1
|
Zeng H, Wang S, Zhao X, Liu B, Zhang Z, Qin C, Liang C, Huang C, Yao S. Preparation of hydrophobic and lipophilic carboxymethyl cellulose composite aerogel using ferrous ion/ persulfate and its directed oxidation for oil-water emulsion separation. Carbohydr Polym 2025; 348:122814. [PMID: 39562089 DOI: 10.1016/j.carbpol.2024.122814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2024] [Revised: 09/21/2024] [Accepted: 09/26/2024] [Indexed: 11/21/2024]
Abstract
In particular, efficient oxidative demulsification is an effective method for oil-water separation. However, the inactivation of free radicals owing to the rapid release of transition metals is the main factor that reduces the effectiveness. In this study, a hydrophobic and lipophilic CP/SiO2@Fe2+ composite aerogel was prepared using carboxymethyl cellulose as substrate, polyvinyl alcohol as reinforcement, and SiO2 nanoparticles as hydrophobic modifier. The resulting aerogel had a water contact angle of 139°, oil absorption yield of 99.9 %, higher specific surface area 132.13 m2·g-1, low density of 0.021 g·cm-3, and high porosity of 98.60 %. Fe2+ was slowly released from the composite aerogel after efficient Fe2+ loading of 65.77 mg·g-1. The drug exhibited a low release rate of 87.72 % after 9 h, which was higher than that of the composite aerogel. This promoted the efficient presence of SO4-· activated from persulfate oxidation in the catalytic oxidative demulsification system over a long period. The green and efficient separation of oily-water was achieved by the synergistic effect of the adsorption of the hydrophobic and lipophilic composite aerogel and targeted and efficient oxidative demulsification. These results demonstrate the advantages of high separation efficiency, durability, stability of the CP/SiO2@Fe2+ composite aerogel for oil-water separation.
Collapse
Affiliation(s)
- Huali Zeng
- Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, School of Light Industrial and Food Engineering, Guangxi University, Nanning 530004, PR China
| | - Shaoyan Wang
- Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, School of Light Industrial and Food Engineering, Guangxi University, Nanning 530004, PR China
| | - Xiao Zhao
- Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, School of Light Industrial and Food Engineering, Guangxi University, Nanning 530004, PR China
| | - Baojie Liu
- Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, School of Light Industrial and Food Engineering, Guangxi University, Nanning 530004, PR China
| | - Zhiwei Zhang
- Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, School of Light Industrial and Food Engineering, Guangxi University, Nanning 530004, PR China
| | - Chengrong Qin
- Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, School of Light Industrial and Food Engineering, Guangxi University, Nanning 530004, PR China.
| | - Chen Liang
- Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, School of Light Industrial and Food Engineering, Guangxi University, Nanning 530004, PR China
| | - Caoxing Huang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, PR China
| | - Shuangquan Yao
- Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, School of Light Industrial and Food Engineering, Guangxi University, Nanning 530004, PR China.
| |
Collapse
|
2
|
Ye M, Luo Z, Jin W, Wang X, Zhang T, Liu X. Degradation of organic pollutants by the Cl -/PMS process. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:42921-42930. [PMID: 38880845 DOI: 10.1007/s11356-024-34005-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Accepted: 06/11/2024] [Indexed: 06/18/2024]
Abstract
The viewpoints on whether high concentrations of chloride ion (Cl-) promote or inhibit the oxidation activity of activated persulfates are still inconclusive. Furthermore, the degradation of organic pollutants by the persulfates in the presence of high Cl- concentrations without any activation medium has not yet been studied. In this work, the efficiency and mechanism of degradation of organic pollutants such as carbamazepine (CBZ), sulfadiazine (SDZ), and phenol (PN) by Cl--activated PMS (denoted as Cl-/PMS) were investigated. Results showed that Cl- could effectively activate PMS for the complete removal of CBZ, SDZ, and PN with reaction kinetic constants of 0.4516 min-1, 0.01753 min-1, and 0.06805 min-1, respectively. Parameters such as PMS dose, Cl- concentration, solution pH, and initial concentrations of organic pollutants that affect the degradation efficiencies of the Cl-/PMS process were optimized. Unlike conventional activated persulfates, it was confirmed that the free chlorine was the main active species in the Cl-/PMS process. Finally, the degradation by-products of CBZ and SDZ as well as their toxicity were detected, and a possible degradation pathway for CBZ and SDZ was proposed. Though higher toxic chlorinated by-products were generated, the Cl-/PMS process was still an efficient oxidation method for the removal of organic pollutants in aqueous solutions which contain high concentrations of Cl-.
Collapse
Affiliation(s)
- Miaomiao Ye
- Zhejiang Key Laboratory of Drinking Water Safety and Distribution Technology, Zhejiang University, Hangzhou, Zhejiang, 310058, PR China
| | - Ziyi Luo
- Zhejiang Key Laboratory of Drinking Water Safety and Distribution Technology, Zhejiang University, Hangzhou, Zhejiang, 310058, PR China
| | - Wen Jin
- Zhejiang Key Laboratory of Drinking Water Safety and Distribution Technology, Zhejiang University, Hangzhou, Zhejiang, 310058, PR China
| | - Xingyuan Wang
- Zhejiang Key Laboratory of Drinking Water Safety and Distribution Technology, Zhejiang University, Hangzhou, Zhejiang, 310058, PR China
| | - Tuqiao Zhang
- Zhejiang Key Laboratory of Drinking Water Safety and Distribution Technology, Zhejiang University, Hangzhou, Zhejiang, 310058, PR China
| | - Xiaowei Liu
- Zhejiang Key Laboratory of Drinking Water Safety and Distribution Technology, Zhejiang University, Hangzhou, Zhejiang, 310058, PR China.
| |
Collapse
|
3
|
Zhang L, Zhang Q, Chen T, Wang C, Xiao C, Guo J, Pang X, Liu S. Magnetic MoS 2/Fe 3O 4 composite as an effective activator of persulfate for the degradation of tetracycline: performance, activation mechanisms and degradation pathways. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2024; 89:1860-1878. [PMID: 38619908 DOI: 10.2166/wst.2024.076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 02/18/2024] [Indexed: 04/17/2024]
Abstract
The activated persulfate (PS) process could produce sulfate radical (SO4·-) and rapidly degrade organic pollutants. The application of Fe3O4 as a promising PS activator was limited due to the rapid conversion of Fe2+ to Fe3+ on its surface. Mo4+ on MoS2 surface could be used as a reducing site to convert Fe3+ to Fe2+, but the separation and recovery of MoS2 was complex. In this study, MoS2/Fe3O4 was prepared to accelerate the Fe3+/Fe2+ cycle on Fe3O4 surface and achieved efficient separation of MoS2. The results showed that MoS2/Fe3O4 was more effective for PS activation compared to Fe3O4 or MoS2, with a removal efficiency of 91.8% for 20 mg·L-1 tetracycline (TC) solution under the optimal conditions. Fe2+ and Mo4+ on MoS2/Fe3O4 surface acted as active sites for PS activation with the generation of SO4•-, •OH, •O2-, and 1O2. Mo4+ acted as an electron donor to promote the Fe3+/Fe2+ cycling and thus improved the PS activation capability of MoS2/Fe3O4. The degradation pathways of TC were inferred as hydroxylation, ketylation of dimethylamino group and C-N bond breaking. This study provided a promising activated persulfate-based advanced oxidation process for the efficient degradation of TC by employing MoS2/Fe3O4 as an effective activator.
Collapse
Affiliation(s)
- Lanhe Zhang
- School of Chemical Engineering, Northeast Electric Power University, Jilin 132012, China; Lanhe Zhang and Qi Zhang are co-first authors
| | - Qi Zhang
- School of Chemical Engineering, Northeast Electric Power University, Jilin 132012, China; Lanhe Zhang and Qi Zhang are co-first authors
| | - Tengyue Chen
- School of Chemical Engineering, Northeast Electric Power University, Jilin 132012, China
| | - Changyao Wang
- School of Chemical Engineering, Northeast Electric Power University, Jilin 132012, China
| | - Chuan Xiao
- School of Chemical Engineering, Northeast Electric Power University, Jilin 132012, China
| | - Jingbo Guo
- School of Chemical Engineering, Northeast Electric Power University, Jilin 132012, China E-mail:
| | - Xiangrui Pang
- School of Environment, Liaoning University, Shenyang 110036, China
| | - Shuhua Liu
- Jilin Power Supply Company, State Grid Jilin Electric Power Co., Ltd, Jilin 132000, China
| |
Collapse
|
4
|
Bao J, Zhang T, Wu S, Li L, Huang X, Li W, Liu C, Li J, Lu R. Hydrophilic magnetic Ti 3C 2T x-based nanocomposite as an efficient boron adsorbent: Synthesis, characterization, and application. JOURNAL OF HAZARDOUS MATERIALS 2023; 460:132460. [PMID: 37708646 DOI: 10.1016/j.jhazmat.2023.132460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 08/28/2023] [Accepted: 08/31/2023] [Indexed: 09/16/2023]
Abstract
It is widely recognized that wastewater containing boron is an environmental issue. Therefore, the development of adsorbents with excellent adsorption capacity, stability, and recyclability is essential in water treatment applications. A Fe3O4/PDA/Ti3C2Tx/PEI/DHHA nanocomposite has been prepared that can be used to separate and recover boric acid by adjusting the pH of the solution, based on the affinity theory of boric acid and cis-diol. Through series characterization, it was determined that the adsorbent possessed good magnetic properties, high hydrophilicity and high loading capacities. In this study, 4-formylphenylboronic acid (FPBA) was selected as the model compound. The nanocomposite exhibited an adsorption equilibrium time of 10 h and an adsorption capacity of 98.99 mg/g at pH = 8.5 and 25 °C. The Langmuir isothermal model and the quasi-secondary kinetic model are both appropriate for describing the adsorption process. Thermodynamic results suggest that adsorption is a spontaneous chemisorption process. Furthermore, the nanocomposite retains good regeneration performance after five adsorption-desorption cycles.
Collapse
Affiliation(s)
- Juan Bao
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, People's Republic of China
| | - Tingting Zhang
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, People's Republic of China
| | - Shiying Wu
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, People's Republic of China
| | - Lujie Li
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, People's Republic of China
| | - Xianhuai Huang
- School of Environment and Energy Engineering, Anhui Provincial Key Laboratory of Environmental Pollution Control and Resource Reuse, Anhui Jianzhu University, Hefei 230022, People's Republic of China
| | - Weihua Li
- School of Environment and Energy Engineering, Anhui Provincial Key Laboratory of Environmental Pollution Control and Resource Reuse, Anhui Jianzhu University, Hefei 230022, People's Republic of China
| | - Chang Liu
- Information Materials and Intelligent Sensing Laboratory of Anhui Province, Anhui University, Hefei 230601, People's Republic of China
| | - Jiansheng Li
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, People's Republic of China
| | - Rui Lu
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, People's Republic of China.
| |
Collapse
|