1
|
Lu L, Ju T, Fang Y, Hu J, Sun Z, Cheng Z, Li Q, Chen J, Chen DZ. Efficient prediction of gaseous n-hexane removal in two-phase partitioning bioreactors with silicone oil based on the mechanism and kinetic models. J Environ Sci (China) 2025; 154:729-740. [PMID: 40049911 DOI: 10.1016/j.jes.2024.05.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 05/11/2024] [Accepted: 05/12/2024] [Indexed: 05/13/2025]
Abstract
Two-phase partitioning bioreactors (TPPBs) have been widely used because they overcome the mass-transfer limitation of hydrophobic volatile organic compounds (VOCs) in waste gas biological treatments. Understanding the mechanisms of mass-transfer enhancement in TPPBs would enable efficient predictions for further industrial applications. In this study, influences of gradually increasing silicone oil ratio on the TPPB was explored, and a 94.35 % reduction of the n-hexane partition coefficient was observed with 0.1 vol.% silicone, which increased to 80.7 % along with a 40-fold removal efficiency enhancement in the stabilised removal period. The elimination capacity increased from 1.47 to 148.35 g/(m3·h), i.e. a 101-fold increase compared with that of the single-phase reactors, when 10 vol.% (3 Critical Micelle Concentration) silicone oil was added. The significantly promoted partition coefficient was the main reason for the mass transfer enhancement, which covered the negative influences of the decreased total mass-transfer coefficient with increasing silicone oil volume ratio. The gradually rising stirring rate was benefit to the n-hexane removal, which became negative when the dominant resistance shifted from mass transfer to biodegradation. Moreover, a mass-transfer-reaction kinetic model of the TPPB was constructed based on the balance of n-hexane concentration, dissolved oxygen and biomass. Similar to the mechanism, the partition factor was predicted sensitive to the removal performance, and another five sensitive parameters were found simultaneously. This forecasting method enables the optimisation of TPPB performance and provides theoretical support for hydrophobic VOCs degradation.
Collapse
Affiliation(s)
- Lichao Lu
- School of Petrochemical Engineering and Environment, Zhejiang Ocean University, Zhoushan 316004, China; Zhejiang Provincial Key Laboratory of Petrochemical Pollution Control, Zhoushan 316004, China
| | - Tuo Ju
- School of Petrochemical Engineering and Environment, Zhejiang Ocean University, Zhoushan 316004, China; Zhejiang Provincial Key Laboratory of Petrochemical Pollution Control, Zhoushan 316004, China
| | - Yangdan Fang
- School of Petrochemical Engineering and Environment, Zhejiang Ocean University, Zhoushan 316004, China; Zhejiang Provincial Key Laboratory of Petrochemical Pollution Control, Zhoushan 316004, China
| | - Jingtao Hu
- College of Environment, Zhejiang University of Technology, Hangzhou 310032, China
| | - Zhuqiu Sun
- School of Environmental Science and Engineering, Yancheng Institute of Technology, Yancheng 224051, China
| | - Zhuowei Cheng
- College of Environment, Zhejiang University of Technology, Hangzhou 310032, China
| | - Qian Li
- School of Petrochemical Engineering and Environment, Zhejiang Ocean University, Zhoushan 316004, China; SINOPEC Zhenhai Refining & Chemical Company, Ningbo 315207, China
| | - Jianmeng Chen
- College of Environment, Zhejiang University of Technology, Hangzhou 310032, China
| | - Dong-Zhi Chen
- School of Petrochemical Engineering and Environment, Zhejiang Ocean University, Zhoushan 316004, China; Zhejiang Provincial Key Laboratory of Petrochemical Pollution Control, Zhoushan 316004, China.
| |
Collapse
|
2
|
Yan X, Wang J, Chen C, Zheng K, Zhang P, Shen C. Remote Sulfonylation of Anilines with Sodium Sulfifinates Using Biomass-Derived Copper Catalyst. Molecules 2024; 29:4815. [PMID: 39459182 PMCID: PMC11509939 DOI: 10.3390/molecules29204815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 10/06/2024] [Accepted: 10/08/2024] [Indexed: 10/28/2024] Open
Abstract
A biomass-based catalyst, CuxOy@CS-400, was employed as an excellent recyclable heterogeneous catalyst to realize the sulfonylation reaction of aniline derivatives with sodium sulfinates. Various substrates were compatible, giving the desired products moderate to good yields at room temperature. In addition, this heterogeneous copper catalyst was also easy to recover and was recyclable up to five times without considerably deteriorating in catalytic efficiency. Importantly, these sulfonylation products were readily converted to the corresponding 4-sulfonyl anilines via a hydrolysis step. The method offers a unique strategy for synthesizing arylsulfones and has the potential to create new possibilities for developing heterogeneous copper-catalyzed C-H functionalizations.
Collapse
Affiliation(s)
- Xiaoping Yan
- Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, College of Biology and Environmental Engineering, Zhejiang Shuren University, Hangzhou 310015, China
| | - Jinguo Wang
- Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, College of Biology and Environmental Engineering, Zhejiang Shuren University, Hangzhou 310015, China
| | - Chao Chen
- Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, College of Biology and Environmental Engineering, Zhejiang Shuren University, Hangzhou 310015, China
| | - Kai Zheng
- Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, College of Biology and Environmental Engineering, Zhejiang Shuren University, Hangzhou 310015, China
| | - Pengfei Zhang
- Key Laboratory of Organosilicon Chemistry and Material Technology, College of Material, Chemistry and Chemical Engineering, Ministry of Education, Hangzhou Normal University, Hangzhou 311121, China
| | - Chao Shen
- Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, College of Biology and Environmental Engineering, Zhejiang Shuren University, Hangzhou 310015, China
| |
Collapse
|
3
|
Chen A, Wang C, Cheng Z, Kennes C, Qiu S, Chen J. Enhancing bacterial biodegradation of n-hexane by utilizing the adsorption capacity of non-degrading fungi. CHEMOSPHERE 2024; 363:142900. [PMID: 39029712 DOI: 10.1016/j.chemosphere.2024.142900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 07/16/2024] [Accepted: 07/17/2024] [Indexed: 07/21/2024]
Abstract
Biodegradation of hydrophobic volatile organic compounds (VOCs) such as n-hexane is limited by their poor accessibility. Constructing fungal-bacterial degradation alliances is an effective approach, but the role of those fungi without the capability to degrade VOCs may have been overlooked. In this study, a non-n-hexane-degrading fungus, Fusarium keratoplasticum FK, was utilized to enhance n-hexane degradation by the bacterium Mycobacterium neworleansense WCJ. It was shown that strain WCJ removed 64.84% of n-hexane (at a concentration of 648.20 mg L-1) over 3 d, and 84.04% after introducing strain FK. Microbial growth kinetic studies revealed that the growth of strain WCJ was also promoted. Through a stepwise adsorption-degradation experiment combined with qPCR technology, it was found that the strain WCJ could utilize the n-hexane pre-adsorbed by strain FK, with an increase in copy number from 108.2662 to 108.7731. Therefore, the non-degrading fungi can improved the accessibility of n-hexane by providing n-hexane adsorbed by the mycelium to the degrading bacteria. In addition, the adsorption tests and characterization of the fungal samples before and after Soxhlet extraction indicated that the adsorption of n-hexane on strain FK conformed to Lagergren's pseudo-second-order kinetics and Freundlich adsorption isotherms, and was correlated with the presence of lipids and nonpolar groups. This study emphasizes the potential role of non-degrading fungi in bioremediation and proposes a viable strategy to enhance the bacterial degradation of hydrophobic VOCs.
Collapse
Affiliation(s)
- Aobo Chen
- College of Environment, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Chenjie Wang
- College of Environment, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Zhuowei Cheng
- College of Environment, Zhejiang University of Technology, Hangzhou, 310014, China.
| | - Christian Kennes
- Chemical Engineering Laboratory, Faculty of Sciences and Centre for Advanced Scientific Research - Centro de Investigaciones Científicas Avanzadas (CICA), BIOENGIN Group, University of La Coruña, E-15008, A Coruña, Spain
| | - Songkai Qiu
- College of Environment, Zhejiang University of Technology, Hangzhou, 310014, China; Haina-Water Engineering Research Center, Yangtze Delta Region Institute of Tsinghua University, Zhejiang, Jiaxing, 314000, China
| | - Jianmeng Chen
- College of Environment, Zhejiang University of Technology, Hangzhou, 310014, China
| |
Collapse
|
4
|
Shu H, Ma Y, Lu H, Sun H, Zhao J, Ruan Z, Zhou J, Liu Y, Liu F, Xu J, Zheng Y, Guo H, Chen Q, Huang W. Simultaneous aerobic nitrogen and phosphate removal capability of novel salt-tolerant strain, Pseudomonas mendocina A4: Characterization, mechanism and application potential. BIORESOURCE TECHNOLOGY 2024; 393:130047. [PMID: 37989421 DOI: 10.1016/j.biortech.2023.130047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 11/06/2023] [Accepted: 11/15/2023] [Indexed: 11/23/2023]
Abstract
A salt-tolerant strain, Pseudomonas mendocina A4, was isolated from brackish-water ponds showing simultaneous heterotrophic nitrification-aerobic denitrification and phosphorus removal capability. The optimal conditions for nitrogen and phosphate removal of strain A4 were pH 7-8, carbon/nitrogen ratio 10, phosphorus/nitrogen ratio 0.2, temperature 30 °C, and salinity range of 0-5 % using sodium succinate as the carbon source. The nitrogen and phosphate removal efficiencies were 96-100 % and 88-96 % within 24 h, respectively. The nitrogen and phosphate removal processes were matched with the modified Gompertz model, and the underlying mechanisms were confirmed by the activities of key metabolic enzymes. Under 10 % salinity, the immobilization technology was employed to enhance the nitrogen and phosphate removal efficiencies of strain A4, achieving 87 % and 76 %, respectively. These findings highlight the potential application of strain A4 in both freshwater and marine culture wastewater treatment.
Collapse
Affiliation(s)
- Hu Shu
- School of Life Science, Guangzhou University, Guangzhou 510006, China
| | - Yonghao Ma
- Collaborative Innovation Center of Aquatic Sciences, Guangdong Key Laboratory of Animal Breeding and Nutrition, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China; School of Life Science, Guangzhou University, Guangzhou 510006, China
| | - Huijie Lu
- Collaborative Innovation Center of Aquatic Sciences, Guangdong Key Laboratory of Animal Breeding and Nutrition, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| | - Huiming Sun
- Collaborative Innovation Center of Aquatic Sciences, Guangdong Key Laboratory of Animal Breeding and Nutrition, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| | - Jichen Zhao
- Collaborative Innovation Center of Aquatic Sciences, Guangdong Key Laboratory of Animal Breeding and Nutrition, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| | - Zhuohao Ruan
- Collaborative Innovation Center of Aquatic Sciences, Guangdong Key Laboratory of Animal Breeding and Nutrition, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| | - Jiayi Zhou
- School of Life Science, Guangzhou University, Guangzhou 510006, China
| | - Yuting Liu
- School of Life Science, Guangzhou University, Guangzhou 510006, China
| | - Fengkun Liu
- Collaborative Innovation Center of Aquatic Sciences, Guangdong Key Laboratory of Animal Breeding and Nutrition, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China; Fishery College of Guangdong Ocean University, Zhanjiang 524088, China
| | - Jingxuan Xu
- Collaborative Innovation Center of Aquatic Sciences, Guangdong Key Laboratory of Animal Breeding and Nutrition, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China; Fishery College of Guangdong Ocean University, Zhanjiang 524088, China
| | - Yazhi Zheng
- Collaborative Innovation Center of Aquatic Sciences, Guangdong Key Laboratory of Animal Breeding and Nutrition, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China; Fishery College of Guangdong Ocean University, Zhanjiang 524088, China
| | - Hui Guo
- Fishery College of Guangdong Ocean University, Zhanjiang 524088, China
| | - Qionghua Chen
- School of Life Science, Guangzhou University, Guangzhou 510006, China
| | - Wen Huang
- Collaborative Innovation Center of Aquatic Sciences, Guangdong Key Laboratory of Animal Breeding and Nutrition, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China; Fishery College of Guangdong Ocean University, Zhanjiang 524088, China.
| |
Collapse
|
5
|
Wu Z, Cao X, Li M, Liu J, Li B. Treatment of volatile organic compounds and other waste gases using membrane biofilm reactors: A review on recent advancements and challenges. CHEMOSPHERE 2024; 349:140843. [PMID: 38043611 DOI: 10.1016/j.chemosphere.2023.140843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 11/18/2023] [Accepted: 11/27/2023] [Indexed: 12/05/2023]
Abstract
This article provides a comprehensive review of membrane biofilm reactors for waste gas (MBRWG) treatment, focusing on studies conducted since 2000. The first section discusses the membrane materials, structure, and mass transfer mechanism employed in MBRWG. The concept of a partial counter-diffusion biofilm in MBRWG is introduced, with identification of the most metabolically active region. Subsequently, the effectiveness of these biofilm reactors in treating single and mixed pollutants is examined. The phenomenon of membrane fouling in MBRWG is characterized, alongside an analysis of contributory factors. Furthermore, a comparison is made between membrane biofilm reactors and conventional biological treatment technologies, highlighting their respective advantages and disadvantages. It is evident that the treatment of hydrophobic gases and their resistance to volatility warrant further investigation. In addition, the emergence of the smart industry and its integration with other processes have opened up new opportunities for the utilization of MBRWG. Overcoming membrane fouling and developing stable and cost-effective membrane materials are essential factors for successful engineering applications of MBRWG. Moreover, it is worth exploring the mechanisms of co-metabolism in MBRWG and the potential for altering biofilm community structures.
Collapse
Affiliation(s)
- Ziqing Wu
- College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China; Tianjin Key Laboratory of Environmental Technology for Complex Trans-Media Pollution, Nankai University, Tianjin, 300350, China; Carbon Neutrality Interdisciplinary Science Centre, Nankai University, Tianjin, 300350, China
| | - Xiwei Cao
- College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China; Tianjin Key Laboratory of Environmental Technology for Complex Trans-Media Pollution, Nankai University, Tianjin, 300350, China; Carbon Neutrality Interdisciplinary Science Centre, Nankai University, Tianjin, 300350, China
| | - Ming Li
- College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China; Tianjin Key Laboratory of Environmental Technology for Complex Trans-Media Pollution, Nankai University, Tianjin, 300350, China; Carbon Neutrality Interdisciplinary Science Centre, Nankai University, Tianjin, 300350, China
| | - Jun Liu
- School of Marine Science and Engineering, State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou, Hainan, 570228, China
| | - Baoan Li
- College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China; Tianjin Key Laboratory of Environmental Technology for Complex Trans-Media Pollution, Nankai University, Tianjin, 300350, China; Carbon Neutrality Interdisciplinary Science Centre, Nankai University, Tianjin, 300350, China.
| |
Collapse
|
6
|
Lv S, Zheng F, Wang Z, Hayat K, Veiga MC, Kennes C, Chen J. Unveiling novel pathways and key contributors in the nitrogen cycle: Validation of enrichment and taxonomic characterization of oxygenic denitrifying microorganisms in environmental samples. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 908:168339. [PMID: 37931816 DOI: 10.1016/j.scitotenv.2023.168339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 10/19/2023] [Accepted: 11/03/2023] [Indexed: 11/08/2023]
Abstract
Microorganisms play a crucial role in both the nitrogen cycle and greenhouse gas emissions. A recent discovery has unveiled a new denitrification pathway called oxygenic denitrification, entailing the enzymatic reduction of nitrite to nitric oxide (NO) by a putative nitric oxide dismutase (nod) enzyme. In this study, the presence of the nod gene was detected and subsequently enriched in anaerobic-activated sludge, farmland soil, and paddy soil samples. After 150 days, the enriched samples exhibited significant denitrification, and concomitant oxygen production. The removal efficiency of nitrite ranged from 64.6 % to 79.0 %, while the oxygen production rate was between 15.4 μL/min and 18.6 μL/min when exposed to a sole nitrogen source of 80 mg/L sodium nitrite. Additionally, batch experiments and kinetic analyses revealed the intricate pathways and underlying mechanisms governing the oxygenic denitrification reaction by using CARBOXY-PTIO, 18O-labelled water, and acetylene to unravel the intricacies of the reaction. The quantitative polymerase chain reaction (qPCR) results indicated a significant surge in the abundance of nod genes, escalating from 7.59 to 10.12-fold. Moreover, analysis of 16S ribosomal DNA (rDNA) amplicons revealed Proteobacteria as the dominant phylum and Thauera as the main genus, with the presumed affiliation. In this study, a new nitrogen conversion pathway, oxygenic denitrification, was discovered in environmental samples. This process provides the possibility for the control of nitrous oxide in the treatment of nitrogenous wastewater.
Collapse
Affiliation(s)
- Sini Lv
- College of Environment, Zhejiang University of Technology, Hangzhou 310014, China
| | - Fengzhen Zheng
- Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, Interdisciplinary Research Academy, Zhejiang Shuren University, Hangzhou 310015, China
| | - Zeyu Wang
- Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, Interdisciplinary Research Academy, Zhejiang Shuren University, Hangzhou 310015, China
| | - Kashif Hayat
- Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, Interdisciplinary Research Academy, Zhejiang Shuren University, Hangzhou 310015, China
| | - María C Veiga
- Chemical Engineering Laboratory, Faculty of Sciences and Interdisciplinary Centre of Chemistry and Biology - Centro Interdisciplinar de Química y Biología (CICA), BIOENGIN group, University of La Coruña (UDC), E-15008 La Coruña, Spain
| | - Christian Kennes
- Chemical Engineering Laboratory, Faculty of Sciences and Interdisciplinary Centre of Chemistry and Biology - Centro Interdisciplinar de Química y Biología (CICA), BIOENGIN group, University of La Coruña (UDC), E-15008 La Coruña, Spain
| | - Jun Chen
- Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, Interdisciplinary Research Academy, Zhejiang Shuren University, Hangzhou 310015, China.
| |
Collapse
|
7
|
Wang J, Wu Y, Zhang C, Geng A, Sun Z, Yang J, Xi J, Wang L, Yang B. Effect of weak electrical stimulation on m-dichlorobenzene biodegradation in biotrickling filters: Insights from performance and microbial community analysis. BIORESOURCE TECHNOLOGY 2023; 390:129881. [PMID: 37852508 DOI: 10.1016/j.biortech.2023.129881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 10/14/2023] [Accepted: 10/14/2023] [Indexed: 10/20/2023]
Abstract
The microbial electrolysis cell coupled with the biotrickling filters (MEC-BTF) was developed for enhancing the biodegradation of gaseous m-dichlorobenzene (m-DCB) through weak electrical stimulation. The maximum removal efficiency and elimination capacity in MEC-BTF were 1.48 and 1.65 times higher than those in open-circuit BTF (OC-BTF), respectively. Weak electrical stimulation had a positive impact on the characteristics of the biofilm. Additionally, microbial community analysis revealed that weak electrical stimulation increased the abundance of key functional genera (e.g., Rhodanobacter and Bacillus) and genes (e.g., catA/E and E1.3.1.32), thereby accelerating reductive dechlorination and ring-opening of m-DCB. Macrogenomic sequencing further revealed that electron transfer pathway in MEC-BTF might be mediated through extracellular electroactive mediators and cytochromes.
Collapse
Affiliation(s)
- Jiajie Wang
- School of Environmental Science and Engineering, Yancheng Institute of Technology, Yancheng 224051, China
| | - Yu Wu
- School of Environment Science and Spatial Informatics, China University of Mining and Technology, Xuzhou 221116, China
| | - Caiyun Zhang
- School of Environmental Science and Engineering, Yancheng Institute of Technology, Yancheng 224051, China
| | - Anqi Geng
- School of Environmental Science and Engineering, Yancheng Institute of Technology, Yancheng 224051, China
| | - Zhuqiu Sun
- School of Environmental Science and Engineering, Yancheng Institute of Technology, Yancheng 224051, China
| | - Jiawei Yang
- School of Environmental Science and Engineering, Yancheng Institute of Technology, Yancheng 224051, China
| | - Jinying Xi
- Environmental Simulation and Pollution Control State Key Joint Laboratory, School of Environment, Tsinghua University, Beijing 100084, China
| | - Liping Wang
- School of Environment Science and Spatial Informatics, China University of Mining and Technology, Xuzhou 221116, China
| | - Bairen Yang
- School of Environmental Science and Engineering, Yancheng Institute of Technology, Yancheng 224051, China.
| |
Collapse
|