1
|
Abbas-Ordoo Z, Mobinikhaledi A, Bodaghifard MA. Cu immobilized on MgZnFe 2O 4 nanoparticles as a green catalyst in the synthesis of mono and bis-polyhydroquinolines. Heliyon 2024; 10:e37151. [PMID: 39296211 PMCID: PMC11409090 DOI: 10.1016/j.heliyon.2024.e37151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 08/25/2024] [Accepted: 08/28/2024] [Indexed: 09/21/2024] Open
Abstract
In this study, a green and environmentally friendly catalyst (MgZnFe2O4@ZSC-Cu) was synthesized using a simple and clean method. The catalyst was prepared by combining MgZnFe2O4 MNPs with Ziziphus spina-christi extract (ZSC) and immobilizing Cu ions on the resulting material. The catalyst was thoroughly characterized using various techniques including Fourier-transform infrared spectroscopy (FT-IR), X-ray diffraction (XRD), Field emission-scanning electron microscopy (FE-SEM), Energy dispersive X-ray analyzer (EDS), Inductively coupled plasma-optical emission spectrometry (ICP-OES), Thermogravimetric (TGA), and Vibrating sample magnetometry (VSM) analyses. The catalytic activity of MgZnFe2O4@ZSC-Cu was evaluated in the Hantzsch reaction involving a four-component reaction with ethyl acetoacetate or dimedone/cyclohexane-1,3-dione, various aromatic aldehydes/di-aldehydes, and ammonium acetate. The structure of the newly formed bis compound and polyhydroquinolines was determined using FT-IR, 1H and 13C NMR spectroscopy. This catalyst provides numerous benefits, such as simple separation using a magnet, less reaction times, high product yield, solvent-free conditions, straightforward work-up, and the capability to reuse the catalyst for up to five cycles.
Collapse
Affiliation(s)
- Zahra Abbas-Ordoo
- Department of Chemistry, Faculty of Science, Arak University, Arak, 38481-77584, Iran
| | - Akbar Mobinikhaledi
- Department of Chemistry, Faculty of Science, Arak University, Arak, 38481-77584, Iran
- Institute of Nanosciences and Nanotechnology, Arak University, Arak, Iran
| | - Mohammad Ali Bodaghifard
- Department of Chemistry, Faculty of Science, Arak University, Arak, 38481-77584, Iran
- Institute of Nanosciences and Nanotechnology, Arak University, Arak, Iran
| |
Collapse
|
2
|
Chauhan C, Tanuj, Kumar R, Kumar J, Sharma S, Benmansour S, Kumar S. Synthesis, structural characterization, DFT and molecular dynamics simulations of dinuclear (μ-hydroxo)-bridged triethanolamine copper(II) complexes: efficient candidates towards visible light-mediated photo-Fenton degradation of organic dyes. Dalton Trans 2024. [PMID: 39087793 DOI: 10.1039/d4dt01463d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/02/2024]
Abstract
Multinuclear (di/tri) copper(II) complexes bridged through hydroxyl groups are very interesting coordination complexes owing to their potential applications in various fields. In this work, three novel dinuclear (μ-hydroxo)-bridged copper(II) complexes in the crystal form, namely, [Cu2(3,5-DIFLB)2(H2tea)2](H2O) (1), [Cu2(4-ClB)2(H2tea)2](H2O) (2), and [Cu2(4-ETHB)2(H2tea)2](H2O)2 (3) (where DIFLB = difluorobenzoate, CLB = chlorobenzoate, ETHB = ethoxybenzoate, and H3tea = triethanolamine), were isolated at room temperature using methanol and water in a 4 : 1 v/v ratio as a solvent. Furthermore, all three complexes (1-3) were characterised using spectroscopic (UV-vis, DRS, and FT-IR), electrochemical (CV) and single-crystal X-ray diffraction techniques. Structural insights gained by packing analysis revealed the role of steric constraints of substituents and various non-covalent interactions in lattice stabilization, which were indeed supported by theoretical and molecular electrostatic potential illustrations. Hirshfeld surface analysis provided quantitative verification about various non-covalent interactions (interatomic contacts) involved in the packing of molecules. Interestingly, as a potential application, complexes 1-3 all exhibited remarkable visible light-mediated photo-Fenton degradation of approximately 98% for 50 ppm concentration of organic dyes (fuchsin basic (FB) and methyl orange (MO)) in 90 minutes with the optimized conditions of 1 mg mL-1 of dye solution. In all the cases, dye degradation by these materials was ascribed to the symbiotic relations among the molecular structures of complexes 1-3, which were endowed with various electron-withdrawing and electron-releasing substituents and ionic strength, with respect to the structure, shape and interacting patterns of dye molecules. The adsorption mechanism indicates that various weak interactions between the donor and acceptor groups of complexes and dyes, such as electrostatic, hydrogen bonding, and direct coordination to metal sites, play a crucial role, which is confirmed by molecular dynamics (MD) simulations. Theoretical studies by DFT-based descriptors, molecular electrostatic potentials, and band gaps provided deep insights into various electronic and reactivity parameters. For subsequent processes of dye degradation, complexes 1-3 were stable and recoverable. The successful integration of experimental and theoretical approaches sheds light on copper-based dinuclear stable coordination complexes, showcasing a significant step towards the development of novel heterogeneous photo-Fenton catalysts.
Collapse
Affiliation(s)
- Chetan Chauhan
- Department of Chemistry, Himachal Pradesh University, Summer Hill, Shimla, India.
| | - Tanuj
- Department of Chemistry, Himachal Pradesh University, Summer Hill, Shimla, India.
| | - Rajesh Kumar
- Department of Chemistry, Himachal Pradesh University, Summer Hill, Shimla, India.
| | - Jitendra Kumar
- Department of Chemistry, MLPK, College, Balrampur, UP, India
| | - Subhash Sharma
- CONAHCyT-Centro de Nanociencias y Nanotecnología. Universidad Nacional Autónoma de México, Km 107 Carretera Tijuana-Ensenada AP14, Ensenada, 22860, B.C, Mexico
| | - Samia Benmansour
- Departamento de Química Inorgánica, Edificio F Grupo M4 (Materiales moleculares Multifuncionales y Modulables) C/Doctor Moliner, 50 46100-Burjassot, Spain.
| | - Santosh Kumar
- Department of Chemistry, Himachal Pradesh University, Summer Hill, Shimla, India.
| |
Collapse
|
3
|
Ognjanović M, Bošković M, Kolev H, Dojčinović B, Vranješ-Đurić S, Antić B. Synthesis, Surface Modification and Magnetic Properties Analysis of Heat-Generating Cobalt-Substituted Magnetite Nanoparticles. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:782. [PMID: 38727376 PMCID: PMC11085861 DOI: 10.3390/nano14090782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 04/24/2024] [Accepted: 04/25/2024] [Indexed: 05/12/2024]
Abstract
Here, we present the results of the synthesis, surface modification, and properties analysis of magnetite-based nanoparticles, specifically Co0.047Fe2.953O4 (S1) and Co0.086Fe2.914O4 (S2). These nanoparticles were synthesized using the co-precipitation method at 80 °C for 2 h. They exhibit a single-phase nature and crystallize in a spinel-type structure (space group Fd3¯m). Transmission electron microscopy analysis reveals that the particles are quasi-spherical in shape and approximately 11 nm in size. An observed increase in saturation magnetization, coercivity, remanence, and blocking temperature in S2 compared to S1 can be attributed to an increase in magnetocrystalline anisotropy due to the incorporation of Co ions in the crystal lattice of the parent compound (Fe3O4). The heating efficiency of the samples was determined by fitting the Box-Lucas equation to the acquired temperature curves. The calculated Specific Loss Power (SLP) values were 46 W/g and 23 W/g (under HAC = 200 Oe and f = 252 kHz) for S1 and S2, respectively. Additionally, sample S1 was coated with citric acid (Co0.047Fe2.953O4@CA) and poly(acrylic acid) (Co0.047Fe2.953O4@PAA) to obtain stable colloids for further tests for magnetic hyperthermia applications in cancer therapy. Fits of the Box-Lucas equation provided SLP values of 21 W/g and 34 W/g for CA- and PAA-coated samples, respectively. On the other hand, X-ray photoelectron spectroscopy analysis points to the catalytically active centers Fe2+/Fe3+ and Co2+/Co3+ on the particle surface, suggesting possible applications of the samples as heterogeneous self-heating catalysts in advanced oxidation processes under an AC magnetic field.
Collapse
Affiliation(s)
- Miloš Ognjanović
- VINČA Institute of Nuclear Sciences, National Institute of the Republic of Serbia, University of Belgrade, 11351 Belgrade, Serbia; (M.B.); (S.V.-Đ.); (B.A.)
| | - Marko Bošković
- VINČA Institute of Nuclear Sciences, National Institute of the Republic of Serbia, University of Belgrade, 11351 Belgrade, Serbia; (M.B.); (S.V.-Đ.); (B.A.)
| | - Hristo Kolev
- Institute of Catalysis, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria;
| | - Biljana Dojčinović
- Institute of Chemistry, Technology and Metallurgy, National Institute of the Republic of Serbia, University of Belgrade, 11000 Belgrade, Serbia;
| | - Sanja Vranješ-Đurić
- VINČA Institute of Nuclear Sciences, National Institute of the Republic of Serbia, University of Belgrade, 11351 Belgrade, Serbia; (M.B.); (S.V.-Đ.); (B.A.)
| | - Bratislav Antić
- VINČA Institute of Nuclear Sciences, National Institute of the Republic of Serbia, University of Belgrade, 11351 Belgrade, Serbia; (M.B.); (S.V.-Đ.); (B.A.)
| |
Collapse
|
4
|
Tian L, Tang ZJ, Hao LY, Dai T, Zou JP, Liu ZQ. Efficient Homolytic Cleavage of H 2O 2 on Hydroxyl-Enriched Spinel CuFe 2O 4 with Dual Lewis Acid Sites. Angew Chem Int Ed Engl 2024; 63:e202401434. [PMID: 38425264 DOI: 10.1002/anie.202401434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Revised: 02/28/2024] [Accepted: 02/28/2024] [Indexed: 03/02/2024]
Abstract
Traditional H2O2 cleavage mediated by macroscopic electron transfer (MET) not only has low utilization of H2O2, but also sacrifices the stability of catalysts. We present a non-redox hydroxyl-enriched spinel (CuFe2O4) catalyst with dual Lewis acid sites to realize the homolytic cleavage of H2O2. The results of systematic experiments, in situ characterizations, and theoretical calculations confirm that tetrahedral Cu sites with optimal Lewis acidity and strong electron delocalization can synergistically elongate the O-O bonds (1.47 Å → 1.87 Å) in collaboration with adjacent bridging hydroxyl (another Lewis acid site). As a result, the free energy of H2O2 homolytic cleavage is decreased (1.28 eV → 0.98 eV). H2O2 can be efficiently split into ⋅OH induced by hydroxyl-enriched CuFe2O4 without MET, which greatly improves the catalyst stability and the H2O2 utilization (65.2 %, nearly 2 times than traditional catalysts). The system assembled with hydroxyl-enriched CuFe2O4 and H2O2 affords exceptional performance for organic pollutant elimination. The scale-up experiment using a continuous flow reactor realizes long-term stability (up to 600 mL), confirming the tremendous potential of hydroxyl-enriched CuFe2O4 for practical applications.
Collapse
Affiliation(s)
- Lei Tian
- School of Chemistry and Chemical Engineering/Institute of Clean Energy and Materials/Guangzhou Key Laboratory for Clean Energy and Materials/Huangpu Hydrogen Innovation Center/Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou, 510006, P. R. China
- National-Local Joint Engineering Research Center of Heavy Metals Pollutants Control and Resource Utilization, Nanchang Hangkong University, Nanchang, Jiangxi, 330063, P. R. China
| | - Zi-Jun Tang
- School of Chemistry and Chemical Engineering/Institute of Clean Energy and Materials/Guangzhou Key Laboratory for Clean Energy and Materials/Huangpu Hydrogen Innovation Center/Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou, 510006, P. R. China
| | - Le-Yang Hao
- School of Chemistry and Chemical Engineering/Institute of Clean Energy and Materials/Guangzhou Key Laboratory for Clean Energy and Materials/Huangpu Hydrogen Innovation Center/Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou, 510006, P. R. China
| | - Ting Dai
- National-Local Joint Engineering Research Center of Heavy Metals Pollutants Control and Resource Utilization, Nanchang Hangkong University, Nanchang, Jiangxi, 330063, P. R. China
| | - Jian-Ping Zou
- National-Local Joint Engineering Research Center of Heavy Metals Pollutants Control and Resource Utilization, Nanchang Hangkong University, Nanchang, Jiangxi, 330063, P. R. China
| | - Zhao-Qing Liu
- School of Chemistry and Chemical Engineering/Institute of Clean Energy and Materials/Guangzhou Key Laboratory for Clean Energy and Materials/Huangpu Hydrogen Innovation Center/Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou, 510006, P. R. China
| |
Collapse
|
5
|
Almeida JC, Cardoso CED, Tavares DS, Trindade T, Vale C, Freitas R, Pereira E. Removal of chromium(III) from contaminated waters using cobalt ferrite: how safe is remediated water to aquatic wildlife? ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:28789-28802. [PMID: 38558332 PMCID: PMC11058620 DOI: 10.1007/s11356-024-32741-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 02/28/2024] [Indexed: 04/04/2024]
Abstract
The release of hazardous elements by industrial effluents to aquatic ecosystems is a potential threat to the environment. Chromium (Cr) is one of the elements whose levels in several freshwater ecosystems should be reduced to promote water reuse. In recent years, magnetic materials have gained increasing interest as sorbents because of their easy removal from treated water through magnetic separation. In this study, colloidal cobalt ferrite (CoFe2O4) particles were investigated as magnetic sorbents for chromium-aqueous chemical species. The oxidative stress responses of Mytilus galloprovincialis mussels exposed to 200 μg/L of Cr, resembling remediated water, were evaluated. More than 95% of Cr was removed from contaminated solutions by CoFe2O4 aqueous suspensions at pH 6 and pH 10. The kinetics of sorption experiments were examined using pseudo-1st order, pseudo-2nd order and Elovich models to evaluate which mathematical model has a better adjustment to the experimental data. The present study revealed that the levels of Cr that remained in remediated water induced limited biochemical changes in mussels, being considered safe for aquatic systems. Overall, the use of cobalt ferrite-based sorbents may constitute a promising approach to remediate contaminated water.
Collapse
Affiliation(s)
- Joana C Almeida
- Chemistry Department and CICECO-Aveiro Institute of Materials, University of Aveiro, Campus de Santiago, 3810-193, Aveiro, Portugal
- Chemistry Department and LAQV-REQUIMTE, University of Aveiro, Campus de Santiago, 3810-193, Aveiro, Portugal
| | - Celso E D Cardoso
- Chemistry Department and CICECO-Aveiro Institute of Materials, University of Aveiro, Campus de Santiago, 3810-193, Aveiro, Portugal
- Chemistry Department and LAQV-REQUIMTE, University of Aveiro, Campus de Santiago, 3810-193, Aveiro, Portugal
| | - Daniela S Tavares
- Chemistry Department and CICECO-Aveiro Institute of Materials, University of Aveiro, Campus de Santiago, 3810-193, Aveiro, Portugal
- Chemistry Department and LAQV-REQUIMTE, University of Aveiro, Campus de Santiago, 3810-193, Aveiro, Portugal
| | - Tito Trindade
- Chemistry Department and CICECO-Aveiro Institute of Materials, University of Aveiro, Campus de Santiago, 3810-193, Aveiro, Portugal
| | - Carlos Vale
- Interdisciplinar Centre of Marine and Environmental Research, 4450-208, Matosinhos, Portugal
| | - Rosa Freitas
- Biology Department and CESAM, University of Aveiro, Campus de Santiago, 3810-193, Aveiro, Portugal.
| | - Eduarda Pereira
- Chemistry Department and LAQV-REQUIMTE, University of Aveiro, Campus de Santiago, 3810-193, Aveiro, Portugal
| |
Collapse
|