PFAS precursors likely drives these elevated factors. Additionally, the bioaccumulation factors of PFAS decrease with increasing organism size and age, suggesting that smaller and younger bivalves have greater bioaccumulation potential and are more susceptible to PFAS contamination. These findings provide critical information that guides the use of bivalves as biomonitors to evaluate PFAS contamination in aquatic environments.
Collapse
Affiliation(s)
- Shannon E Jones
- School of Marine Science and Policy, College of Earth, Ocean, and Environment, University of Delaware, Newark, Delaware 19716, United States
| | - Nicole Gutkowski
- School of Marine Science and Policy, College of Earth, Ocean, and Environment, University of Delaware, Newark, Delaware 19716, United States
| | - Shayna Demick
- School of Marine Science and Policy, College of Earth, Ocean, and Environment, University of Delaware, Newark, Delaware 19716, United States
| | - Max Curello
- School of Marine Science and Policy, College of Earth, Ocean, and Environment, University of Delaware, Newark, Delaware 19716, United States
| | - Ashley Pavia
- School of Marine Science and Policy, College of Earth, Ocean, and Environment, University of Delaware, Newark, Delaware 19716, United States
| | - Anna R Robuck
- Center for Environmental Measurement and Modeling, US Environmental Protection Agency, Office of Research and Development, Narragansett, Rhode Island 02882-1153, United States
| | - Mi-Ling Li
- School of Marine Science and Policy, College of Earth, Ocean, and Environment, University of Delaware, Newark, Delaware 19716, United States
| |
Collapse
|
5
|
Yu J, Fu Y, Zhu J, Chen X, Zhong Y, Pan Y, Ma Y. Marine Transport Barrier for Traditional and Emerging Per- and Polyfluoroalkyl Substances in the Southeast Indian Ocean and Antarctic Marginal Seas. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2025; 59:5283-5292. [PMID: 40056110 DOI: 10.1021/acs.est.4c13574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/19/2025]
Abstract
Traditional per- and polyfluoroalkyl substances (PFASs) have been observed in the remote Southern Ocean. In contrast, current knowledge about emerging PFASs, such as perfluoroether carboxylic acids (PFECAs), and their transport mechanisms remains ambiguous. In this study, the occurrence and transport of both traditional and emerging PFASs in the surface seawater of the Southeast Indian Ocean and Antarctic marginal seas are comprehensively discussed by integrating hydrological data. Long-chain PFASs were restricted to the north of the thermohaline front in the Southeast Indian Ocean, suggesting a transport barrier effect and the input of terrestrial contamination from low-latitude regions. Conversely, unexpectedly high levels of short-chain perfluorobutanoic acid (PFBA) were limited to the south of the Antarctic Circumpolar Current, preventing further northward transport. PFBA showed significant positive correlations with two emerging PFECAs, perfluoro-2-methoxyacetic acid (PFMOAA) and fluoro(heptafluoropropoxy)acetic acid (3:2 H-PFECA), which were also widely detected in Antarctic marginal seas for the first time. This suggests their similar sources and environmental behavior, as they were probably formerly accumulated in Antarctic snow through atmospheric deposition and released into seawater during the summertime melting process.
Collapse
Affiliation(s)
- Jing Yu
- Key Laboratory of Polar Ecosystem and Climate Change, Ministry of Education, Shanghai Key Laboratory of Polar Life and Environment Sciences, School of Oceanography, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Yao Fu
- State Environmental Protection Key Laboratory of Environmental Health Impact Assessment of Emerging Contaminants, School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Jincai Zhu
- Key Laboratory of Polar Ecosystem and Climate Change, Ministry of Education, Shanghai Key Laboratory of Polar Life and Environment Sciences, School of Oceanography, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Xin Chen
- Key Laboratory of Polar Ecosystem and Climate Change, Ministry of Education, Shanghai Key Laboratory of Polar Life and Environment Sciences, School of Oceanography, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Yisen Zhong
- Key Laboratory of Polar Ecosystem and Climate Change, Ministry of Education, Shanghai Key Laboratory of Polar Life and Environment Sciences, School of Oceanography, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Yitao Pan
- State Environmental Protection Key Laboratory of Environmental Health Impact Assessment of Emerging Contaminants, School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yuxin Ma
- Key Laboratory of Polar Ecosystem and Climate Change, Ministry of Education, Shanghai Key Laboratory of Polar Life and Environment Sciences, School of Oceanography, Shanghai Jiao Tong University, Shanghai 200030, China
- Key Laboratory of Polar Science, Ministry of Natural Resources, Polar Research Institute of China, Shanghai 200136, China
| |
Collapse
|
6
|
Jeon H, Shin MY, Kim WY, Choi S, Lee A, Lim JE, Park J, Moon HB, Choi K, Kim S, Kho Y. Family-based exposure assessment of legacy and alternative poly- and perfluoroalkyl substances (PFASs) by multiple pathways. THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 969:178735. [PMID: 40020573 DOI: 10.1016/j.scitotenv.2025.178735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 12/06/2024] [Accepted: 02/03/2025] [Indexed: 03/03/2025]
Abstract
PFASs are persistent, amphiphilic chemicals that bioaccumulate and cause adverse health effects. Restrictions on major PFASs have increased exposure to precursors and alternatives, requiring examination of contamination from major sources and internal levels. We collected house dust (n = 45), dietary (n = 124), and serum (n = 123) from 48 families and analyzed 30 PFASs. Three PFCAs (PFOA, PFDA, and PFUnDA) and one precursor (6:2diPAP) showed detection rates >90 % in house dust. Among these compounds, 6:2diPAP showed the highest level, with median of 4.71 ng/g dry weight. In dietary, PFPeA (1.43 ng/g) and 6:2FTS (0.61 ng/g) had the highest medians and were detected in all samples. In serum, the highest median was PFOA (4.50 ng/mL), followed by linear (L)-PFOS (3.90 ng/mL), L-PFHxS (1.79 ng/mL), and PFNA (1.15 ng/mL) across all family groups. The study identified diet as a significant exposure pathway, underscoring the importance of dietary habits in PFASs intake. The estimated daily intake from PFOA for all family members exceeded the USEPA's threshold. Compared to the EFSA's threshold for a mixture of four PFASs, exceedances ranged from 18 % to 38 %. This study highlights the need for continuous monitoring and regulation of PFASs and their alternatives to mitigate health risks.
Collapse
Affiliation(s)
- Hyeri Jeon
- Department of Health, Environment & Safety, Eulji University, Seongnam-si, Gyeonggi-do, Republic of Korea
| | - Mi-Yeon Shin
- Office of Dental Education, School of Dentistry, Seoul National University, Seoul, Republic of Korea; Department of Environmental Health Sciences, Graduate School of Public Health, Seoul National University, Seoul, Republic of Korea
| | - Won-Young Kim
- Department of Health, Environment & Safety, Eulji University, Seongnam-si, Gyeonggi-do, Republic of Korea
| | - Sohyeon Choi
- Department of Environmental Health Sciences, Soonchunhyang University, Asan, Republic of Korea
| | - Aram Lee
- Department of Environmental Health Sciences, Soonchunhyang University, Asan, Republic of Korea
| | - Jae-Eun Lim
- Department of Marine Science and Convergence Engineering, College of Science and Convergence Technology, Hanyang University, Ansan, Republic of Korea
| | - Jeongim Park
- Department of Environmental Health Sciences, Soonchunhyang University, Asan, Republic of Korea
| | - Hyo-Bang Moon
- Department of Marine Science and Convergence Engineering, College of Science and Convergence Technology, Hanyang University, Ansan, Republic of Korea
| | - Kyungho Choi
- Department of Environmental Health Sciences, Graduate School of Public Health, Seoul National University, Seoul, Republic of Korea; Institute of Health and Environment, Seoul National University, Seoul, Republic of Korea
| | - Sungkyoon Kim
- Department of Environmental Health Sciences, Graduate School of Public Health, Seoul National University, Seoul, Republic of Korea; Institute of Health and Environment, Seoul National University, Seoul, Republic of Korea
| | - Younglim Kho
- Department of Health, Environment & Safety, Eulji University, Seongnam-si, Gyeonggi-do, Republic of Korea.
| |
Collapse
|
7
|
Belay MH, Robotti E, Ghignone A, Fabbris A, Brandi J, Cecconi D, Masini MA, Dondero F, Marengo E. Sensitive and accurate determination of 32 PFAS in human serum using online SPE-UHPLC-HRMS. JOURNAL OF HAZARDOUS MATERIALS 2025; 485:136780. [PMID: 39667152 DOI: 10.1016/j.jhazmat.2024.136780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2024] [Revised: 12/02/2024] [Accepted: 12/03/2024] [Indexed: 12/14/2024]
Abstract
Per- and polyfluoroalkyl substances' (PFAS) extreme persistence has been linked to many adverse effects on human health including increased risk of certain cancers. This study presents the development and validation of a new, highly sensitive method for the quantification of 32 PFAS in human serum using online solid-phase extraction (SPE) coupled with ultra-high performance liquid chromatography-high resolution mass spectrometry (UHPLC-HRMS). Legacy and emerging PFAS were targeted. Main steps of sample pretreatment include protein precipitation (PP), pellet rinsing, centrifugation, preconcentration through solvent evaporation, and online SPE using a weak anion-exchange polymeric sorbent. The PP and pellet-rinsing procedures were optimized through a comprehensive exploration of solvent combinations. Following this, a pretreatment that offers the best compromise for the targeted PFAS was identified using principal component analysis. The method demonstrated excellent linearity (R² = 0.977-0.997) with limits of quantification ranging from 8.9 to 27 ng/L, 5 to 15 times lower than previous methods. Precision (intraday 2.6-14.0 % and interday 1.3-11.0 % relative standard deviation) and accuracy (recoveries 72.7-106 %) were robust. The method was validated in accordance with ISO/IEC 17025 and successfully applied to five human serum samples, confirming its suitability for high-throughput profiling of PFAS in biomonitoring studies. This method is the first to use online SPE for the simultaneous determination of a broad range of PFAS, including ether congeners such as perfluoro(2-ethoxyethane) sulfonic acid and Nafion byproduct 2. Furthermore, control charts were employed to assess instrument performance during routine analysis and implement necessary actions.
Collapse
Affiliation(s)
- Masho Hilawie Belay
- Department of Sciences and Technological Innovation, University of Piemonte Orientale, Viale Teresa Michel 11, 15121 Alessandria, Italy; Department of Chemistry, Mekelle University, P. O. Box 231, Mekelle, Ethiopia
| | - Elisa Robotti
- Department of Sciences and Technological Innovation, University of Piemonte Orientale, Viale Teresa Michel 11, 15121 Alessandria, Italy.
| | - Arianna Ghignone
- Department of Sciences and Technological Innovation, University of Piemonte Orientale, Viale Teresa Michel 11, 15121 Alessandria, Italy
| | - Alessia Fabbris
- Department of Sciences and Technological Innovation, University of Piemonte Orientale, Viale Teresa Michel 11, 15121 Alessandria, Italy
| | - Jessica Brandi
- Department of Biotechnology, University of Verona, Strada le Grazie 15, 37134 Verona, Italy
| | - Daniela Cecconi
- Department of Biotechnology, University of Verona, Strada le Grazie 15, 37134 Verona, Italy
| | - Maria Angela Masini
- Department of Sciences and Technological Innovation, University of Piemonte Orientale, Viale Teresa Michel 11, 15121 Alessandria, Italy
| | - Francesco Dondero
- Department of Sciences and Technological Innovation, University of Piemonte Orientale, Viale Teresa Michel 11, 15121 Alessandria, Italy
| | - Emilio Marengo
- Department of Sciences and Technological Innovation, University of Piemonte Orientale, Viale Teresa Michel 11, 15121 Alessandria, Italy
| |
Collapse
|
8
|
Balgooyen S, Scott M, Blackwell BR, Pulster EL, Mahon MB, Lepak RF, Backe WJ. A High Efficiency Method for the Extraction and Quantitative Analysis of 45 PFAS in Whole Fish. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2025; 59:3759-3770. [PMID: 39954005 DOI: 10.1021/acs.est.4c10001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/17/2025]
Abstract
This study describes and validates a new method for extracting perfluoroalkyl and polyfluoroalkyl substances (PFAS) from whole-body fish tissue, demonstrates that freeze-dry preservation of tissue conserves bioaccumulative PFAS, and details a method demonstration on Lake Michigan fish. While fish filets are more commonly analyzed for their significance to human health, whole fish are useful to determine ecological impacts, but published methods such as EPA 1633 do not produce reliable results for this more challenging matrix. Here we show that lipid removal technology produces clean extracts without the need for solid-phase extraction or evaporative concentration, which often lead to loss of some PFAS. This method achieves an accuracy of 96 ± 9% for the detection of 45 PFAS while also offering benefits of a simple procedure, reduced processing time, and decreased waste generation compared to multistep cleanup and concentration methods. A test of freeze-drying demonstrated that compounds detected in Great Lakes fish were retained, but volatile compounds including sulfonamide precursors and ethanols were lost. To demonstrate field performance, the entire method was applied to whole-fish composites from Lake Michigan. Results from these samples reveal that the PFAS concentration was driven by collection location, while the distribution of PFAS was dictated by fish species.
Collapse
Affiliation(s)
- Sarah Balgooyen
- SpecPro Professional Services, Great Lakes Toxicology and Ecology Division, 6201 Congdon Blvd, Duluth, Minnesota 55804, United States
| | - Madelynn Scott
- Oak Ridge Associated Universities, Great Lakes Toxicology and Ecology Division, 6201 Congdon Blvd, Duluth, Minnesota 55804, United States
| | - Brett R Blackwell
- United States Environmental Protection Agency Great Lakes Toxicology and Ecology Division, 6201 Congdon Blvd, Duluth, Minnesota 55804, United States
| | - Erin L Pulster
- U.S. Geological Survey Columbia Environmental Research Center, 4200 East New Haven Road, Columbia, Missouri 65201, United States
| | - Michael B Mahon
- United States Environmental Protection Agency Great Lakes Toxicology and Ecology Division, 6201 Congdon Blvd, Duluth, Minnesota 55804, United States
| | - Ryan F Lepak
- United States Environmental Protection Agency Great Lakes Toxicology and Ecology Division, 6201 Congdon Blvd, Duluth, Minnesota 55804, United States
| | - Will J Backe
- United States Environmental Protection Agency Great Lakes Toxicology and Ecology Division, 6201 Congdon Blvd, Duluth, Minnesota 55804, United States
| |
Collapse
|
9
|
Oza S, Bell KY, Xu Z, Wang Y, Wells MJM, Norton JW, Winchell LJ, Huang Q, Li H. Surveillance of PFAS in sludge and biosolids at 12 water resource recovery facilities. JOURNAL OF ENVIRONMENTAL QUALITY 2025; 54:6-19. [PMID: 39004957 PMCID: PMC11718139 DOI: 10.1002/jeq2.20595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 05/18/2024] [Indexed: 07/16/2024]
Abstract
Per- and polyfluoroalkyl substances (PFAS) are refractory anthropogenic chemicals and current treatment processes at municipal water resource recovery facilities (WRRFs) cannot efficiently degrade them, hence, these chemicals cycle through the environment. Certain PFAS can be concentrated in biosolids from WRRFs and are commonly land applied for beneficial reuse. Given recent advances in measurement of PFAS, documentation of the range of concentrations in pre-stabilized sludge and stabilized biosolids is critical to evaluating treatment best practices and assessing potential human health and ecological risks. In this study, pre-stabilized sludge and post-stabilized biosolids samples were collected from 12 major WRRFs across the United States. PFAS were analyzed using Environmental Protection Agency (EPA) Method SW846-3500C/537.1, and Draft EPA Method 1633, by one commercial laboratory and two university research laboratories, respectively. Results comparison among laboratories demonstrated statistical differences in PFAS concentrations among split samples. For example, 5:3 FTCA (fluorotelomer carboxylic acid) concentrations in post-stabilized sludge at Lab 1 were measured at 21 ng/g (dry), while they were detected at 151 ng/g (dry) in Lab 3. Further, higher PFAS concentrations were observed in post-stabilized biosolids compared to pre-stabilized sludges, regardless of the laboratory or analysis method, even when solids destruction through solids stabilization was considered. Further research is required to refine methods for analyses of PFAS in sludge and biosolids samples from WRRFs prior to being used for development of regulatory actions as well as understanding how various treatment protocols could impact concentrations of PFAS in land-applied biosolids.
Collapse
Affiliation(s)
| | | | - Zhiliang Xu
- Department of Plant, Soil and Microbial SciencesMichigan State UniversityEast LansingMichiganUSA
| | - Yifei Wang
- Department of Crop and Soil ScienceUniversity of GeorgiaGriffinGeorgiaUSA
| | | | | | | | - Qingguo Huang
- Department of Crop and Soil ScienceUniversity of GeorgiaGriffinGeorgiaUSA
| | - Hui Li
- Department of Plant, Soil and Microbial SciencesMichigan State UniversityEast LansingMichiganUSA
| |
Collapse
|
10
|
Baqar M, Chen H, Yao Y, Sun H. Latest trends in the environmental analysis of PFAS including nontarget analysis and EOF-, AOF-, and TOP-based methodologies. Anal Bioanal Chem 2025; 417:555-571. [PMID: 39570388 DOI: 10.1007/s00216-024-05643-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Revised: 10/25/2024] [Accepted: 10/30/2024] [Indexed: 11/22/2024]
Abstract
Ubiquitous environmental occurrence of per- and polyfluoroalkyl substances (PFAS) underscores the critical need to broaden investigative efforts in effective screening, risk assessment, and remediation. Owing to the broad spectrum of PFAS, various analytical techniques have been extensively utilized to attain inclusivity, with notable attention given to methods such as extractable organic fluorine (EOF), adsorbable organic fluorine (AOF), and the total oxidizable precursor (TOP) assay. These techniques expand the scope of PFAS analysis by estimating perfluoroalkyl acid precursors or the total organochlorine fraction. This review offers a comprehensive comparative overview of up-to-date methodologies, alongside acknowledging the inherent limitations associated with their applications. When coupled with target analysis via low-resolution tandem mass spectrometry, these techniques offer a potential estimation of total PFAS concentrations. Yet, analytical challenges such as the limited availability of reference analytical standards, partial PFAS adsorption, and the entrapment of fluorinated inorganic anions on adsorbent materials often restrict the comprehensiveness of PFAS analysis. So, integrating nontarget analysis using high-resolution mass spectrometry (HRMS) tools fortifies these PFAS mass balance approaches, enabling the development of a more holistic approach for an environmental analysis framework. This review provides additional insights into the comparative advantages of PFAS analytical approaches and explores various data prioritization strategies in nontarget screening methods. It advocates for the necessary optimization of PFAS extraction methods, asserting that integrating the nontarget approach would foster the establishment of a comprehensive monitoring framework across diverse environmental matrices. Such integration holds promise for enhancing scientific comprehension of PFAS contamination across diverse environmental matrices.
Collapse
Affiliation(s)
- Mujtaba Baqar
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin, 300071, China
- Sustainable Development Study Centre, Government College University, Lahore, 54000, Pakistan
| | - Hao Chen
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin, 300071, China
| | - Yiming Yao
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin, 300071, China.
| | - Hongwen Sun
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin, 300071, China.
| |
Collapse
|
11
|
Chang NY, Eichler CMA, Cohen Hubal EA, Surratt JD, Morrison GC, Turpin BJ. Exposure to per- and polyfluoroalkyl substances (PFAS) in North Carolina homes: results from the indoor PFAS assessment (IPA) campaign. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2024:10.1039/d4em00525b. [PMID: 39526893 PMCID: PMC12065928 DOI: 10.1039/d4em00525b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
Per and polyfluoroalkyl substances (PFAS) are ubiquitous in the indoor environment, resulting in indoor exposure. However, a dearth of concurrent indoor multi-compartment PFAS measurements, including air, has limited our understanding of the contributions of each exposure pathway to residential PFAS exposure. As part of the Indoor PFAS Assessment (IPA) Campaign, we measured 35 neutral and ionic PFAS in air, settled dust, drinking water, clothing, and on surfaces in 11 North Carolina homes. Ionic and neutral PFAS measurements reported previously and ionic PFAS measurements reported herein for drinking water (1.4-34.1 ng L-1), dust (202-1036 ng g-1), and surfaces (4.1 × 10-4-1.7 × 10-2 ng cm-2) were used to conduct a residential indoor PFAS exposure assessment. We considered inhalation of air, ingestion of drinking water and dust, mouthing of clothing (children only), and transdermal uptake from contact with dust, air, and surfaces. Average intake rates were estimated to be 3.6 ng kg-1 per day (adults) and 12.4 ng kg-1 per day (2 year-old), with neutral PFAS contributing over 80% total PFAS intake. Excluding dietary ingestion, which was not measured, inhalation contributed over 65% of PFAS intake and was dominated by neutral PFAS because fluorotelomer alcohol (FTOH) concentrations in air were several orders of magnitude greater than ionic PFAS concentrations. Perfluorooctanoic acid (PFOA) intake was 6.1 × 10-2 ng kg-1 per day (adults) and 1.5 × 10-1 ng kg-1 per day (2 year-old), and biotransformation of 8 : 2 FTOH to PFOA increased this PFOA body burden by 14% (adults) and 17% (2 year-old), suggesting inhalation may also be a meaningful contributor to ionic PFAS exposure through biotransformation.
Collapse
Affiliation(s)
- Naomi Y Chang
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
| | - Clara M A Eichler
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
| | - Elaine A Cohen Hubal
- Center for Public Health and Environmental Assessment, Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, NC, USA
| | - Jason D Surratt
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
- Department of Chemistry, College of Arts and Sciences, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Glenn C Morrison
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
| | - Barbara J Turpin
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
| |
Collapse
|
12
|
Petali JM, Pulster EL, McCarthy C, Pickard HM, Sunderland EM, Bangma J, Carignan CC, Robuck A, Crawford KA, Romano ME, Lohmann R, von Stackelburg K. Considerations and challenges in support of science and communication of fish consumption advisories for per- and polyfluoroalkyl substances. INTEGRATED ENVIRONMENTAL ASSESSMENT AND MANAGEMENT 2024; 20:1839-1858. [PMID: 38752651 PMCID: PMC11486601 DOI: 10.1002/ieam.4947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 04/18/2024] [Accepted: 04/23/2024] [Indexed: 06/12/2024]
Abstract
Federal, state, tribal, or local entities in the United States issue fish consumption advisories (FCAs) as guidance for safer consumption of locally caught fish containing contaminants. Fish consumption advisories have been developed for commonly detected compounds such as mercury and polychlorinated biphenyls. The existing national guidance does not specifically address the unique challenges associated with bioaccumulation and consumption risk related to per- and polyfluoroalkyl substances (PFAS). As a result, several states have derived their own PFAS-related consumption guidelines, many of which focus on one frequently detected PFAS, known as perfluorooctane sulfonic acid (PFOS). However, there can be significant variation between tissue concentrations or trigger concentrations (TCs) of PFOS that support the individual state-issued FCAs. This variation in TCs can create challenges for risk assessors and risk communicators in their efforts to protect public health. The objective of this article is to review existing challenges, knowledge gaps, and needs related to issuing PFAS-related FCAs and to provide key considerations for the development of protective fish consumption guidance. The current state of the science and variability in FCA derivation, considerations for sampling and analytical methodologies, risk management, risk communication, and policy challenges are discussed. How to best address PFAS mixtures in the development of FCAs, in risk assessment, and establishment of effect thresholds remains a major challenge, as well as a source of uncertainty and scrutiny. This includes developments better elucidating toxicity factors, exposures to PFAS mixtures, community fish consumption behaviors, and evolving technology and analytical instrumentation, methods, and the associated detection limits. Given the evolving science and public interests informing PFAS-related FCAs, continued review and revision of FCA approaches and best practices are vital. Nonetheless, consistent, widely applicable, PFAS-specific approaches informing methods, critical concentration thresholds, and priority compounds may assist practitioners in PFAS-related FCA development and possibly reduce variability between states and jurisdictions. Integr Environ Assess Manag 2024;20:1839-1858. © 2024 The Author(s). Integrated Environmental Assessment and Management published by Wiley Periodicals LLC on behalf of Society of Environmental Toxicology & Chemistry (SETAC).
Collapse
Affiliation(s)
- Jonathan Michael Petali
- Environmental Health Program, New Hampshire Department of Environmental Services, Concord, New Hampshire, USA
| | - Erin L Pulster
- US Geological Survey, Columbia Environmental Research Center, Columbia, Missouri, USA
| | | | - Heidi M Pickard
- Harvard John A. Paulson School of Engineering and Applied Sciences, Cambridge, Massachusetts, USA
| | - Elsie M Sunderland
- Harvard John A. Paulson School of Engineering and Applied Sciences, Cambridge, Massachusetts, USA
- Department of Environmental Health, Harvard T. H. Chan School of Public Health, Boston, Massachusetts, USA
| | - Jacqueline Bangma
- Oak Ridge Institute for Science and Education, Oak Ridge, Tennessee, USA
- Center for Environmental Measurement and Modeling, US Environmental Protection Agency, Research Triangle Park, North Carolina, USA
| | - Courtney C Carignan
- Department Food Science and Human Nutrition, Department of Pharmacology and Toxicology Michigan State University, East Lansing, Michigan, USA
| | - Anna Robuck
- Environmental Effects Research Laboratory, US Environmental Protection Agency, Narragansett, Rhode Island, USA
| | - Kathryn A Crawford
- Environmental Studies Programs, Middlebury College, Middlebury, Vermont, USA
| | - Megan E Romano
- Department of Epidemiology, The Geisel School of Medicine at Dartmouth, Lebanon, New Hampshire, USA
| | - Rainer Lohmann
- Graduate School of Oceanography, University of Rhode Island, Narragansett, Rhode Island, USA
| | - Katherine von Stackelburg
- Department of Environmental Health, Harvard T. H. Chan School of Public Health, Boston, Massachusetts, USA
| |
Collapse
|
13
|
Winchell LJ, Cullen J, Ross JJ, Seidel A, Romero ML, Kakar F, Bronstad E, Wells MJM, Klinghoffer NB, Berruti F, Miot A, Bell KY. Fate of biosolids-bound PFAS through pyrolysis coupled with thermal oxidation for air emissions control. WATER ENVIRONMENT RESEARCH : A RESEARCH PUBLICATION OF THE WATER ENVIRONMENT FEDERATION 2024; 96:e11149. [PMID: 39533490 PMCID: PMC11578938 DOI: 10.1002/wer.11149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 09/30/2024] [Accepted: 10/10/2024] [Indexed: 11/16/2024]
Abstract
Pyrolysis has been identified as a possible thermal treatment process for reducing perfluoroalkyl and polyfluoroalkyl substances (PFAS) from wastewater solids, though off-gas from the pyrolysis unit can still be a source of PFAS emissions. In this work, the fate of PFAS through a laboratory-scale pyrolysis unit coupled with a thermal oxidizer for treatment of off-gasses is documented. Between 91.5% and >99.9% reduction was observed through the entire system for specific compounds based on targeted analyses. Overall, the pyrolysis and thermal oxidizer system removed 99.4% of the PFAS moles introduced. Furthermore, shorter chain variants comprised the majority of reportable PFAS in the thermal oxidizer flue gas, indicating the longer chain compounds present in the dried biosolids fed to pyrolyzer decompose through the system. PRACTITIONER POINTS: Thermal oxidation is a promising treatment technology for exhaust systems associated with thermal biosolids treatments. Thermal oxidation demonstrated significant degradation capabilities, with gas phase emissions comprising only 0.200% of initial PFAS concentrations to the system. Short-chain PFAS made up a higher percent of thermal oxidizer emissions, ranging between 54.4% and 79.5% of PFAS in the exhaust on a molar basis. The possibility of recombinant PFAS formation and partial thermal decomposition of PFAS in thermal oxidation is a needed area of research.
Collapse
Affiliation(s)
| | - Joshua Cullen
- Department of Chemical and Biochemical Engineering, Institute for Chemicals and Fuels from Alternative Resources (ICFAR)Western UniversityLondonOntarioCanada
| | | | | | | | | | | | | | - Naomi B. Klinghoffer
- Department of Chemical and Biochemical Engineering, Institute for Chemicals and Fuels from Alternative Resources (ICFAR)Western UniversityLondonOntarioCanada
| | - Franco Berruti
- Department of Chemical and Biochemical Engineering, Institute for Chemicals and Fuels from Alternative Resources (ICFAR)Western UniversityLondonOntarioCanada
| | | | | |
Collapse
|
14
|
Kause R, van Leeuwen S, Krätschmer K, van Dooren B, Keppels R, Makarem H, Hoogenboom LRAP, de Pagter-de Witte L, Berendsen BJA. Development and Application of a Liquid Chromatography-Tandem Mass Spectrometry Method for the Analysis of 20 Perfluoroalkyl Substances in Fruit and Vegetables at Sub-Parts-per-Trillion Levels. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:18731-18741. [PMID: 39109800 PMCID: PMC11342373 DOI: 10.1021/acs.jafc.4c01172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 07/22/2024] [Accepted: 07/23/2024] [Indexed: 08/22/2024]
Abstract
In response to the European Food Safety Authority's establishment of a tolerable weekly intake (TWI) for the sum of PFOA, PFNA, PFHxS, and PFOS, a method was developed to quantify and confirm 20 PFASs at the sub-parts-per-trillion level in fruit and vegetables. Improved sensitivity was achieved by (i) increasing the sample intake, (ii) decreasing the solvent volume in the final extract, and (iii) using a highly sensitive mass spectrometer. Except for PFTrDA, target PFASs could be quantitatively determined with an apparent recovery of 90-119%, limits of quantitation down to 0.5 ng/kg, and a relative standard deviation under within-laboratory reproducibility conditions of <28%. The method was successfully applied to 215 fruit and vegetable samples obtained from local grocery stores and markets. Leafy vegetables prove to be the main vegetable category responsible to PFAS exposure, mainly of PFOA, followed by PFHpA and PFHxA.
Collapse
Affiliation(s)
- Ruben Kause
- Wageningen Food Safety Research
(WFSR), Wageningen University & Research, 6708 WB Wageningen, Netherlands
| | - Stefan van Leeuwen
- Wageningen Food Safety Research
(WFSR), Wageningen University & Research, 6708 WB Wageningen, Netherlands
| | - Kerstin Krätschmer
- Wageningen Food Safety Research
(WFSR), Wageningen University & Research, 6708 WB Wageningen, Netherlands
| | - Bob van Dooren
- Wageningen Food Safety Research
(WFSR), Wageningen University & Research, 6708 WB Wageningen, Netherlands
| | - Rens Keppels
- Wageningen Food Safety Research
(WFSR), Wageningen University & Research, 6708 WB Wageningen, Netherlands
| | - Helgah Makarem
- Wageningen Food Safety Research
(WFSR), Wageningen University & Research, 6708 WB Wageningen, Netherlands
| | - L. Ron A. P. Hoogenboom
- Wageningen Food Safety Research
(WFSR), Wageningen University & Research, 6708 WB Wageningen, Netherlands
| | | | - Bjorn J. A. Berendsen
- Wageningen Food Safety Research
(WFSR), Wageningen University & Research, 6708 WB Wageningen, Netherlands
| |
Collapse
|
15
|
Lee CS, Shipley ON, Ye X, Fisher NS, Gallagher AJ, Frisk MG, Talwar BS, Schneider EV, Venkatesan AK. Accumulation of Per- and Polyfluoroalkyl Substances (PFAS) in Coastal Sharks from Contrasting Marine Environments: The New York Bight and The Bahamas. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:13087-13098. [PMID: 38995999 PMCID: PMC11270988 DOI: 10.1021/acs.est.4c02044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 06/27/2024] [Accepted: 06/28/2024] [Indexed: 07/14/2024]
Abstract
Per- and polyfluoroalkyl substances (PFAS) enter the marine food web, accumulate in organisms, and potentially have adverse effects on predators and consumers of seafood. However, evaluations of PFAS in meso-to-apex predators, like sharks, are scarce. This study investigated PFAS occurrence in five shark species from two marine ecosystems with contrasting relative human population densities, the New York Bight (NYB) and the coastal waters of The Bahamas archipelago. The total detected PFAS (∑PFAS) concentrations in muscle tissue ranged from 1.10 to 58.5 ng g-1 wet weight, and perfluorocarboxylic acids (PFCAs) were dominant. Fewer PFAS were detected in Caribbean reef sharks (Carcharhinus perezi) from The Bahamas, and concentrations of those detected were, on average, ∼79% lower than in the NYB sharks. In the NYB, ∑PFAS concentrations followed: common thresher (Alopias vulpinus) > shortfin mako (Isurus oxyrinchus) > sandbar (Carcharhinus plumbeus) > smooth dogfish (Mustelus canis). PFAS precursors/intermediates, such as 2H,2H,3H,3H-perfluorodecanoic acid and perfluorooctanesulfonamide, were only detected in the NYB sharks, suggesting higher ambient concentrations and diversity of PFAS sources in this region. Ultralong-chain PFAS (C ≥ 10) were positively correlated with nitrogen isotope values (δ15N) and total mercury in some species. Our results provide some of the first baseline information on PFAS concentrations in shark species from the northwest Atlantic Ocean, and correlations between PFAS, stable isotopes, and mercury further contextualize the drivers of PFAS occurrence.
Collapse
Affiliation(s)
- Cheng-Shiuan Lee
- Research
Center for Environmental Changes, Academia
Sinica, Taipei 115, Taiwan
| | - Oliver N. Shipley
- School
of Marine and Atmospheric Sciences, Stony
Brook University, Stony
Brook, New York 11794, United States
| | - Xiayan Ye
- New
York State Center for Clean Water Technology, Stony Brook University, Stony
Brook, New York 11794, United States
| | - Nicholas S. Fisher
- School
of Marine and Atmospheric Sciences, Stony
Brook University, Stony
Brook, New York 11794, United States
| | | | - Michael G. Frisk
- School
of Marine and Atmospheric Sciences, Stony
Brook University, Stony
Brook, New York 11794, United States
| | | | | | - Arjun K. Venkatesan
- Department
of Civil and Environmental Engineering, New Jersey Institute of Technology, Newark, New Jersey 07102, United States
| |
Collapse
|
16
|
Idjaton BIT, Togola A, Ghestem JP, Kastler L, Bristeau S, Ronteltap M, Colombano S, Devau N, Lions J, van Hullebusch ED. Determination of organic fluorinated compounds content in complex samples through combustion ion chromatography methods: a way to define a "Total Per- and Polyfluoroalkyl Substances (PFAS)" parameter? THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 932:172589. [PMID: 38657803 DOI: 10.1016/j.scitotenv.2024.172589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 04/12/2024] [Accepted: 04/17/2024] [Indexed: 04/26/2024]
Abstract
Emerging contaminants are a growing concern for scientists and public authorities. The group of per-polyfluoroalkyl substances (PFAS), known as 'forever chemicals', in complex environmental liquid and solid matrices was analysed in this study. The development of global analytical methods based on combustion ion chromatography (CIC) is expected to provide accurate picture of the overall PFAS contamination level via the determination of extractable organic fluorine (EOF) and adsorbable organic fluorine (AOF). The obtained results may be put into perspective with other methods such as targeted analyses (LC-MS/MS). The impact of pH, the presence of dissolved organic carbon and suspended particles on AOF measurements were explored. The effectiveness of the washing step to remove adsorbed inorganic fluorine (IF) has been proven for samples containing up to 8 mgF.L-1. CIC-based methods showed good repeatability and reproducibility for the complex matrices studied. Environmental applications of these methods have been tested. AOF and EOF analyses could explain between 1 % and 23 % and 0.1 % to 2 % of total organic fluorine (TOF), respectively. The sum of PFAS compounds expressed as fluorine could explain from 0.2 % to 11 % and from 0.003 % to 5 % for AOF and EOF, respectively. These results also suggest that some fluorinated compounds are not adsorbed or extractable and/or lost by volatilisation during the application of AOF and EOF analytical procedure. These findings highlight that AOF and EOF are not entirely efficient as proxy to assess "total PFAS" for assessing environmental contamination by PFAS. However, these methods could still be applied to gain a better understanding of the sources and fate of PFAS in the environment.
Collapse
Affiliation(s)
- Babatoundé I T Idjaton
- BRGM, Direction Eau Environnement Procédés et Analyses, 3 av. Claude-Guillemin - BP 36009, 45060 Orléans, France; Université Paris Cité, Institut de physique du globe de Paris, CNRS, F-75005 Paris, France
| | - Anne Togola
- BRGM, Direction Eau Environnement Procédés et Analyses, 3 av. Claude-Guillemin - BP 36009, 45060 Orléans, France.
| | - Jean Philippe Ghestem
- BRGM, Direction Eau Environnement Procédés et Analyses, 3 av. Claude-Guillemin - BP 36009, 45060 Orléans, France
| | - Laura Kastler
- BRGM, Direction Eau Environnement Procédés et Analyses, 3 av. Claude-Guillemin - BP 36009, 45060 Orléans, France
| | - Sébastien Bristeau
- BRGM, Direction Eau Environnement Procédés et Analyses, 3 av. Claude-Guillemin - BP 36009, 45060 Orléans, France
| | - Mariska Ronteltap
- Delfland Water Authority, Phoenixstraat 32, the Netherlands; TU Delft, Water Management Department, Stevinweg 1, Delft, the Netherlands
| | - Stéfan Colombano
- BRGM, Direction Eau Environnement Procédés et Analyses, 3 av. Claude-Guillemin - BP 36009, 45060 Orléans, France
| | - Nicolas Devau
- BRGM, Direction Eau Environnement Procédés et Analyses, 3 av. Claude-Guillemin - BP 36009, 45060 Orléans, France
| | - Julie Lions
- BRGM, Direction Eau Environnement Procédés et Analyses, 3 av. Claude-Guillemin - BP 36009, 45060 Orléans, France
| | - Eric D van Hullebusch
- Université Paris Cité, Institut de physique du globe de Paris, CNRS, F-75005 Paris, France
| |
Collapse
|
17
|
Wallace MAG, Smeltz MG, Mattila JM, Liberatore HK, Jackson SR, Shields EP, Xhani X, Li EY, Johansson JH. A review of sample collection and analytical methods for detecting per- and polyfluoroalkyl substances in indoor and outdoor air. CHEMOSPHERE 2024; 358:142129. [PMID: 38679180 PMCID: PMC11513671 DOI: 10.1016/j.chemosphere.2024.142129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 04/19/2024] [Accepted: 04/22/2024] [Indexed: 05/01/2024]
Abstract
Per- and polyfluoroalkyl substances (PFAS) are a unique class of chemicals synthesized to aid in industrial processes, fire-fighting products, and to benefit consumer products such as clothing, cosmetics, textiles, carpets, and coatings. The widespread use of PFAS and their strong carbon-fluorine bonds has led to their ubiquitous presence throughout the world. Airborne transport of PFAS throughout the atmosphere has also contributed to environmental pollution. Due to the potential environmental and human exposure concerns of some PFAS, research has extensively focused on water, soil, and organismal detection, but the presence of PFAS in the air has become an area of growing concern. Methods to measure polar PFAS in various matrices have been established, while the investigation of polar and nonpolar PFAS in air is still in its early development. This literature review aims to present the last two decades of research characterizing PFAS in outdoor and indoor air, focusing on active and passive air sampling and analytical methods. The PFAS classes targeted and detected in air samples include fluorotelomer alcohols (FTOHs), perfluoroalkane sulfonamides (FASAs), perfluoroalkane sulfonamido ethanols (FASEs), perfluorinated carboxylic acids (PFCAs), and perfluorinated sulfonic acids (PFSAs). Although the manufacturing of perfluorooctanoic acid (PFOA) and perfluorooctane sulfonic acid (PFOS) has been largely phased out, these two PFAS are still often detected in air samples. Additionally, recent estimates indicate that there are thousands of PFAS that are likely present in the air that are not currently monitored in air methods. Advances in air sampling methods are needed to fully characterize the atmospheric transport of PFAS.
Collapse
Affiliation(s)
- M Ariel Geer Wallace
- U.S. Environmental Protection Agency, Center for Environmental Measurement and Modeling, Air Methods and Characterization Division, 109 T.W. Alexander Drive, Research Triangle Park, NC, 27709, USA.
| | - Marci G Smeltz
- U.S. Environmental Protection Agency, Center for Environmental Measurement and Modeling, Air Methods and Characterization Division, 109 T.W. Alexander Drive, Research Triangle Park, NC, 27709, USA.
| | - James M Mattila
- Oak Ridge Institute for Science and Education, Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, NC, 27711, USA.
| | - Hannah K Liberatore
- U.S. Environmental Protection Agency, Center for Environmental Measurement and Modeling, Air Methods and Characterization Division, 109 T.W. Alexander Drive, Research Triangle Park, NC, 27709, USA.
| | - Stephen R Jackson
- U.S. Environmental Protection Agency, Center for Environmental Measurement and Modeling, Air Methods and Characterization Division, 109 T.W. Alexander Drive, Research Triangle Park, NC, 27709, USA.
| | - Erin P Shields
- U.S. Environmental Protection Agency, Center for Environmental Measurement and Modeling, Air Methods and Characterization Division, 109 T.W. Alexander Drive, Research Triangle Park, NC, 27709, USA.
| | - Xhensila Xhani
- Oak Ridge Institute for Science and Education, Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, NC, 27711, USA; Johnston Community College, 245 College Road, Smithfield, NC, 27577, USA.
| | - Emily Y Li
- U.S. Environmental Protection Agency, Center for Environmental Measurement and Modeling, Air Methods and Characterization Division, 109 T.W. Alexander Drive, Research Triangle Park, NC, 27709, USA.
| | - Jana H Johansson
- Department of Thematic Studies, Environmental Change, Linköping University, Linköping, Sweden.
| |
Collapse
|
18
|
Heinsberg LW, Niu S, Arslanian KJ, Chen R, Bedi M, Unasa-Apelu F, Fidow UT, Soti-Ulberg C, Conley YP, Weeks DE, Ng CA, Hawley NL. Characterization of per- and polyfluoroalkyl substances (PFAS) concentrations in a community-based sample of infants from Samoa. CHEMOSPHERE 2024; 353:141527. [PMID: 38401869 PMCID: PMC10997188 DOI: 10.1016/j.chemosphere.2024.141527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 02/08/2024] [Accepted: 02/21/2024] [Indexed: 02/26/2024]
Abstract
Per- and polyfluoroalkyl substances (PFAS) are persistent contaminants with documented harmful health effects. Despite increasing research, little attention has been given to studying PFAS contamination in low- and middle-income countries, including Samoa. Using data and biosamples collected through the Foafoaga o le Ola ("Beginning of Life") Study, which recruited a sample of mothers and infants from Samoa, we conducted an exploratory study to describe concentrations of 40 PFAS analytes in infant cord blood collected at birth (n = 66) and infant dried blood spots (DBS) collected at 4 months post-birth (n = 50). Of the 40 PFAS analytes tested, 19 were detected in cord blood, with 10 detected in >50% of samples (PFBA, PFPeA, PFOA, PFNA, PFDA, PFUnA, PFTrDA, PFHxS, PFOS, and 9Cl-PF3ONS); and 12 analytes were detected in DBS, with 3 detected in >50% of samples (PFBA, PFHxS, and PFOS). PFAS concentrations were generally lower than those reported in existing literature, with the exception of PFHxS, which was detected at higher concentrations. In cord blood, we noted suggestive (p < 0.05) or significant (p < 0.006) associations between higher PFHxS and male sex; higher PFPeA and residence in Northwest 'Upolu (NWU) compared to the Apia Urban Area (AUA); lower PFUnA and 9Cl-PF3ONS and greater socioeconomic resources; lower PFOA and higher parity; higher PFDA and higher maternal age; and lower PFUnA, PFTrDA, and 9Cl-PF3ONS and higher maternal BMI. In DBS, we found suggestive (p < 0.05) or significant (p < 0.025) associations between lower PFBA and residence in NWU versus AUA; lower PFBA and PFHxS and higher maternal age; and higher PFBA and higher maternal BMI. Finally, we observed associations between nutrition source at 4 months and DBS PFBA and PFHxS, with formula- or mixed-fed infants having higher concentrations compared to exclusively breastfed infants. This study represents the first characterization of PFAS contamination in Samoa. Additional work in larger samples is needed to identify potentially modifiable determinants of PFAS concentrations, information that is critical for informing environmental and health policy measures.
Collapse
Affiliation(s)
- Lacey W Heinsberg
- Department of Human Genetics, School of Public Health, University of Pittsburgh, Pittsburgh, PA, USA.
| | - Shan Niu
- Department of Civil and Environmental Engineering, Swanson School of Engineering, University of Pittsburgh, Pittsburgh, PA, USA.
| | - Kendall J Arslanian
- Department of Social and Behavioral Sciences, Yale University School of Public Health, New Haven, CT, USA.
| | - Ruiwen Chen
- Department of Civil and Environmental Engineering, Swanson School of Engineering, University of Pittsburgh, Pittsburgh, PA, USA.
| | - Megha Bedi
- Department of Civil and Environmental Engineering, Swanson School of Engineering, University of Pittsburgh, Pittsburgh, PA, USA.
| | - Folla Unasa-Apelu
- Obesity, Lifestyle and Genetic Adaptations Study Group, Apia, Samoa.
| | | | | | - Yvette P Conley
- Department of Human Genetics, School of Public Health, University of Pittsburgh, Pittsburgh, PA, USA; Department of Health Promotion and Development, School of Nursing, University of Pittsburgh, Pittsburgh, PA, USA.
| | - Daniel E Weeks
- Department of Human Genetics, School of Public Health, University of Pittsburgh, Pittsburgh, PA, USA; Department of Biostatistics, School of Public Health, University of Pittsburgh, Pittsburgh, PA, USA.
| | - Carla A Ng
- Department of Civil and Environmental Engineering, Swanson School of Engineering, University of Pittsburgh, Pittsburgh, PA, USA.
| | - Nicola L Hawley
- Department of Chronic Disease Epidemiology, Yale University School of Public Health, New Haven, CT, USA.
| |
Collapse
|
19
|
Winchell LJ, Wells MJM, Ross JJ, Kakar F, Teymouri A, Gonzalez DJ, Dangtran K, Bessler SM, Carlson S, Almansa XF, Norton JW, Bell KY. Fate of perfluoroalkyl and polyfluoroalkyl substances (PFAS) through two full-scale wastewater sludge incinerators. WATER ENVIRONMENT RESEARCH : A RESEARCH PUBLICATION OF THE WATER ENVIRONMENT FEDERATION 2024; 96:e11009. [PMID: 38444297 DOI: 10.1002/wer.11009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 12/15/2023] [Accepted: 02/07/2024] [Indexed: 03/07/2024]
Abstract
Perfluoroalkyl and polyfluoroalkyl substances (PFAS) are an emerging issue in wastewater treatment. High-temperature thermal processes, incineration being time-tested, offer the opportunity to destroy and change the composition of PFAS. The fate of PFAS has been documented through wastewater sludge incinerators, including a multiple hearth furnace (MHF) and a fluidized bed furnace (FBF). The dewatered wastewater sludge feedstock averaged 247- and 1280-μmol targeted PFAS per sample run in MHF and FBF feed, respectively. Stack emissions (reportable for all targeted PFAS from MHF only) averaged 5% of that value with shorter alkyl chain compounds comprising the majority of the targeted PFAS. Wet scrubber water streams accumulated nonpolar fluorinated organics from the furnace exhaust with an average of 0.740- and 0.114-mol F- per sample run, for the MHF and FBF, respectively. Simple alkane PFAS measured at the stack represented 0.5%-4.5% of the total estimated facility greenhouse gas emissions. PRACTITIONER POINTS: The MHF emitted six short chain PFAS from the stack, which were shorter alkyl chain compounds compared with sludge PFAS. The FBF did not consistently emit reportable PFAS from the stack, but contamination complicated the assessment. Five percent of the MHF sludge molar PFAS load was reported in the stack. MHF and FBF wet scrubber water streams accumulated nonpolar fluorinated organics from the furnace exhaust. Ultra-short volatile alkane PFAS measured at the stack represented 0.5%-4.5% of the estimated facility greenhouse gas emissions.
Collapse
Affiliation(s)
| | | | - John J Ross
- Brown and Caldwell, Walnut Creek, California, USA
| | - Farokh Kakar
- Brown and Caldwell, Walnut Creek, California, USA
| | - Ali Teymouri
- Brown and Caldwell, Walnut Creek, California, USA
| | | | - Ky Dangtran
- Dangtran Combustion Consulting, Katy, Texas, USA
| | - Scott M Bessler
- Metropolitan Sewer District of Greater Cincinnati, Cincinnati, Ohio, USA
| | - Shane Carlson
- Metropolitan Sewer District of Greater Cincinnati, Cincinnati, Ohio, USA
| | - Xavier Fonoll Almansa
- Great Lakes Water Authority, Detroit, Michigan, USA
- Maseeh Department of Civil, Architectural and Environmental Engineering, The University of Texas at Austin, Austin, Texas, USA
| | | | | |
Collapse
|
20
|
Bangma J, Barry KM, Fisher CM, Genualdi S, Guillette TC, Huset CA, McCord J, Ng B, Place BJ, Reiner JL, Robuck A, Rodowa AE. PFAS ghosts: how to identify, evaluate, and exorcise new and existing analytical interference. Anal Bioanal Chem 2024; 416:1777-1785. [PMID: 38280017 PMCID: PMC10932892 DOI: 10.1007/s00216-024-05125-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 12/13/2023] [Accepted: 12/18/2023] [Indexed: 01/29/2024]
Abstract
With increasing public awareness of PFAS, and their presence in biological and environmental media across the globe, comes a matching increase in the number of PFAS monitoring studies. As more matrices and sample cohorts are examined, there are more opportunities for matrix interferents to appear as PFAS where there are none (i.e., "seeing ghosts"), impacting subsequent reports. Addressing these ghosts is vital for the research community, as proper analytical measurements are necessary for decision-makers to understand the presence, levels, and potential risks associated with PFAS and protect human and environmental health. To date, PFAS interference has been identified in several matrices (e.g., food, shellfish, blood, tissue); however, additional unidentified interferents are likely to be observed as PFAS research continues to expand. Therefore, the aim of this commentary is several fold: (1) to create and support a publicly available dataset of all currently known PFAS analytical interferents, (2) to allow for the expansion of that dataset as more sources of interference are identified, and (3) to advise the wider scientific community on how to both identify and eliminate current or new analytical interference in PFAS analyses.
Collapse
Affiliation(s)
- Jacqueline Bangma
- Center for Environmental Measurement and Modeling, US Environmental Protection Agency, Durham, USA.
| | | | - Christine M Fisher
- Center for Food Safety and Applied Nutrition, US Food and Drug Administration, College Park, USA
| | - Susan Genualdi
- Center for Food Safety and Applied Nutrition, US Food and Drug Administration, College Park, USA
| | | | | | - James McCord
- Center for Environmental Measurement and Modeling, US Environmental Protection Agency, Durham, USA
| | - Brian Ng
- Center for Food Safety and Applied Nutrition, US Food and Drug Administration, College Park, USA
| | - Benjamin J Place
- National Institute of Standards and Technology, Gaithersburg, USA
| | - Jessica L Reiner
- National Institute of Standards and Technology, Gaithersburg, USA
| | - Anna Robuck
- Center for Environmental Measurement and Modeling, US Environmental Protection Agency, Durham, USA
| | - Alix E Rodowa
- National Institute of Standards and Technology, Gaithersburg, USA
| |
Collapse
|
21
|
Stecconi T, Tavoloni T, Stramenga A, Bacchiocchi S, Barola C, Dubbini A, Galarini R, Moretti S, Sagratini G, Piersanti A. A LC-MS/MS procedure for the analysis of 19 perfluoroalkyl substances in food fulfilling recent EU regulations requests. Talanta 2024; 266:125054. [PMID: 37611367 DOI: 10.1016/j.talanta.2023.125054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 07/27/2023] [Accepted: 08/05/2023] [Indexed: 08/25/2023]
Abstract
Perfluoroalkyl and polyfluoroalkyl substances (PFASs) are synthetic, stable, fluorinated molecules widely used in consumer products. They are non-biodegradable, persistent and bio-accumulating. In 2020 European Food Safety Authority (EFSA) lowered the Tolerable Weekly Intake (TWI) for the four PFASs (PFOA, PFOS, PFNA, PFHxS) and in 2022, the EU issued a Recommendation asking to monitor twenty-one PFASs in food. Since 1st January 2023 limits in food were set. Here we report a sensitive, straightforward and robust procedure enabling the determination of 19 PFAS in food matrices using a liquid chromatography mass spectrometer (LC-MS/MS). Few are the published methods applicable to the different food matrices and covering the molecules listed in Recommendation 2022/1431, fulfilling the LOQs requested. The method was satisfactory validated (UNI CEI EN ISO/IEC 17025:2018 and Regulation (EU) 2022/1428) and used to investigate hen egg samples, highlighting home-produced eggs as the more critical egg farming process for PFAS accumulation.
Collapse
Affiliation(s)
- Tommaso Stecconi
- University of Camerino, School of Pharmacy, 62032, Camerino, Italy.
| | - Tamara Tavoloni
- Istituto Zooprofilattico Sperimentale dell'Umbria e delle Marche "Togo Rosati", Via Cupa di Posatora 3, 60131, Ancona, Italy.
| | - Arianna Stramenga
- Istituto Zooprofilattico Sperimentale dell'Umbria e delle Marche "Togo Rosati", Via Cupa di Posatora 3, 60131, Ancona, Italy.
| | - Simone Bacchiocchi
- Istituto Zooprofilattico Sperimentale dell'Umbria e delle Marche "Togo Rosati", Via Cupa di Posatora 3, 60131, Ancona, Italy.
| | - Carolina Barola
- Istituto Zooprofilattico Sperimentale dell'Umbria e delle Marche "Togo Rosati", Via G. Salvemini 1, 06126, Perugia, Italy.
| | - Alessandra Dubbini
- Istituto Zooprofilattico Sperimentale dell'Umbria e delle Marche "Togo Rosati", Via Cupa di Posatora 3, 60131, Ancona, Italy.
| | - Roberta Galarini
- Istituto Zooprofilattico Sperimentale dell'Umbria e delle Marche "Togo Rosati", Via G. Salvemini 1, 06126, Perugia, Italy.
| | - Simone Moretti
- Istituto Zooprofilattico Sperimentale dell'Umbria e delle Marche "Togo Rosati", Via G. Salvemini 1, 06126, Perugia, Italy.
| | - Gianni Sagratini
- University of Camerino, School of Pharmacy, 62032, Camerino, Italy.
| | - Arianna Piersanti
- Istituto Zooprofilattico Sperimentale dell'Umbria e delle Marche "Togo Rosati", Via Cupa di Posatora 3, 60131, Ancona, Italy.
| |
Collapse
|
22
|
Nilsen E, Muensterman D, Carini L, Waite I, Payne S, Field JA, Peterson J, Hafley D, Farrer D, Jones GD. Target and suspect per- and polyfluoroalkyl substances in fish from an AFFF-impacted waterway. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 906:167798. [PMID: 37838049 DOI: 10.1016/j.scitotenv.2023.167798] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 09/19/2023] [Accepted: 10/11/2023] [Indexed: 10/16/2023]
Abstract
A major source of toxic per- and polyfluoroalkyl substances (PFAS) is aqueous film-forming foams (AFFF) used in firefighting and training at airports and military installations, however, PFAS have many additional sources in consumer products and industrial processes. A field study was conducted on fish tissues from three reaches of the Columbia Slough, located near Portland International Airport, OR, that are affected by AFFF and other PFAS sources. Fishes including largescale sucker (Catostomus macrocheilus), goldfish (Carassius auratus), and largemouth bass (Micropterus salmoides) were collected in 2019 and 2020. Fish blood, liver, and fillet (muscle) were analyzed for target and suspect PFAS by liquid chromatography high resolution mass spectrometry (LC-HRMS). Data were analyzed for patterns by fish species, tissue type, and river reach. Thirty-three out of 50 target PFAS and additional suspect compounds were detected at least once during the study, at concentrations up to 856 ng/g. Seven carboxylic acids (PFOA, PFNA, PFDA, PFUdA, PFDoA, PFTrDA, PFTeDA), three sulfonates (PFHxS, PFOS, PFDS), three electrofluorination-based compounds (FBSA, FHxSA, FOSA), and two fluorotelomer-based compounds (8:2 FTS, 10:2 FTS) were the most frequently detected compounds in all tissue types. The C6 (PFHxS) to C10 (PFDS) homologs were detected with PFOS and FHxSA at concentrations 1-3 orders of magnitude greater than the other PFAS detected. This is the first report of Cl-PFOS, FPeSA, and FHpSA detected in fish tissue. In all fish samples, fillet concentrations of PFAS were the lowest, followed by liver, and blood concentrations of PFAS were the highest. Differences in PFAS concentrations were driven primarily by tissue types and to a lesser extent fish species, but weakly by river reach. The Oregon Health Authority modified an existing fish consumption advisory on the Columbia Slough to recommend no whole-body consumption of most fish to avoid elevated levels of PFOS in fish liver. Measured PFAS concentrations in fish tissues indicate the potential for adverse ecological effects.
Collapse
Affiliation(s)
- Elena Nilsen
- U.S. Geological Survey, Oregon Water Science Center, Portland, OR, USA.
| | - Derek Muensterman
- Department of Chemistry, Oregon State University, Corvallis, OR, USA
| | - Lya Carini
- Department of Biological & Ecological Engineering, Oregon State University, Corvallis, OR, USA
| | - Ian Waite
- U.S. Geological Survey, Oregon Water Science Center, Portland, OR, USA
| | - Sean Payne
- U.S. Geological Survey, Oregon Water Science Center, Portland, OR, USA
| | - Jennifer A Field
- Department of Environmental and Molecular Toxicology, Oregon State University, Corvallis, OR, USA
| | | | - Daniel Hafley
- Oregon Department of Environmental Quality, Portland, OR, USA
| | - David Farrer
- Oregon Health Authority, 800 NE Oregon Street, Suite 640, Portland, OR 97232, USA
| | - Gerrad D Jones
- Department of Biological & Ecological Engineering, Oregon State University, Corvallis, OR, USA
| |
Collapse
|
23
|
Zheng G, Eick SM, Salamova A. Elevated Levels of Ultrashort- and Short-Chain Perfluoroalkyl Acids in US Homes and People. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:15782-15793. [PMID: 37818968 PMCID: PMC10603771 DOI: 10.1021/acs.est.2c06715] [Citation(s) in RCA: 59] [Impact Index Per Article: 29.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 09/06/2023] [Accepted: 09/07/2023] [Indexed: 10/13/2023]
Abstract
Per- and polyfluoroalkyl substances (PFAS) make up a large group of fluorinated organic compounds extensively used in consumer products and industrial applications. Perfluorooctanesulfonic acid (PFOS) and perfluorooctanoic acid (PFOA), the two perfluoroalkyl acids (PFAAs) with 8 carbons in their structure, have been phased out on a global scale because of their high environmental persistence and toxicity. As a result, shorter-chain PFAAs with less than 8 carbons in their structure are being used as their replacements and are now widely detected in the environment, raising concerns about their effects on human health. In this study, 47 PFAAs and their precursors were measured in paired samples of dust and drinking water collected from residential homes in Indiana, United States, and in blood and urine samples collected from the residents of these homes. Ultrashort- (with 2 or 3 carbons [C2-C3]) and short-chain (with 4-7 carbons [C4-C7]) PFAAs were the most abundant in all four matrices and constituted on average 69-100% of the total PFAA concentrations. Specifically, trifluoroacetic acid (TFA, C2) and perfluoropropanoic acid (PFPrA, C3) were the predominant PFAAs in most of the samples. Significant positive correlations (n = 81; r = 0.23-0.42; p < 0.05) were found between TFA, perfluorobutanoic acid (PFBA, C4), and perfluoroheptanoic acid (PFHpA, C7) concentrations in dust or water and those in serum, suggesting dust ingestion and/or drinking water consumption as important exposure pathways for these compounds. This study demonstrates that ultrashort- and short-chain PFAAs are now abundant in the indoor environment and in humans and warrants further research on potential adverse health effects of these exposures.
Collapse
Affiliation(s)
- Guomao Zheng
- School
of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Stephanie M. Eick
- Gangarosa
Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, Georgia 30322, United States
- Department
of Epidemiology, Rollins School of Public Health, Emory University, Atlanta, Georgia 30322, United States
| | - Amina Salamova
- Gangarosa
Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, Georgia 30322, United States
| |
Collapse
|
24
|
Miranda DA, Zachritz AM, Whitehead HD, Cressman SR, Peaslee GF, Lamberti GA. Occurrence and biomagnification of perfluoroalkyl substances (PFAS) in Lake Michigan fishes. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 895:164903. [PMID: 37355115 DOI: 10.1016/j.scitotenv.2023.164903] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 05/22/2023] [Accepted: 06/12/2023] [Indexed: 06/26/2023]
Abstract
We measured perfluoroalkyl substances (PFAS) in prey and predator fish from Lake Michigan (USA) to investigate the occurrence and biomagnification of these compounds in this important ecosystem. Twenty-one PFAS were analyzed in 117 prey fish obtained from sites across Lake Michigan and in 87 salmonids collected in four lake quadrants. The mean concentration of sum (∑) PFAS above the method detection limit was 12.7 ± 6.96 ng g-1 wet weight in predator fish (all of which were salmonids) and 10.7 ± 10.4 ng g-1 in prey fish, with outlier levels found in slimy sculpin, Cottus cognatus (187 ± 12.2 ng g-1 ww). Perfluorooctanoic sulfonic acid (PFOS) was the most frequently detected and most abundant compound of the 21 PFAS, occurring in 98 % of individuals with a mean concentration of 9.86 ± 6.36 ng g-1 ww without outliers. Perfluoroalkyl carboxylates (PFCA) concentrations were higher in prey fish than in predators, with some compounds such as perfluorooctanoic acid (PFOA) being detected in higher frequency in prey fish. Besides PFOS, detection of several long-chain (C8-C12) PFCAs were observed in >80 % of the prey fish. Overall, the observed concentrations in Lake Michigan fish were lower than those reported in other Laurentian Great Lakes except for Lake Superior. Biomagnification factors (BMFs) for PFOS exceeded 1.0 (range, 1.80 to 5.12) in all predator-prey relationships analyzed, indicating biomagnification of these compounds, whereas BMFs of other long-chain PFCAs varied according to the fish species. PFAS were found in all fish species measured from Lake Michigan and commonly biomagnified from prey to predator fish, strongly suggesting a dietary connection.
Collapse
Affiliation(s)
- Daniele A Miranda
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN 46556, United States; Environmental Change initiative, University of Notre Dame, Notre Dame, IN 46556, United States; Department of Physics and Astronomy, University of Notre Dame, Notre Dame, IN 46556, United States.
| | - Alison M Zachritz
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN 46556, United States
| | - Heather D Whitehead
- Department of Physics and Astronomy, University of Notre Dame, Notre Dame, IN 46556, United States; Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556, United States
| | - Shannon R Cressman
- U.S. Fish and Wildlife Service, Green Bay Fish and Wildlife Conservation Office, New Franken, WI 54229, United States
| | - Graham F Peaslee
- Environmental Change initiative, University of Notre Dame, Notre Dame, IN 46556, United States; Department of Physics and Astronomy, University of Notre Dame, Notre Dame, IN 46556, United States
| | - Gary A Lamberti
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN 46556, United States; Environmental Change initiative, University of Notre Dame, Notre Dame, IN 46556, United States
| |
Collapse
|