1
|
Fu Z, Yao Y, Haq MZU, Liu Y, Yang D, Yang H, Wu Y. Glutathione's role in mitigating cadmium stress in Pogostemon cablin: Insights from combined transcriptomic and metabolomic approaches. JOURNAL OF HAZARDOUS MATERIALS 2025; 491:137921. [PMID: 40086241 DOI: 10.1016/j.jhazmat.2025.137921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2024] [Revised: 02/19/2025] [Accepted: 03/10/2025] [Indexed: 03/16/2025]
Abstract
Cadmium (Cd) pollution poses a growing threat to plant growth. Although glutathione (GSH) is recognized for its potential to mitigate Cd-induced stress, its specific effects on alleviating such stress in Pogostemon cablin (patchouli) remain unclear. This study investigated physiological parameters and enzymatic activities across four treatment groups: control (CK), cadmium stress (Cd), glutathione (GSH), and glutathione with cadmium stress (GSH+Cd). Results revealed that chlorophyll a, b, and carotenoid levels in the GSH were approximately 20 % higher than those in the other groups. In contrast, antioxidant enzyme activity in the Cd decreased by about 15 %. Integrated transcriptomic and metabolomic analyses demonstrated that GSH mitigates Cd stress by influencing glycerophospholipid metabolism and flavonoid biosynthesis, with key roles attributed to dgkA1, dgkA2, and CCoAOMT1-4. In conclusion, GSH alleviates Cd stress in P. cablin by enhancing photosynthetic pigment synthesis, reducing reactive oxygen species (ROS) through improved enzymatic activity, and regulating metabolic pathways. These findings provide valuable insights for optimizing the cultivation and management of P. cablin under Cd stress conditions.
Collapse
Affiliation(s)
- Zhineng Fu
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), School of Tropical Agriculture and Forestry, Hainan University, Sanya 572025, China
| | - Yanqiang Yao
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), School of Tropical Agriculture and Forestry, Hainan University, Sanya 572025, China
| | - Muhammad Zeeshan Ul Haq
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), School of Tropical Agriculture and Forestry, Hainan University, Sanya 572025, China
| | - Ya Liu
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), School of Tropical Agriculture and Forestry, Hainan University, Sanya 572025, China
| | - Dongmei Yang
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), School of Tropical Agriculture and Forestry, Hainan University, Sanya 572025, China
| | - Huageng Yang
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), School of Tropical Agriculture and Forestry, Hainan University, Sanya 572025, China
| | - Yougen Wu
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), School of Tropical Agriculture and Forestry, Hainan University, Sanya 572025, China.
| |
Collapse
|
2
|
Tahira S, Bahadur S, Lu X, Liu J, Wang Z. ZnONPs alleviate cadmium toxicity in pepper by reducing oxidative damage. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2025; 373:123796. [PMID: 39721396 DOI: 10.1016/j.jenvman.2024.123796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 11/25/2024] [Accepted: 12/16/2024] [Indexed: 12/28/2024]
Abstract
Cadmium (Cd) is a genotoxic heavy metal causing severe toxicity symptoms in plants, which has been a major threat to worldwide crop production. Recently, nanoparticles (NPs) have been employed as a novel strategy to facilitate the Cd stress and act as nano-fertilizers directly. Therefore, this study aims to explore the effects of zinc oxide nanoparticles (ZnONPs; 15 mg/L) on plant growth, photosynthetic activity, antioxidant activity and root morphology in Capsicum chinense Jacq. under Cd (CdCl2; 50 μM/L) stress. The pepper plants were treated with Cd stress for 14 days, and the treatment was given directly into the hydroponic solution, while ZnONPs were applied as foliar spray two times a day (9 a.m. - 3 p.m.). The results revealed that Cd stress inhibited plant growth and biomass by impairing photosynthesis in photosystem function, gas exchange parameters, root activity, and morphology. In contrast, ZnONPs application notably reinforced the plant growth traits, increased photosynthesis efficiency in terms of chlorophyll content, SPAD index, gas exchange parameters and PSII maximum efficiency (Fv/Fm) and decreased Cd accumulation in leaf and root by 30% and 75%. Furthermore, ZnONPs efficiently restricted the hydrogen peroxide, superoxide ion (H2O2, O2•-). They restored cellular integrity (less MDA production) by triggering the antioxidant enzyme activities such as superoxide dismutase (SOD), peroxidase (POD), catalase (CAT), ascorbate peroxidase (APX) and glutathione reductase (GR), protein content, sugar level and proline content. Besides, ZnONPs treatment enhanced secondary metabolites (phenols and flavonoids) contents and these metabolites potentially restricted excess H2O2 accumulation. In conclusion, our findings deciphered the potential functions of ZnONPs in alleviating Cd-induced phytotoxicity in pepper plants by boosting biomass production, photosynthesis, secondary metabolism and reducing oxidative stress.
Collapse
Affiliation(s)
- Sidra Tahira
- National Key Laboratory for Tropical Crop Breeding, Sanya Institute of Breeding and Multiplication, Hainan University, Sanya, 572025, China; Key Laboratory for Quality Regulation of Tropical Horticultural Crops of Hainan Province, School of Tropical Agriculture and Forestry, Hainan University, Haikou, 570228, China
| | - Saraj Bahadur
- Key Laboratory for Quality Regulation of Tropical Horticultural Crops of Hainan Province, School of Tropical Agriculture and Forestry, Hainan University, Haikou, 570228, China
| | - Xu Lu
- National Key Laboratory for Tropical Crop Breeding, Sanya Institute of Breeding and Multiplication, Hainan University, Sanya, 572025, China; Key Laboratory for Quality Regulation of Tropical Horticultural Crops of Hainan Province, School of Tropical Agriculture and Forestry, Hainan University, Haikou, 570228, China
| | - Jiancheng Liu
- National Key Laboratory for Tropical Crop Breeding, Sanya Institute of Breeding and Multiplication, Hainan University, Sanya, 572025, China; Key Laboratory for Quality Regulation of Tropical Horticultural Crops of Hainan Province, School of Tropical Agriculture and Forestry, Hainan University, Haikou, 570228, China
| | - Zhiwei Wang
- National Key Laboratory for Tropical Crop Breeding, Sanya Institute of Breeding and Multiplication, Hainan University, Sanya, 572025, China; Key Laboratory for Quality Regulation of Tropical Horticultural Crops of Hainan Province, School of Tropical Agriculture and Forestry, Hainan University, Haikou, 570228, China.
| |
Collapse
|
3
|
Wei R, Liu Y, Kang F, Tian L, Wei Q, Li Z, Xu P, Hu H, Tan Q, Zhao C, Li W, Guo Q. Impact of Rhizosphere Biostimulation on Cd Transport and Isotope Fractionation in Cd-Tolerant and Hyperaccumulating Plants Based on MC-ICP-MS and NanoSIMS. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:19408-19418. [PMID: 39412176 DOI: 10.1021/acs.est.4c03674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/30/2024]
Abstract
Phytoremediation efficiency can be enhanced by regulating rhizosphere processes, and the Cd isotope is a useful approach for deciphering Cd transport processes in soil-plant systems. However, the effects of adsorption and complexation on Cd isotope fractionation during the rhizosphere processes remain unclear. Here, we cultivated the Cd hyperaccumulator Sedum alfredii and Cd-tolerance Sedum spectabile in three different soils with citric acid applied as a degradable rhizosphere biostimulant. Cellular elemental distributions in the tissues and Cd isotope compositions were determined through NanoSIMS and MC-ICP-MS, respectively. Cd precipitation/adsorption on cell walls and intracellular regional distribution were the main mechanisms of Cd tolerance in S. spectabile. Plant roots became enriched with heavier Cd isotopes relative to the surrounding soils upon increasing secretion of rhizosphere organic acids. This indicates that organic matter with O and N functional groups preferentially chelates heavy Cd isotopes. In addition, Cd isotope fractionation between roots and shoots varies within the three soils, which could be due to the influence of protein and metallothionein contents in roots and leaves. The finding indicates that sulfur-containing ligands preferentially chelate light Cd isotopes. This study suggests that organic ligands play a vital role in Cd isotope fractionation and consequent hyperaccumulation of soil-plant systems.
Collapse
Affiliation(s)
- Rongfei Wei
- Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China
| | - Yizhang Liu
- Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550002, China
| | - Fengxin Kang
- Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China
| | - Liyan Tian
- Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100101, China
| | - Qiang Wei
- Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China
| | - Zhiying Li
- School of Geography and Information Engineering, China University of Geosciences, Wuhan 430074, China
| | - Pei Xu
- Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China
| | - Huiying Hu
- Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China
| | - Qiyu Tan
- School of Ecology and Environmental Sciences, Yunnan University, Kunming 650091, China
| | - Changqiu Zhao
- Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China
| | - Wei Li
- School of Earth Sciences and Engineering, Nanjing University, Nanjing 230046, China
| | - Qingjun Guo
- Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100101, China
| |
Collapse
|
4
|
Chen K, Xue W, Di X, Sun T, Gao W, Sun Y. Effects of nitrogen forms on Cd uptake and tolerance in wheat seedlings. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 936:173451. [PMID: 38782266 DOI: 10.1016/j.scitotenv.2024.173451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 04/25/2024] [Accepted: 05/20/2024] [Indexed: 05/25/2024]
Abstract
Hydroponic experiment was conducted to explore the effects of two nitrogen (N) levels with five nitrate nitrogen (NO3--N) and ammonium nitrogen (NH4+-N) ratios on the growth status and Cd migration patterns of wheat seedlings under Cd5 and Cd30 level. Results showed that higher Cd were detrimental to the growth, absorption of K and Ca, expression of genes mediating NO3--N and NH4+-N transport, which also increased the content of malondialdehyde (MDA) and hydrogen peroxide (H2O2) in shoots and roots of wheat seedlings. Higher N treatment alleviated the inhibitory effects of Cd stress on the biomass, root development, photosynthesis and increased the tolerance index of wheat seedlings. The ratio of NO3--N and NH4+-N was the main factor driving Cd accumulation in wheat seedlings, the combined application of NH4+-N and NO3--N was more conducive for the growth, nitrogen assimilation and Cd tolerance to the Cd stressed wheat seedlings. Increased NO3--N application rates significantly up-regulated the expression levels of TaNPF2.12, TaNRT2.2, increased NH4+-N application rates significantly up-regulated the expression levels of TaAMT1.1. The high proportion of NO3--N promoted the absorption of K, Ca and Cd in the shoots and roots of wheat seedlings, while NH4+-N was the opposite. Under low Cd conditions, the NO3--N to NH4+-N ratio of 1:1 was more conducive to the growth of wheat seedlings, under high Cd stress, the optimal of NO3--N to NH4+-N was 1:2 for inhibiting the accumulation of Cd in wheat seedlings. The results indicated that increasing NH4+-N ratio appropriately could inhibit wheat Cd uptake by increasing NH4+, K+ and Ca2+ for K and Ca channels, and promote wheat growth by promoting N assimilation process.
Collapse
Affiliation(s)
- Kexin Chen
- Key Laboratory of Original Agro-Environmental Pollution Prevention and Control, Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, P.R. China, Tianjin 300191, China
| | - Weijie Xue
- Key Laboratory of Original Agro-Environmental Pollution Prevention and Control, Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, P.R. China, Tianjin 300191, China.
| | - Xuerong Di
- Key Laboratory of Original Agro-Environmental Pollution Prevention and Control, Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, P.R. China, Tianjin 300191, China
| | - Tao Sun
- Key Laboratory of Original Agro-Environmental Pollution Prevention and Control, Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, P.R. China, Tianjin 300191, China
| | - Wei Gao
- College of Resources and Environment, Henan Agricultural University, No.218 Ping'an Avenue, Zhengzhou 450046, Henan, China; Henan Key Lab of Soil Pollution Control & Remediation, Henan Agricultural University, No.218 Ping'an Avenue, Zhengzhou 450046, Henan, China.
| | - Yuebing Sun
- Key Laboratory of Original Agro-Environmental Pollution Prevention and Control, Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, P.R. China, Tianjin 300191, China.
| |
Collapse
|
5
|
Wang S, Zhou H, He Z, Ma D, Sun W, Xu X, Tian Q. Effects of Drought Stress on Leaf Functional Traits and Biomass Characteristics of Atriplex canescens. PLANTS (BASEL, SWITZERLAND) 2024; 13:2006. [PMID: 39065532 PMCID: PMC11281204 DOI: 10.3390/plants13142006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 07/17/2024] [Accepted: 07/19/2024] [Indexed: 07/28/2024]
Abstract
Drought is a critical factor constraining plant growth in arid regions. However, the performance and adaptive mechanism of Atriplex canescens (A. canescens) under drought stress remain unclear. Hence, a three-year experiment with three drought gradients was performed in a common garden, and the leaf functional traits, biomass and biomass partitioning patterns of A. canescens were investigated. The results showed that drought stress had significant effects on A. canescens leaf functional traits. A. canescens maintained the content of malondialdehyde (MDA) and the activity of superoxide dismutase (SOD), but the peroxidase (POD) and catalase (CAT) activity decreased, and the content of proline (Pro) and soluble sugar (SS) increased only under heavy drought stress. Under drought stress, the leaves became smaller but denser, the specific leaf area (SLA) decreased, but the dry matter content (LDMC) maintained stability. Total biomass decreased 60% to 1758 g under heavy drought stress and the seed and leaf biomass was only 10% and 20% of non-stress group, but there had no significant difference on root biomass. More biomass was allocated to root under drought stress. The root biomass allocation ratio was doubled from 9.62% to 19.81% under heavy drought, and the root/shoot ratio (R/S) increased from 0.11 to 0.25. The MDA was significantly and negatively correlated with biomass, while the SPAD was significantly and positively correlated with total and aboveground organs biomass. The POD, CAT, Pro and SS had significant correlations with root and seed allocation ratio. The leaf morphological traits related to leaf shape and weight had significant correlations with total and aboveground biomass and biomass allocation. Our study demonstrated that under drought stress, A. canescens made tradeoffs between growth potential and drought tolerance and evolved with a conservative strategy. These findings provide more information for an in-depth understanding of the adaption strategies of A. canescens to drought stress and provide potential guidance for planting and sustainable management of A. canescens in arid and semi-arid regions.
Collapse
Affiliation(s)
- Shuai Wang
- Linze Inland River Basin Research Station, Chinese Ecosystem Research Network, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China; (S.W.); (H.Z.); (D.M.); (W.S.); (Q.T.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hai Zhou
- Linze Inland River Basin Research Station, Chinese Ecosystem Research Network, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China; (S.W.); (H.Z.); (D.M.); (W.S.); (Q.T.)
| | - Zhibin He
- Linze Inland River Basin Research Station, Chinese Ecosystem Research Network, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China; (S.W.); (H.Z.); (D.M.); (W.S.); (Q.T.)
| | - Dengke Ma
- Linze Inland River Basin Research Station, Chinese Ecosystem Research Network, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China; (S.W.); (H.Z.); (D.M.); (W.S.); (Q.T.)
| | - Weihao Sun
- Linze Inland River Basin Research Station, Chinese Ecosystem Research Network, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China; (S.W.); (H.Z.); (D.M.); (W.S.); (Q.T.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xingzhi Xu
- College of Pratacultural Science, Gansu Agricultural University, Lanzhou 730070, China;
| | - Quanyan Tian
- Linze Inland River Basin Research Station, Chinese Ecosystem Research Network, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China; (S.W.); (H.Z.); (D.M.); (W.S.); (Q.T.)
| |
Collapse
|
6
|
Fu L, Deng J, Liu S, Zhang C, Xue W, Mailhot G, Vione D, Deng Y, Wang C, Wang L. Efficient regulation of cadmium accumulation by carboxymethylammonium chloride in rice: Correlation analysis and expression of transporter gene OsGLR3. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 930:172861. [PMID: 38685417 DOI: 10.1016/j.scitotenv.2024.172861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 04/11/2024] [Accepted: 04/26/2024] [Indexed: 05/02/2024]
Abstract
The mechanism of carboxymethylammonium chloride (CC) regulating cadmium (Cd) accumulation in rice was studied in field and hydroponic experiments. Field experiments showed that 0.2-1.2 mmol L-1 CC spraying effectively reduced Cd accumulation by 44 %-77 % in early rice grains and 39 %-78 % in late rice grains, significantly increased calcium (Ca) content and amino acids content in grains, as well as alleviated Cd-induced oxidative damage in leaves. Hydroponic experiments further verified the inhibition effect of CC on Cd accumulation. 1.2 mmol L-1 CC made the highest decrease of Cd content in shoots and roots of hydroponic seedlings by 45 % and 53 %, respectively. Exogenous CC significantly increased glutamate (Glu), glycine (Gly) and glutathione (GSH) content, and improved the activities of catalase (CAT) and superoxide dismutase (SOD) by 41-131 % and 11-121 % in shoots of hydroponic seedlings, respectively. Exogenous CC also increased the relative expression of OsGLR3.1-3.5 in the shoots and roots of hydroponic seedlings. The quantum computational chemistry was used to clarify that the Gly radical provided by CC could form various complexes with Cd through carboxyl oxygen atoms. These results showed that exogenous application of CC improved the tolerance to Cd by enhancing the antioxidant capacity; inhibited the absorption, transport and accumulation of Cd in rice by (1) promoting chelation, (2) increasing the GLRs activity through upregulating the content of Glu, Gly, as well as the expression of OsGLR3.1-3.5.
Collapse
Affiliation(s)
- Lin Fu
- Key Laboratory of Original Agro-Environmental Pollution Prevention and Control, Agro-Environmental Protection Institute of Ministry of Agriculture and Rural Affairs, Tianjin 300191, China
| | - Jiawei Deng
- Key Laboratory of Original Agro-Environmental Pollution Prevention and Control, Agro-Environmental Protection Institute of Ministry of Agriculture and Rural Affairs, Tianjin 300191, China
| | - Shuangyue Liu
- Key Laboratory of Original Agro-Environmental Pollution Prevention and Control, Agro-Environmental Protection Institute of Ministry of Agriculture and Rural Affairs, Tianjin 300191, China
| | - Changbo Zhang
- Key Laboratory of Original Agro-Environmental Pollution Prevention and Control, Agro-Environmental Protection Institute of Ministry of Agriculture and Rural Affairs, Tianjin 300191, China.
| | - Weijie Xue
- Key Laboratory of Original Agro-Environmental Pollution Prevention and Control, Agro-Environmental Protection Institute of Ministry of Agriculture and Rural Affairs, Tianjin 300191, China.
| | - Gilles Mailhot
- Université Clermont Auvergne, CNRS, Institut de Chimie de Clermont-Ferrand, F-63000 Clermont-Ferrand, France
| | - Davide Vione
- Università degli Studi di Torino, Dipartimento di Chimica, Via P. Giuria 5, 10125 Torino, Italy
| | - Yun Deng
- School of Environment and Ecology, Jiangnan University, Wuxi 214122, China
| | - Changrong Wang
- Key Laboratory of Original Agro-Environmental Pollution Prevention and Control, Agro-Environmental Protection Institute of Ministry of Agriculture and Rural Affairs, Tianjin 300191, China
| | - Lei Wang
- Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| |
Collapse
|
7
|
Chen K, Yu B, Xue W, Sun Y, Zhang C, Gao X, Zhou X, Deng Y, Yang J, Zhang B. Citric Acid Inhibits Cd Absorption and Transportation by Improving the Antagonism of Essential Elements in Rice Organs. TOXICS 2024; 12:431. [PMID: 38922111 PMCID: PMC11209394 DOI: 10.3390/toxics12060431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 06/07/2024] [Accepted: 06/11/2024] [Indexed: 06/27/2024]
Abstract
Excessive cadmium (Cd) in rice is a global environmental problem. Therefore, reducing Cd content in rice is of great significance for ensuring food security and human health. A field experiment was conducted to study the effects of foliar application of citric acid (CA) on Cd absorption and transportation in rice under high Cd-contaminated soils (2.04 mg·kg-1). This study revealed that there was a negative correlation between Cd content in vegetative organs and CA content, and that foliar spraying of CA (1 mM and 5 mM) significantly increased CA content and reduced Cd content in vegetative organs. The Cd reduction effect of 5 mM CA was better than that of 1 mM, and 5 mM CA reduced Cd content in grains and spikes by 52% and 37%, respectively. CA significantly increased Mn content in vegetative organs and increased Ca/Mn ratios in spikes, flag leaves, and roots. CA significantly reduced soluble Cd content in vegetative organs and promoted the transformation of Cd into insoluble Cd, thus inhibiting the transport of Cd from vegetative organs to grains. The foliar field application of 1 mM and 5 mM CA could inhibit Cd absorption and transportation by reducing Cd bioactivity and increasing the antagonistic of essential elements in rice vegetative organs. These results provide technical support and a theoretical basis for solving the problem of excessive Cd in rice.
Collapse
Affiliation(s)
- Kexin Chen
- Key Laboratory of Original Agro-Environmental Pollution Prevention and Control, Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China; (K.C.); (B.Y.); (Y.S.); (C.Z.); (X.G.); (X.Z.)
| | - Bozhen Yu
- Key Laboratory of Original Agro-Environmental Pollution Prevention and Control, Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China; (K.C.); (B.Y.); (Y.S.); (C.Z.); (X.G.); (X.Z.)
| | - Weijie Xue
- Key Laboratory of Original Agro-Environmental Pollution Prevention and Control, Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China; (K.C.); (B.Y.); (Y.S.); (C.Z.); (X.G.); (X.Z.)
| | - Yuebing Sun
- Key Laboratory of Original Agro-Environmental Pollution Prevention and Control, Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China; (K.C.); (B.Y.); (Y.S.); (C.Z.); (X.G.); (X.Z.)
| | - Changbo Zhang
- Key Laboratory of Original Agro-Environmental Pollution Prevention and Control, Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China; (K.C.); (B.Y.); (Y.S.); (C.Z.); (X.G.); (X.Z.)
| | - Xusheng Gao
- Key Laboratory of Original Agro-Environmental Pollution Prevention and Control, Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China; (K.C.); (B.Y.); (Y.S.); (C.Z.); (X.G.); (X.Z.)
| | - Xiaojia Zhou
- Key Laboratory of Original Agro-Environmental Pollution Prevention and Control, Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China; (K.C.); (B.Y.); (Y.S.); (C.Z.); (X.G.); (X.Z.)
| | - Yun Deng
- School of Environment and Ecology, Jiangnan University, Wuxi 214122, China;
| | - Jiarun Yang
- College of Water Conservancy Engineering, Tianjin Agricultural University, Tianjin 300392, China; (J.Y.); (B.Z.)
| | - Boqian Zhang
- College of Water Conservancy Engineering, Tianjin Agricultural University, Tianjin 300392, China; (J.Y.); (B.Z.)
| |
Collapse
|
8
|
Fu L, Deng J, Lao DR, Zhang C, Xue W, Deng Y, Luo X. Effects of Foliar Spraying of Dicarboxylicdimethylammonium Chloride on Cadmium and Arsenic Accumulation in Rice Grains. TOXICS 2024; 12:418. [PMID: 38922098 PMCID: PMC11209034 DOI: 10.3390/toxics12060418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Revised: 06/03/2024] [Accepted: 06/06/2024] [Indexed: 06/27/2024]
Abstract
A field experiment with double cropping rice was carried out to study the foliar application effects of dicarboxylicdimethylammonium chloride (DDAC) on cadmium (Cd) and arsenic (As) accumulation in rice grains. The results showed that the spraying of DDAC could significantly reduce the accumulation of Cd and As in rice grains. The highest reductions in Cd and As content were observed when 1.5 mmol L-1 DDAC was sprayed, with 49.1% and 27.4% reductions in Cd and As content in early rice grains and 56.5% and 28.1% reductions in Cd and As content in late rice grains, respectively. In addition, the content of calcium (Ca) in rice grains increased significantly after DDAC foliar application, which was also conducive to the synthesis of amino acids such as glutamate (Glu), glycine (Gly) and cysteine (Cys) in rice grains. The results indicated that the foliar spraying of DDAC can inhibit the absorption, transport, accumulation and toxicity of Cd and As in rice grains by increasing amino acid synthesis and regulating the absorption and transport of essential elements.
Collapse
Affiliation(s)
- Lin Fu
- Key Laboratory of Original Agro-Environmental Pollution Prevention and Control, Ministry of Agriculture and Rural Affairs, Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China; (L.F.); (J.D.); (D.R.L.); (X.L.)
| | - Jiawei Deng
- Key Laboratory of Original Agro-Environmental Pollution Prevention and Control, Ministry of Agriculture and Rural Affairs, Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China; (L.F.); (J.D.); (D.R.L.); (X.L.)
| | - Dayliana Ruiz Lao
- Key Laboratory of Original Agro-Environmental Pollution Prevention and Control, Ministry of Agriculture and Rural Affairs, Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China; (L.F.); (J.D.); (D.R.L.); (X.L.)
| | - Changbo Zhang
- Key Laboratory of Original Agro-Environmental Pollution Prevention and Control, Ministry of Agriculture and Rural Affairs, Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China; (L.F.); (J.D.); (D.R.L.); (X.L.)
| | - Weijie Xue
- Key Laboratory of Original Agro-Environmental Pollution Prevention and Control, Ministry of Agriculture and Rural Affairs, Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China; (L.F.); (J.D.); (D.R.L.); (X.L.)
| | - Yun Deng
- School of Environment and Ecology, Jiangnan University, Wuxi 214122, China;
| | - Xin Luo
- Key Laboratory of Original Agro-Environmental Pollution Prevention and Control, Ministry of Agriculture and Rural Affairs, Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China; (L.F.); (J.D.); (D.R.L.); (X.L.)
| |
Collapse
|
9
|
Zhang X, Yang M, Yang H, Pian R, Wang J, Wu AM. The Uptake, Transfer, and Detoxification of Cadmium in Plants and Its Exogenous Effects. Cells 2024; 13:907. [PMID: 38891039 PMCID: PMC11172145 DOI: 10.3390/cells13110907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Revised: 05/13/2024] [Accepted: 05/13/2024] [Indexed: 06/20/2024] Open
Abstract
Cadmium (Cd) exerts a toxic influence on numerous crucial growth and development processes in plants, notably affecting seed germination rate, transpiration rate, chlorophyll content, and biomass. While considerable advances in Cd uptake and detoxification of plants have been made, the mechanisms by which plants adapt to and tolerate Cd toxicity remain elusive. This review focuses on the relationship between Cd and plants and the prospects for phytoremediation of Cd pollution. We highlight the following issues: (1) the present state of Cd pollution and its associated hazards, encompassing the sources and distribution of Cd and the risks posed to human health; (2) the mechanisms underlying the uptake and transport of Cd, including the physiological processes associated with the uptake, translocation, and detoxification of Cd, as well as the pertinent gene families implicated in these processes; (3) the detrimental effects of Cd on plants and the mechanisms of detoxification, such as the activation of resistance genes, root chelation, vacuolar compartmentalization, the activation of antioxidant systems and the generation of non-enzymatic antioxidants; (4) the practical application of phytoremediation and the impact of incorporating exogenous substances on the Cd tolerance of plants.
Collapse
Affiliation(s)
- Xintong Zhang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou 510642, China (R.P.)
| | - Man Yang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou 510642, China (R.P.)
| | - Hui Yang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou 510642, China (R.P.)
| | - Ruiqi Pian
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou 510642, China (R.P.)
| | - Jinxiang Wang
- Root Biology Center, South China Agricultural University, Guangzhou 510642, China
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China
- Key Laboratory of Agricultural and Rural Pollution Control and Environmental Safety in Guangdong Province, Guangzhou 510642, China
| | - Ai-Min Wu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou 510642, China (R.P.)
| |
Collapse
|
10
|
Hussain M, Hafeez A, Rizwan M, Rasheed R, Seleiman MF, Ashraf MA, Ali S, Farooq U, Nafees M. Pervasive influence of heavy metals on metabolic pathways is potentially relieved by hesperidin to enhance the phytoremediation efficiency of Bassia scoparia. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:34526-34549. [PMID: 38709411 DOI: 10.1007/s11356-024-33530-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 04/27/2024] [Indexed: 05/07/2024]
Abstract
Hesperidin (HSP), a flavonoid, is a potent antioxidant, metal chelator, mediator of signaling pathways, and regulator of metal uptake in plants. The study examined the ameliorative effects of HSP (100 μM) on Bassia scoparia grown under excessive levels of heavy metals (zinc (500 mg kg-1), copper (400 mg kg-1), cadmium (100 mg kg-1), and chromium (100 mg kg-1)). The study clarifies the underlying mechanisms by which HSP lessens metabolic mayhem to enhance metal stress tolerance and phytoremediation efficiency of Bassia scoparia. Plants manifested diminished growth because of a drop in chlorophyll content and nutrient acquisition, along with exacerbated deterioration of cellular membranes reflected in elevated reactive oxygen species (ROS) production, lipid peroxidation, and relative membrane permeability. Besides the colossal production of cytotoxic methylglyoxal, the activity of lipoxygenase was also higher in plants under metal toxicity. Conversely, hesperidin suppressed the production of cytotoxic ROS and methylglyoxal. Hesperidin improved oxidative defense that protected membrane integrity. Hesperidin caused a more significant accumulation of osmolytes, non-protein thiols, and phytochelatins, thereby rendering metal ions non-toxic. Hydrogen sulfide and nitric oxide endogenous levels were intricately maintained higher in plants treated with HSP. Hesperidin increased metal accumulation in Bassia scoparia and thereby had the potential to promote the reclamation of metal-contaminated soils.
Collapse
Affiliation(s)
- Mazhar Hussain
- Department of Botany, Government College University Faisalabad, Faisalabad, 38000, Pakistan
| | - Arslan Hafeez
- Department of Botany, Government College University Faisalabad, Faisalabad, 38000, Pakistan
| | - Muhammad Rizwan
- Department of Environmental Sciences, Government College University Faisalabad, Faisalabad, 38000, Pakistan
| | - Rizwan Rasheed
- Department of Botany, Government College University Faisalabad, Faisalabad, 38000, Pakistan
| | - Mahmoud F Seleiman
- Department of Plant Production, College of Food and Agriculture Sciences, King Saud University, P.O. Box 2460, Riyadh, 11451, Saudi Arabia
| | - Muhammad Arslan Ashraf
- Department of Botany, Government College University Faisalabad, Faisalabad, 38000, Pakistan.
| | - Shafaqat Ali
- Department of Environmental Sciences, Government College University Faisalabad, Faisalabad, 38000, Pakistan
- Department of Biological Sciences and Technology, China Medical University, Taichung, 40402, Taiwan
| | - Umer Farooq
- Department of Botany, Government College University Faisalabad, Faisalabad, 38000, Pakistan
| | - Muhammad Nafees
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 21023, Jiangsu, China
| |
Collapse
|
11
|
Li L, Wang C, Wang W, Zhou L, Zhang D, Liao H, Wang Z, Li B, Peng Y, Xu Y, Chen Q. Uncovering the mechanisms of how corn steep liquor and microbial communities minimize cadmium translocation in Chinese cabbage. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:22576-22587. [PMID: 38411912 DOI: 10.1007/s11356-024-32579-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 02/17/2024] [Indexed: 02/28/2024]
Abstract
Corn steep liquor-assisted microbial remediation has been proposed as a promising strategy to remediate cadmium (Cd)-contaminated soil. In this study, we determined Bacillus subtilis (K2) with a high cadmium (Cd) accumulation ability and Cd resistance. However, studies on this strategy used in the Cd uptake of Chinese cabbage are lacking, and the effect of the combined incorporation of corn steep liquor and K2 on the functions and microbial interactions of soil microbiomes is unclear. Here, we study the Cd uptake and transportation in Chinese cabbage by the combination of K2 and corn steep liquor (K2 + C7) in a Cd-contaminated soil and corresponding microbial regulation mechanisms. Results showed that compared to inoculant K2 treatment alone, a reduction of Cd concentration in the shoots by 14.4% and the dry weight biomass of the shoots and the roots in Chinese cabbage increased by 21.6% and 30.8%, respectively, under K2 + C7 treatment. Meanwhile, hydrogen peroxide (H2O2) and malondialdehyde (MDA) levels were decreased by enhancing POD and SOD activity, thereby reversing Cd-induced oxidative damage. Importantly, inoculation of K2 would decrease the diversity of the microbial community while enhancing the abundance of dominant species. These findings provide a promising strategy for reducing the Cd accumulation in Chinese cabbage and recovering soil ecological functions.
Collapse
Affiliation(s)
- Longcheng Li
- Beijing Key Laboratory of Biodiversity and Organic Farming, College of Resources and Environmental Sciences, China Agricultural University, Beijing, 100193, China
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing, 100193, China
| | - Chensi Wang
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing, 100193, China
| | - Wenhao Wang
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing, 100193, China
| | - Lin Zhou
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing, 100193, China
| | - Donghan Zhang
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing, 100193, China
| | - Hongjie Liao
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing, 100193, China
| | - Zihao Wang
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing, 100193, China
| | - Bingchen Li
- National Sugar Crop Improvement Centre, College of Advanced Agriculture and Ecological Environment, Heilongjiang University, 74 Xuefu Road, Harbin, 150080, China
| | - Yutao Peng
- School of Agriculture, Sun Yat-Sen University, Shenzhen, 523758, Guangdong, China
| | - Yangping Xu
- ShiFang Anda Chemicals CO., LTD., Deyang, China
| | - Qing Chen
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing, 100193, China.
| |
Collapse
|
12
|
Zhang X, Xue W, Qi L, Zhang C, Wang C, Huang Y, Wang Y, Peng L, Liu Z. Malic acid inhibits accumulation of cadmium, lead, nickel and chromium by down-regulation of OsCESA and up-regulation of OsGLR3 in rice plant. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 341:122934. [PMID: 37967709 DOI: 10.1016/j.envpol.2023.122934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 10/26/2023] [Accepted: 11/12/2023] [Indexed: 11/17/2023]
Abstract
Malic acid (MA) plays an important role in plant tolerance to toxic metals, but its effect in restricting the transport of harmful metals remains unclear. In this study, japonica rice NPB and its fragile-culm mutant fc8 with low cellulose and thin cell wall were used to investigate the influence of MA on the accumulation of 4 toxic elements (Cd, Pb, Ni, and Cr) and 8 essential elements (K, Mg, Ca, Fe, Mn, Zn, Cu and Mo) in rice. The results showed that fc8 accumulated less toxic elements but more Ca and glutamate in grains and vegetative organs than NPB. After foliar application with MA at rice anthesis stage, the content of Cd, Pb, Ni significantly decreased by 27.9-41.0%, while those of Ca and glutamate significantly increased in both NPB and fc8. Therefore, the ratios between Cd and Ca in grains of NPB (3.4‰) and fc8 (1.5‰) were greatly higher than that in grains of NPB + MA (1.1‰) and fc8+MA (0.8‰) treatments. Meanwhile, the expression of OsCEAS4,7,8,9 for the cellulose synthesis in secondary cell walls were down-regulated and cellulose content in vegetative organs of NPB and fc8 decreased by 16.7-21.1%. However, MA application significantly up-regulated the expression of GLR genes (OsGLR3.1-3.5) and raised the activity of glutamic-oxalacetic transaminease for glutamate synthesis in NPB and fc8. These results indicate that hazard risks of toxic elements in foods can be efficiently reduced through regulating cellulose biosynthesis and GLR channels in plant by combining genetic modification in vivo and malic acid application in vitro.
Collapse
Affiliation(s)
- Xin Zhang
- Key Laboratory of Original Agro-Environmental Pollution Prevention and Control, Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, P.R. China, Tianjin, 300191, China; Hainan Research Academy of Environmental Sciences, Haikou, 571126, China
| | - Weijie Xue
- Key Laboratory of Original Agro-Environmental Pollution Prevention and Control, Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, P.R. China, Tianjin, 300191, China
| | - Lin Qi
- Key Laboratory of Original Agro-Environmental Pollution Prevention and Control, Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, P.R. China, Tianjin, 300191, China
| | - Changbo Zhang
- Key Laboratory of Original Agro-Environmental Pollution Prevention and Control, Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, P.R. China, Tianjin, 300191, China
| | - Changrong Wang
- Key Laboratory of Original Agro-Environmental Pollution Prevention and Control, Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, P.R. China, Tianjin, 300191, China
| | - Yongchun Huang
- Key Laboratory of Original Agro-Environmental Pollution Prevention and Control, Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, P.R. China, Tianjin, 300191, China
| | - Yanting Wang
- Key Laboratory of Fermentation Engineering (Ministry of Education), College of Biotechnology & Food Science, Hubei University of Technology, Wuhan, 430068, China
| | - Liangcai Peng
- Key Laboratory of Fermentation Engineering (Ministry of Education), College of Biotechnology & Food Science, Hubei University of Technology, Wuhan, 430068, China
| | - Zhongqi Liu
- Key Laboratory of Original Agro-Environmental Pollution Prevention and Control, Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, P.R. China, Tianjin, 300191, China.
| |
Collapse
|
13
|
Chen C, Wei Z, Hu K, Wu QT. Phytoextraction and Migration Patterns of Cadmium in Contaminated Soils by Pennisetum hybridum. PLANTS (BASEL, SWITZERLAND) 2023; 12:2321. [PMID: 37375945 DOI: 10.3390/plants12122321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 06/07/2023] [Accepted: 06/09/2023] [Indexed: 06/29/2023]
Abstract
This study was conducted to identify soil cadmium (Cd) removal pathways and their contribution rates during phytoremediation by Pennisetum hybridum, as well as to comprehensively assess its phytoremediation potential. Multilayered soil column tests and farmland-simulating lysimeter tests were conducted to investigate the Cd phytoextraction and migration patterns in topsoil and subsoil simultaneously. The aboveground annual yield of P. hybridum grown in the lysimeter was 206 ton·ha-1. The total amount of Cd extracted in P. hybridum shoots was 234 g·ha-1, which was similar to that of other typical Cd-hyperaccumulating plants such as Sedum alfredii. After the test, the topsoil Cd removal rate was 21.50-35.81%, whereas the extraction efficiency in P. hybridum shoots was only 4.17-8.53%. These findings indicate that extraction by plant shoots is not the most important contributor to the decrease of Cd in the topsoil. The proportion of Cd retained by the root cell wall was approximately 50% of the total Cd in the root. Based on column test results, P. hybridum treatment led to a significant decrease in soil pH and considerably enhanced Cd migration to subsoil and groundwater. P. hybridum decreases Cd in the topsoil through multiple pathways and provides a relatively ideal material for phytoremediation of Cd-contaminated acid soils.
Collapse
Affiliation(s)
- Canming Chen
- Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China
| | - Zebin Wei
- Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China
| | - Kuangzheng Hu
- Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China
| | - Qi-Tang Wu
- Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China
| |
Collapse
|