1
|
Waye AA, Moeller J, Veiga-Lopez A. Epidermal growth factor receptor in placental health and disease: pathways, dysfunction, and chemical disruption. Toxicol Sci 2025; 205:11-27. [PMID: 39985453 PMCID: PMC12038240 DOI: 10.1093/toxsci/kfaf024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2025] Open
Abstract
Formation of the placenta during gestation is required to support fetal growth and development. Derived from the placenta, trophoblast cells express nuclear and membrane-bound receptors. Among these receptors is the epidermal growth factor receptor (EGFR) which plays a key role in placental development. Activation of EGFR-mediated signaling in trophoblast cells regulates critical processes, such as proliferation, differentiation, invasion, and fusion during pregnancy, making it essential for normal placental formation. Dysfunction of EGFR in placental trophoblast cells has been associated with adverse pregnancy outcomes, including intrauterine growth restriction, preeclampsia, and preterm birth. Ubiquitous environmental chemicals, like polycyclic aromatic hydrocarbons, polychlorinated biphenyls, organochlorine pesticides, and bisphenols, have been reported to modulate EGFR signaling pathways, potentially contributing to placental dysfunction. This review explores the pivotal role of EGFR signaling in placental development and function, with a focus on how environmental chemicals interfere with EGFR-mediated pathways and placental cell functions as well as their implications for pregnancy outcomes. Findings presented herein underscore the need for further research into the effects of exposure to environmental chemicals on modulating EGFR signaling pathways in the context of placental health.
Collapse
Affiliation(s)
- Anita A Waye
- Department of Pathology, University of Illinois at Chicago, Chicago, IL 60612, United States
| | - Jacob Moeller
- Department of Pathology, University of Illinois at Chicago, Chicago, IL 60612, United States
| | - Almudena Veiga-Lopez
- Department of Pathology, University of Illinois at Chicago, Chicago, IL 60612, United States
- The Chicago Center for Health and Environment, University of Illinois at Chicago, Chicago, IL 60612, United States
| |
Collapse
|
2
|
Sondermann NC, Vogel CFA, Haarmann-Stemmann T. Dioxins do not only bind to AHR but also team up with EGFR at the cell-surface: a novel mode of action of toxicological relevance? EXCLI JOURNAL 2025; 24:184-197. [PMID: 39996234 PMCID: PMC11847957 DOI: 10.17179/excli2024-8038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Figures] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Accepted: 12/18/2024] [Indexed: 02/26/2025]
Abstract
Dioxins and dioxin-like compounds (DLCs) are highly toxic organic pollutants whose production and use are prohibited by international law. Despite this, these biopersistent and lipophilic chemicals are prevalent in the environment and accumulate in the food chain, posing significant health risks to consumers even at low exposure levels. Acute dioxin intoxication can cause chloracne, while chronic exposure has been associated with a wide range of adverse health effects, including carcinogenicity, reproductive and developmental disorders, immunotoxicity, and endocrine disruption. In the mid-1970s, scientists identified a transcription factor known as the aryl hydrocarbon receptor (AHR), which becomes activated upon binding of dioxins. AHR orchestrates numerous adaptive and maladaptive stress responses and is believed to mediate most, if not all, of the toxic effects triggered by dioxins and DLCs. Recent studies have provided mounting evidence that dioxins and dioxin-like polychlorinated biphenyls can inhibit growth factor-induced activation of the epidermal growth factor receptor (EGFR) by directly binding to its extracellular domain. This interaction prevents the activation of EGFR by polypeptide growth factors and downstream signal transduction. In this article, we explain this newly identified mechanism of action for dioxins and DLCs in detail and discuss its potential toxicological relevance by using two examples, i.e. breast cancer development and placental toxicity. Finally, we briefly refer to other environmental chemicals of global concern that, based on first published data, may act via the same mode of action. See also the graphical abstract(Fig. 1).
Collapse
Affiliation(s)
- Natalie C. Sondermann
- IUF - Leibniz Research Institute for Environmental Medicine, 40225 Düsseldorf, Germany
| | - Christoph F. A. Vogel
- Department of Environmental Toxicology and Center for Health and the Environment, University of California, Davis, CA 95616, USA
| | | |
Collapse
|
3
|
Sondermann NC, Momin AA, Arold ST, Haarmann-Stemmann T. Benzotriazole UV stabilizers disrupt epidermal growth factor receptor signaling in human cells. ENVIRONMENT INTERNATIONAL 2024; 190:108886. [PMID: 39024829 DOI: 10.1016/j.envint.2024.108886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 07/03/2024] [Accepted: 07/12/2024] [Indexed: 07/20/2024]
Abstract
Phenolic benzotriazole UV stabilizers (BUV) are commonly used additives in synthetic polymeric products, which constantly leak into the environment. They are persistent and bioaccumulative, and have been detected not only in fish, birds, and sea mammals, but also in humans, including breast milk samples. Several authorities including the European Chemical Agency already consider some BUVs as Substances of Very High Concern in need of further information, e.g. mechanistical studies and biomonitoring. In this study, we are addressing this need by investigating the effect of several BUVs on the activity of the human epidermal growth factor receptor (EGFR), an important regulator of cellular processes that has recently been identified as a cell-surface receptor for environmental organic chemicals. By combining in silico docking, mutant analyses, receptor binding and internalization assays, we demonstrate that BUVs, particularly the chlorinated variants, bind to the extracellular domain of EGFR and thereby prevent the binding of growth factors. Accordingly, BUVs can inhibit EGFR downstream events, such as ERK1/2 phosphorylation and DNA synthesis, in human keratinocytes. Our data establish EGFR as a plasma membrane receptor for BUVs, offering novel mechanistic insights into the biological effects induced by these widespread and persistent chemicals. The findings of this study may not only improve hazard assessment for BUVs, but also contribute to the development of novel EGFR-targeting drugs.
Collapse
Affiliation(s)
- Natalie C Sondermann
- IUF - Leibniz-Research Institute for Environmental Medicine, 40225 Düsseldorf, Germany
| | - Afaque A Momin
- Biological and Environmental Science and Engineering Division, Center of Excellence on Smart Health, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Kingdom of Saudi Arabia
| | - Stefan T Arold
- Biological and Environmental Science and Engineering Division, Center of Excellence on Smart Health, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Kingdom of Saudi Arabia
| | | |
Collapse
|
4
|
Dang Q, Zhu Y, Zhang Y, Hu Z, Wei Y, Chen Z, Jiang X, Cai X, Yu H. Nuclear Binding Protein 2/Nesfatin-1 Affects Trophoblast Cell Fusion during Placental Development via the EGFR-PLCG1-CAMK4 Pathway. Int J Mol Sci 2024; 25:1925. [PMID: 38339201 PMCID: PMC10856506 DOI: 10.3390/ijms25031925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 01/25/2024] [Accepted: 01/26/2024] [Indexed: 02/12/2024] Open
Abstract
Previous studies have shown that nuclear binding protein 2 (NUCB2) is expressed in the human placenta and increases with an increase in the syncytialization of trophoblast cells. This study aimed to investigate the role of NUCB2 in the differentiation and fusion of trophectoderm cells. In this study, the expression levels of NUCB2 and E-cadherin in the placentas of rats at different gestation stages were investigated. The results showed that there was an opposite trend between the expression of placental NUCB2 and E-cadherin in rat placentas in different trimesters. When primary human trophoblast (PHT) and BeWo cells were treated with high concentrations of Nesfatin-1, the trophoblast cell syncytialization was significantly inhibited. The effects of NUCB2 knockdown in BeWo cells and Forskolin-induced syncytialization were investigated. These cells showed a significantly decreased cell fusion rate. The mechanism underlying NUCB2-regulated trophoblast cell syncytialization was explored using RNA-Seq and the results indicated that the epidermal growth factor receptor (EGFR)-phospholipase C gamma 1 (PLCG1)-calmodulin-dependent protein kinase IV (CAMK4) pathway might be involved. The results suggested that the placental expression of NUCB2 plays an important role in the fusion of trophoblasts during differentiation via the EGFR-PLCG1-CAMK4 pathway.
Collapse
Affiliation(s)
- Qinyu Dang
- Department of Nutrition and Food Hygiene, School of Public Health, Capital Medical University, Beijing 100069, China; (Q.D.); (Y.Z.); (Y.Z.); (Z.H.); (Y.W.); (Z.C.); (X.C.)
| | - Yandi Zhu
- Department of Nutrition and Food Hygiene, School of Public Health, Capital Medical University, Beijing 100069, China; (Q.D.); (Y.Z.); (Y.Z.); (Z.H.); (Y.W.); (Z.C.); (X.C.)
| | - Yadi Zhang
- Department of Nutrition and Food Hygiene, School of Public Health, Capital Medical University, Beijing 100069, China; (Q.D.); (Y.Z.); (Y.Z.); (Z.H.); (Y.W.); (Z.C.); (X.C.)
| | - Zhuo Hu
- Department of Nutrition and Food Hygiene, School of Public Health, Capital Medical University, Beijing 100069, China; (Q.D.); (Y.Z.); (Y.Z.); (Z.H.); (Y.W.); (Z.C.); (X.C.)
| | - Yuchen Wei
- Department of Nutrition and Food Hygiene, School of Public Health, Capital Medical University, Beijing 100069, China; (Q.D.); (Y.Z.); (Y.Z.); (Z.H.); (Y.W.); (Z.C.); (X.C.)
| | - Zhaoyang Chen
- Department of Nutrition and Food Hygiene, School of Public Health, Capital Medical University, Beijing 100069, China; (Q.D.); (Y.Z.); (Y.Z.); (Z.H.); (Y.W.); (Z.C.); (X.C.)
| | - Xinyin Jiang
- Departments of Health and Nutrition Sciences, Brooklyn College of City University of New York, New York, NY 11210, USA;
| | - Xiaxia Cai
- Department of Nutrition and Food Hygiene, School of Public Health, Capital Medical University, Beijing 100069, China; (Q.D.); (Y.Z.); (Y.Z.); (Z.H.); (Y.W.); (Z.C.); (X.C.)
| | - Huanling Yu
- Departments of Health and Nutrition Sciences, Brooklyn College of City University of New York, New York, NY 11210, USA;
| |
Collapse
|
5
|
Waye AA, Ticiani E, Veiga-Lopez A. Chemical mixture that targets the epidermal growth factor pathway impairs human trophoblast cell functions. Toxicol Appl Pharmacol 2024; 483:116804. [PMID: 38185387 PMCID: PMC11212468 DOI: 10.1016/j.taap.2024.116804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Revised: 12/27/2023] [Accepted: 01/03/2024] [Indexed: 01/09/2024]
Abstract
Pregnant women are exposed to complex chemical mixtures, many of which reach the placenta. Some of these chemicals interfere with epidermal growth factor receptor (EGFR) activation, a receptor tyrosine kinase that modulates several placenta cell functions. We hypothesized that a mixture of chemicals (Chem-Mix) known to reduce EGFR activation (polychlorinated biphenyl (PCB)-126, PCB-153, atrazine, trans-nonachlor, niclosamide, and bisphenol S) would interfere with EGFR-mediated trophoblast cell functions. To test this, we determined the chemicals' EGFR binding ability, EGFR and downstream effectors activation, and trophoblast functions (proliferation, invasion, and endovascular differentiation) known to be regulated by EGFR in extravillous trophoblasts (EVTs). The Chem-Mix competed with EGF for EGFR binding, however only PCB-153, niclosamide, trans-nonachlor, and BPS competed for binding as single chemicals. The effects of the Chem-Mix on EGFR phosphorylation were tested by exposing the placental EVT cell line, HTR-8/SVneo to control (0.1% DMSO), Chem-Mix (1, 10, or 100 ng/ml), EGF (30 ng/ml), or Chem-Mix + EGF. The Chem-Mix - but not the individual chemicals - reduced EGF-mediated EGFR phosphorylation in a dose dependent manner, while no effect was observed in its downstream effectors (AKT and STAT3). None of the individual chemicals affected EVT cell invasion, but the Chem-Mix reduced EVT cell invasion independent of EGF. In support of previous studies that have explored chemicals targeting a specific pathway (estrogen/androgen receptor), current findings indicate that exposure to a chemical mixture that targets the EGFR pathway can result in a greater impact compared to individual chemicals in the context of placental cell functions.
Collapse
Affiliation(s)
- Anita A Waye
- Department of Pathology, University of Illinois at Chicago, Chicago, IL, USA
| | - Elvis Ticiani
- Department of Pathology, University of Illinois at Chicago, Chicago, IL, USA
| | - Almudena Veiga-Lopez
- Department of Pathology, University of Illinois at Chicago, Chicago, IL, USA; The Chicago Center for Health and Environment, University of Illinois at Chicago, Chicago, IL, USA.
| |
Collapse
|