1
|
Zhang D, Yan P, Yu H, Sun J, Zhu S, Zhao XE. Ratiometric sensor based on Ag +-mediated luminescence of Tb-DNA complexes for visual detection of 4-aminophenol. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2025; 330:125659. [PMID: 39731926 DOI: 10.1016/j.saa.2024.125659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 12/16/2024] [Accepted: 12/21/2024] [Indexed: 12/30/2024]
Abstract
Development of accurate, convenient and portable methods for monitoring 4-aminophenol (4-AP) is extremely important because of its strong toxicity. Here, a ratiometric fluorescence sensor based on Ag+-enhanced luminescence of Tb-DNA complexes has been presented for the detection of 4-AP. The luminescence of Tb-DNA complexes is enhanced about 30 times by Ag+, which can trigger energy transfer from DNA to Tb3+ more efficiently. In the presence of 4-AP, Ag+ can be reduced into Ag0 owing to its strong reducibility, inducing the decrease of Tb-DNA complexes at 545 nm remarkably. Besides, 4-AP exhibits intrinsic fluorescence at 375 nm under the same conditions. Therefore, ratiometric detection of 4-AP can be achieved using F375/F545 as readout with a detection limit of 0.4 μM. Real water samples have been tsted to evaluate this method in practical application and satisfactory results have been obtained. Furthermore, the addition of 4-AP into Tb-DNA-Ag+ system induces a visible color variation from green to bluish violet, enabling visual detection of 4-AP under the assistance of a smartphone.
Collapse
Affiliation(s)
- Dong Zhang
- Key Laboratory of Catalytic Conversion and Clean Energy in Universities of Shandong Province, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu City 273165, Shandong, China
| | - Ping Yan
- Department of Internal Medicine, University Hospital, Qufu Normal University, Qufu City 273165, Shandong, China
| | - Hong Yu
- Key Laboratory of Catalytic Conversion and Clean Energy in Universities of Shandong Province, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu City 273165, Shandong, China
| | - Jing Sun
- Qinghai Key Laboratory of Qinghai-Tibet Plateau Biological Resources, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining City 810001, Qinghai, China
| | - Shuyun Zhu
- Key Laboratory of Catalytic Conversion and Clean Energy in Universities of Shandong Province, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu City 273165, Shandong, China.
| | - Xian-En Zhao
- Key Laboratory of Catalytic Conversion and Clean Energy in Universities of Shandong Province, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu City 273165, Shandong, China.
| |
Collapse
|
2
|
Ghaani M, Azimzadeh M, Büyüktaş D, Carullo D, Farris S. Electrochemical Sensors in the Food Sector: A Review. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:24170-24190. [PMID: 39453461 DOI: 10.1021/acs.jafc.4c09423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/26/2024]
Abstract
In a world that is becoming increasingly concerned with health, safety, and the sustainability of food supply chains, the control and assurance of food quality have become of utmost importance. This review examines the application and potential of electrochemical sensors in the dynamic field of food science to meet these expanding demands. The article introduces electrochemical sensors and describes their operational mechanics and the components contributing to their function. A summary of the most prevalent electrochemical methods outlines the diverse food analysis techniques available. The review shifts to discussing the food science applications of these sensors, highlighting their crucial role in detecting compounds in food samples like meat, fish, juice, and milk for contemporary quality control. This paper showcases electrochemical sensors' utility in food analysis, underscoring their significance as powerful, efficient tools for maintaining food safety and how they could transform our approach to global food quality control and assurance.
Collapse
Affiliation(s)
- Masoud Ghaani
- DeFENS, Department of Food, Environmental and Nutritional Sciences, Food Packaging Lab, University of Milan, via Celoria 2 - I, 20133 Milan, Italy
- Department of Civil, Structural & Environmental Engineering, Trinity College Dublin, D02 PN40 Dublin, Ireland
| | - Mostafa Azimzadeh
- Department of Mechanical Engineering, University of Victoria, Victoria, British Columbia V8P 5C2, Canada
- Laboratory for Innovations in MicroEngineering (LiME), Department of Mechanical Engineering, University of Victoria, Victoria, British Columbia V8P 5C2, Canada
| | - Duygu Büyüktaş
- Department of Food Engineering, Faculty of Engineering, Izmir Institute of Technology, Gülbahçe Köyü, Urla, Izmir 35430, Turkey
| | - Daniele Carullo
- DeFENS, Department of Food, Environmental and Nutritional Sciences, Food Packaging Lab, University of Milan, via Celoria 2 - I, 20133 Milan, Italy
| | - Stefano Farris
- DeFENS, Department of Food, Environmental and Nutritional Sciences, Food Packaging Lab, University of Milan, via Celoria 2 - I, 20133 Milan, Italy
| |
Collapse
|
3
|
Seifi A, Afkhami A, Madrakian T. Improved MnO 2 based electrode performance arising from step by step heat treatment during electrodeposition of MnO 2 for determination of paracetamol, 4-aminophenol, and 4-nitrophenol. Sci Rep 2024; 14:26577. [PMID: 39496733 PMCID: PMC11535433 DOI: 10.1038/s41598-024-78487-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Accepted: 10/31/2024] [Indexed: 11/06/2024] Open
Abstract
The design of electrochemical sensors is crucial considering important factors such as efficiency, low cost, biocompatibility, and availability. Manganese oxides are readily available, low-cost, and biocompatible materials, but their low conductivity limits their efficiency as sensors. Today, morphology engineering of manganese oxide has been one of the most common research topics, because manganese oxides' electrochemical properties are highly dependent on their morphologies. In this study, a method for reducing the charge transfer resistance (Rct) of MnO2-based electrodes was established by the cyclic voltammetry technique accompanied by step-by-step heat treatment to electrodeposition MnO2 nanofilm, which remarkably improved the Rct. Next, the sensing performance of MnO2/FTO for two separate measurements was examined, one for the simultaneous measurement of paracetamol (PAR) and 4-aminophenol (4-APh), and the other for the measurement of 4-nitrophenol (4-NP). Under the optimum conditions, the linear ranges of 4-APh, PAR, and 4-NP, were 0.8 to 22.0 µM, 2.0 to 55.0 µM, and 0.1-250 µM, with limits of detection (LOD) of 0.19 µM, 0.60 µM, and 0.01 µM, respectively. It also was unaffected by a 200-fold excess of interferences. In addition, the designed sensor was successfully applied to the analysis of real samples.
Collapse
Affiliation(s)
- Afsaneh Seifi
- Department of Analytical Chemistry, Faculty of Chemistry and Petroleum Sciences, Bu-Ali Sina University, Hamedan, Iran
| | - Abbas Afkhami
- Department of Analytical Chemistry, Faculty of Chemistry and Petroleum Sciences, Bu-Ali Sina University, Hamedan, Iran.
- D-8 International University, Hamedan, Iran.
| | - Tayyebeh Madrakian
- Department of Analytical Chemistry, Faculty of Chemistry and Petroleum Sciences, Bu-Ali Sina University, Hamedan, Iran
| |
Collapse
|
4
|
Manickaraj SSM, Pandiyarajan S, Liao AH, Ramanathan S, Baskaran G, Selvaraj M, A Assiri M, Chuang HC. Supercritical-CO 2 mediated preparation of porous carbon from Araucaria heterophylla biomass: A proficient nanomolar detection platform for phenolic water pollutant. CHEMOSPHERE 2024; 364:143050. [PMID: 39121967 DOI: 10.1016/j.chemosphere.2024.143050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 06/23/2024] [Accepted: 08/06/2024] [Indexed: 08/12/2024]
Abstract
4-aminophenol (AP), an aromatic phenolic compound, is commonly found in commercial products that eventually enter and pollute environmental water sources. The precise detection and quantification of AP in environmental samples are critical for comprehensively assessing contamination levels, safeguarding public health, and formulating effective remediation strategies. In the shed of light, this work proposes an electrochemical sensing platform for detecting and quantifying AP using Araucaria heterophylla biomass-derived activated carbon (AH-AC) prepared via the SC-CO2 pathway. To evaluate the significance of SC-CO2-mediated chemical activation (SC-AHAC), a comparative study with conventional activation methods (C-AHAC) was also conducted. The physical characterizations such as structural, morphological, optical, and elemental analysis demonstrate the greater ID/IG value and enhanced surface functionalities of SC-AHAC than C-AHAC. The obtained lower empirical factor (R) value of 1.89 for SC-AHAC suggests increased disorder and a higher presence of single-layer amorphous carbon compared to C-AHAC (2.03). In the electrochemical analysis, the active surface area of the SC-AHAC modified electrode (0.069 cm2) is higher than that of the C-AHAC modified electrode (0.061 cm2), demonstrating the significance of SC-CO2 activation. Further, the quantitative analysis on SC-AHAC@SPCE resulted in a sensitivity of 3.225 μA μM-1 cm-2 with the detection limit and quantification limit of 2.13 and 7.11 nM L-1, respectively, in the linear range of 0.01-582.5 μM L-1 at the oxidation potential of 0.13V. This suggests that the prepared SC-AHAC could be a promising electrocatalyst for AP detection in the environmental and healthcare sectors.
Collapse
Affiliation(s)
- Shobana Sebastin Mary Manickaraj
- Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, Taipei, 106344, Taiwan; Department of Mechanical Engineering, National Taipei University of Technology, Taipei, 106344, Taiwan
| | - Sabarison Pandiyarajan
- Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, Taipei, 106344, Taiwan; Department of Mechanical Engineering, National Taipei University of Technology, Taipei, 106344, Taiwan
| | - Ai-Ho Liao
- Graduate Institute of Biomedical Engineering, National Taiwan University of Science and Technology, Taipei, 106335, Taiwan; Department of Biomedical Engineering, National Defense Medical Center, Taipei, 114201, Taiwan
| | - Subramanian Ramanathan
- Department of Chemical Technology, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand
| | | | - Manickam Selvaraj
- Department of Chemistry, Faculty of Science, King Khalid University, Abha, 61413, Saudi Arabia; Research Centre for Advanced Materials Science (RCAMS), King Khalid University, PO Box 9004, Abha 61413, Saudi Arabia
| | - Mohammed A Assiri
- Department of Chemistry, Faculty of Science, King Khalid University, Abha, 61413, Saudi Arabia; Research Centre for Advanced Materials Science (RCAMS), King Khalid University, PO Box 9004, Abha 61413, Saudi Arabia
| | - Ho-Chiao Chuang
- Department of Mechanical Engineering, National Taipei University of Technology, Taipei, 106344, Taiwan.
| |
Collapse
|
5
|
Xu Q, Xiao Z, Yang Q, Yu T, Deng X, Chen N, Huang Y, Wang L, Guo J, Wang J. Hydrogel-based cardiac repair and regeneration function in the treatment of myocardial infarction. Mater Today Bio 2024; 25:100978. [PMID: 38434571 PMCID: PMC10907859 DOI: 10.1016/j.mtbio.2024.100978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 12/22/2023] [Accepted: 01/24/2024] [Indexed: 03/05/2024] Open
Abstract
A life-threatening illness that poses a serious threat to human health is myocardial infarction. It may result in a significant number of myocardial cells dying, dilated left ventricles, dysfunctional heart function, and ultimately cardiac failure. Based on the development of emerging biomaterials and the lack of clinical treatment methods and cardiac donors for myocardial infarction, hydrogels with good compatibility have been gradually applied to the treatment of myocardial infarction. Specifically, based on the three processes of pathophysiology of myocardial infarction, we summarized various types of hydrogels designed for myocardial tissue engineering in recent years, including natural hydrogels, intelligent hydrogels, growth factors, stem cells, and microRNA-loaded hydrogels. In addition, we also describe the heart patch and preparation techniques that promote the repair of MI heart function. Although most of these hydrogels are still in the preclinical research stage and lack of clinical trials, they have great potential for further application in the future. It is expected that this review will improve our knowledge of and offer fresh approaches to treating myocardial infarction.
Collapse
Affiliation(s)
- Qiaxin Xu
- Department of Pharmacy, The First Affiliated Hospital of Jinan University, Guangzhou, 510630, China
- The Guangzhou Key Laboratory of Basic and Translational Research on Chronic Diseases, Jinan University, Guangzhou, 510630, China
| | - Zeyu Xiao
- The Guangzhou Key Laboratory of Basic and Translational Research on Chronic Diseases, Jinan University, Guangzhou, 510630, China
- The Guangzhou Key Laboratory of Molecular and Functional Imaging for Clinical Translation, Jinan University, Guangzhou, 510630, China
| | - Qianzhi Yang
- Department of Pharmacy, The First Affiliated Hospital of Jinan University, Guangzhou, 510630, China
- The Guangzhou Key Laboratory of Basic and Translational Research on Chronic Diseases, Jinan University, Guangzhou, 510630, China
| | - Tingting Yu
- Department of Pharmacy, The First Affiliated Hospital of Jinan University, Guangzhou, 510630, China
- The Guangzhou Key Laboratory of Basic and Translational Research on Chronic Diseases, Jinan University, Guangzhou, 510630, China
| | - Xiujiao Deng
- Department of Pharmacy, The First Affiliated Hospital of Jinan University, Guangzhou, 510630, China
- The Guangzhou Key Laboratory of Basic and Translational Research on Chronic Diseases, Jinan University, Guangzhou, 510630, China
| | - Nenghua Chen
- Department of Pharmacy, The First Affiliated Hospital of Jinan University, Guangzhou, 510630, China
- The Guangzhou Key Laboratory of Basic and Translational Research on Chronic Diseases, Jinan University, Guangzhou, 510630, China
| | - Yanyu Huang
- Department of Biochemistry and Molecular Medicine, University of California Davis, Sacramento, CA, 95817, USA
| | - Lihong Wang
- The Guangzhou Key Laboratory of Basic and Translational Research on Chronic Diseases, Jinan University, Guangzhou, 510630, China
- Department of Endocrinology, The First Affiliated Hospital of Jinan University, Guangzhou, 510630, China
| | - Jun Guo
- The Guangzhou Key Laboratory of Basic and Translational Research on Chronic Diseases, Jinan University, Guangzhou, 510630, China
- Department of Cardiology, The First Affiliated Hospital of Jinan University, Guangzhou, 510630, China
| | - Jinghao Wang
- Department of Pharmacy, The First Affiliated Hospital of Jinan University, Guangzhou, 510630, China
- The Guangzhou Key Laboratory of Basic and Translational Research on Chronic Diseases, Jinan University, Guangzhou, 510630, China
| |
Collapse
|
6
|
Wang R. The hidden linkage of corporate efficiency and green innovation with human resource management practices: a newly perspective from China. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:12511-12527. [PMID: 38233710 DOI: 10.1007/s11356-023-31554-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 10/03/2023] [Indexed: 01/19/2024]
Abstract
It is disappointing that despite having access to human resources at very little cost, rising countries' administrations are so ineffective. It is often believed that an organization's unheralded employees hold the keys to its success or failure. A person's mood and demeanor may be influenced by a variety of factors. Human resource management (HRM) methods have been created and used by scientists all over the globe in an effort to maximize the potential of their most important asset. Eco-friendly inventions are crucial to the survival of humanity and the prosperity of enterprises throughout the world. Therefore, the purpose of this research is to look at how green innovation affects both the environment and businesses. Green process metrics and green product metrics, for example, may have an impact on green innovation, which is why these metrics are important to track. The second primary goal of this research is to learn how the commitment and HR practices of top management shape the link between green innovation and economic and environmental success. A self-reported poll was taken by 370 employees in China's manufacturing industry. A partial least square structural equation modelling was used to examine the data collected between April 2021 and February 2022. This research employed confirmatory component analysis, a standard technique of structural equation modelling (SEM) for examining both overt and covert variables and indicators, to assess the reflecting indicators measurement model. The findings suggest that HRM has an effect on green innovation that is both positive and statistically significant. The environment and the economy benefit greatly from green innovations. Relationships between HRM and green innovation have no unfavorable implications on business results or the environment. However, human resource management has the potential to boost organizations' prosocial impact. In a three-way interaction (moderated moderation) model, organizational success is found to have a significant role, whereas environmental and organizational success play just a little one. To improve economic and environmental outcomes across all sectors, this study adds to the existing body of knowledge and argues for the wider implementation of green innovation practices. Human resource managers play a crucial role in developing a company's culture and values. The findings suggest that with leadership's blessing, green technologies may spread across a company.
Collapse
Affiliation(s)
- Ran Wang
- Department of Management, Shijiazhuang Information Engineering Vocational College, Shijiazhuang, 050000, Hebei, China.
| |
Collapse
|