1
|
Zhang J, Han K, Jiao W, Su P, Wang D, Zhu J, Zhu M, Li L. Green mechanochemical activation of solid persulfate to remove PAHs in soil: Performance and mechanism. JOURNAL OF HAZARDOUS MATERIALS 2024; 472:134489. [PMID: 38735181 DOI: 10.1016/j.jhazmat.2024.134489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 04/25/2024] [Accepted: 04/28/2024] [Indexed: 05/14/2024]
Abstract
Due to the high biotoxicity and persistence of polycyclic aromatic hydrocarbons (PAHs), the remediation of PAHs-contaminated soil becomes an intractable problem. Persulfate-based advanced oxidation processes are widely used to degrade PAHs in aquatic environment. However, they are not convenient for used in soil due to the heterogeneity and complexity of soil matrix. In this study, a green and convenient ball milling process is introduced to activate persulfate for the remediation of PAHs-contaminated soil. About 82.5% PAHs were removed with 10% wt. Na2S2O8 (PS) addition and ball-milling for 2 h under 500 r/min. The degradation of PAHs is attributed to the attack of radicals (SO4·- and·OH) generated from the activation of PS by mechanochemistry. Moreover, stable Si-O bonds were disrupted during ball-milling process, and formed free electron on the surface of soil particles. This facilitates the electron transfer from oxidants to contaminants. The particle size, surface element composition, functional group, and thermogravimetric analysis confirmed the slight disturbance of ball-milling-assisted PS process on the physical and chemical properties of soil. Therefore, ball-milling assisted PS approach would be a promising technology for the remediation of PAHs-contaminated soil.
Collapse
Affiliation(s)
- Junke Zhang
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Kexiao Han
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Wentao Jiao
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.
| | - Peidong Su
- School of Chemical and Environmental Engineering, China University of Mining and Technology (Beijing), Beijing 100083, China
| | - Daxuan Wang
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Jun Zhu
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Mingshan Zhu
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou 511443, China
| | - Lin Li
- Department of Civil and Architectural Engineering, Tennessee State University, Nashville, TN 37209, United States
| |
Collapse
|
2
|
Yin B, Li J, Guo W, Dong H, Zhang G, Xin Y, Zhang G, Chen Q. Photocatalytic degradation of fluoranthene in soil suspension by TiO 2/α-FeOOH with enhanced charge transfer capacity. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:20621-20636. [PMID: 38381294 DOI: 10.1007/s11356-024-32501-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 02/12/2024] [Indexed: 02/22/2024]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) in soil are potentially harmful to human health. However, the use of photocatalysis technology to treat soil contaminated with PAHs remains challenging. Therefore, TiO2/α-FeOOH composite photocatalyst has been synthesized by hydrothermal method and sol-gel method and applied to photocatalytic degradation of fluoranthene in soil. The morphology, elements, crystal structure, optical properties, electrochemical characteristics, and photocatalytic activity of TiO2/α-FeOOH have been characterized. Results showed that TiO2 is tightly fixed on the surface of α-FeOOH, and TiO2/α-FeOOH had higher photocatalytic activity on photocatalytic degradation of fluoranthene in soil under simulated sunlight. The degradation efficiency of TiO2/α-FeOOH is 3.0 and 4.8 times higher than that of TiO2 and α-FeOOH, respectively. This is attributed to enhanced photocatalytic ability by enhancing the transfer capacity of electrons and holes and broadening the spectrum absorption range. The highest degradation efficiency was achieved when the pH of the soil is neutral, the ratio of water/soil is 10:1, and the dosage of catalyst is 50 mg/g. In addition, it was proved that •O2-, h+, and 1O2 are the main active substances in the photocatalysis of TiO2/α-FeOOH. The possible mechanism of a Z-type electron transfer structure was also proposed. The degradation products of fluoranthene were detected, and the degradation pathway was deduced.
Collapse
Affiliation(s)
- Bingjie Yin
- College of Resources and Environment, Qingdao Agricultural University, Qingdao Engineering Research Center for Rural Environment, Qingdao, P. R. China
| | - Jingying Li
- College of Resources and Environment, Qingdao Agricultural University, Qingdao Engineering Research Center for Rural Environment, Qingdao, P. R. China
| | - Wei Guo
- College of Resources and Environment, Qingdao Agricultural University, Qingdao Engineering Research Center for Rural Environment, Qingdao, P. R. China
| | - Haoqing Dong
- College of Resources and Environment, Qingdao Agricultural University, Qingdao Engineering Research Center for Rural Environment, Qingdao, P. R. China
| | - Guangshan Zhang
- College of Resources and Environment, Qingdao Agricultural University, Qingdao Engineering Research Center for Rural Environment, Qingdao, P. R. China
| | - Yanjun Xin
- College of Resources and Environment, Qingdao Agricultural University, Qingdao Engineering Research Center for Rural Environment, Qingdao, P. R. China
| | - Guodong Zhang
- College of Resources and Environment, Qingdao Agricultural University, Qingdao Engineering Research Center for Rural Environment, Qingdao, P. R. China
- Academy of Dongying Efficient Agricultural Technology and Industry On Saline and Alkaline Land in Collaboration With, Qingdao Agricultural University, Dongying, 257029, P. R. China
| | - Qinghua Chen
- College of Resources and Environment, Qingdao Agricultural University, Qingdao Engineering Research Center for Rural Environment, Qingdao, P. R. China.
| |
Collapse
|
3
|
You X, Dai C, Wang Z, Duan Y, Zhang JB, Lai X, Hu J, Li J, Maimaitijiang M, Zhang Y, Liu S, Fu R. Targeted degradation of naphthalene by peroxymonosulfate activation using molecularly imprinted biochar. CHEMOSPHERE 2023; 345:140491. [PMID: 37863207 DOI: 10.1016/j.chemosphere.2023.140491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 10/06/2023] [Accepted: 10/17/2023] [Indexed: 10/22/2023]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) in aquatic environments are threatening ecosystems and human health. In this work, an effective and environmentally friendly catalyst based on biochar and molecular imprinting technology (MIT) was developed for the targeted degradation of PAHs by activating peroxymonosulfate. The results show that the adsorption amount of naphthalene (NAP) by molecularly imprinted biochar (MIP@BC) can reach 82% of the equilibrium adsorption capacity within 5 min, and it had well targeted adsorption for NAP in the solution mixture of NAP, QL and SMX. According to the comparison between the removal rates of NAP and QL by MIP@BC/PMS or BC/PMS system in respective pure solutions or mixed solutions, the MIP@BC/PMS system can better resist the interference of competing pollutants (i.e., QL) compared to the BC/PMS system; that is, MIP@BC had a good ability to selectively degrade NAP. Besides, the removal rate of NAP by MIP@BC/PMS gradually decreased as pH increased. The addition of Cl- greatly promoted the targeted removal of NAP in the MIP@BC/PMS system, while HCO3- and CO32- both had an inhibitory effect. Furthermore, SO4•-, O2•- and 1O2 produced by BC activating PMS dominated the NAP degradation, and it was inferred that the vacated imprinted cavities after NAP degradation can continue to selectively adsorb NAP and this could facilitate the reusability of the material. This study can promote the research on the targeted degradation of PAHs through the synergism of biochar/PMS advanced oxidation processes and MIT.
Collapse
Affiliation(s)
- Xueji You
- Department of Hydraulic Engineering, College of Civil Engineering, Tongji University, 1239 Siping Road, Shanghai, 200092, China
| | - Chaomeng Dai
- Department of Hydraulic Engineering, College of Civil Engineering, Tongji University, 1239 Siping Road, Shanghai, 200092, China.
| | - Zeyu Wang
- Department of Hydraulic Engineering, College of Civil Engineering, Tongji University, 1239 Siping Road, Shanghai, 200092, China
| | - Yanping Duan
- School of Environmental and Geographical Sciences, Shanghai Normal University, No. 100 Guilin Road, Shanghai, 200234, China.
| | - Jun Bo Zhang
- Department of Hydraulic Engineering, College of Civil Engineering, Tongji University, 1239 Siping Road, Shanghai, 200092, China
| | - Xiaoying Lai
- Department of Management and Economics, Tianjin University, Tianjin, 300072, China
| | - Jiajun Hu
- Shanghai Key Laboratory of Bio-Energy Crops, School of Life Sciences, Shanghai University, Shanghai, 200444, China
| | - Jixiang Li
- Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, 201210, China
| | | | - Yalei Zhang
- State Key Laboratory of Pollution Control and Resources Reuse, Tongji University, Shanghai, 200092, China
| | - Shuguang Liu
- Department of Hydraulic Engineering, College of Civil Engineering, Tongji University, 1239 Siping Road, Shanghai, 200092, China
| | - Rongbing Fu
- College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China
| |
Collapse
|
4
|
Ding Z, Zhang J, Fang T, Zhou G, Tang X, Wang Y, Liu X. New insights into the degradation mechanism of ibuprofen in the UV/H 2O 2 process: role of natural dissolved matter in hydrogen transfer reactions. Phys Chem Chem Phys 2023; 25:30687-30696. [PMID: 37933876 DOI: 10.1039/d3cp03305h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2023]
Abstract
Ibuprofen (IBU), a widely used antipyretic and analgesic, has been frequently detected in various natural water systems. Advanced oxidation processes (AOPs) are effective ways to remove pollutants from water. The degradation of IBU under UV/H2O2 conditions in the presence of various kinds of natural dissolved matter was investigated using density functional theory (DFT). The eco-toxicological properties were predicted based on a quantitative structure-activity relationship (QSAR) model. The calculated results showed that two H-abstraction reactions occurring at the side chain are predominant pathways in the initial reaction. H2O, NH3, CH3OH, C2H5OH, HCOOH and CH3COOH can catalyze the H transfer in the degradation process through decreasing the energy barriers and the catalysis effects follow the order of NH3 > alcohols > acids > H2O. The catalysis effects differ under acid or alkaline conditions. The overall rate coefficient of the reaction of IBU with ˙OH is calculated to be 5.04 × 109 M-1 s-1 at 298 K. IBU has harmful effects on aquatic organisms and human beings and the degradation process cannot significantly reduce its toxicity. Among all products, 2-(4-formylphenyl)propanoic acid, which is more toxic than IBU, is the most toxic with acute and chronic toxicity, developmental toxicity, mutagenicity, genotoxic carcinogenicity and irritation/corrosivity to skin. The findings in this work provide new insights into the degradation of IBU and can help to assess its environmental risks.
Collapse
Affiliation(s)
- Zhezheng Ding
- School of Chemistry and Chemical Engineering, Qingdao University, Qingdao, 266071, Shandong, China.
| | - Jiahui Zhang
- School of Chemistry and Chemical Engineering, Qingdao University, Qingdao, 266071, Shandong, China.
| | - Timing Fang
- School of Chemistry and Chemical Engineering, Qingdao University, Qingdao, 266071, Shandong, China.
| | - Guohui Zhou
- School of Chemistry and Chemical Engineering, Qingdao University, Qingdao, 266071, Shandong, China.
| | - Xiao Tang
- School of Chemistry and Chemical Engineering, Qingdao University, Qingdao, 266071, Shandong, China.
| | - Yan Wang
- School of Chemistry and Chemical Engineering, Qingdao University, Qingdao, 266071, Shandong, China.
| | - Xiaomin Liu
- School of Chemistry and Chemical Engineering, Qingdao University, Qingdao, 266071, Shandong, China.
| |
Collapse
|
5
|
Yang G, Jiang Y, Yin B, Liu G, Ma D, Zhang G, Zhang G, Xin Y, Chen Q. Efficiency and mechanism on photocatalytic degradation of fluoranthene in soil by Z-scheme g-C 3N 4/α-Fe 2O 3 photocatalyst under simulated sunlight. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023:10.1007/s11356-023-27334-1. [PMID: 37147542 DOI: 10.1007/s11356-023-27334-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Accepted: 04/26/2023] [Indexed: 05/07/2023]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) in soil have potential harm on human health. However, remediation of PAH-contaminated soils through photocatalytic technology remains a challenge. Therefore, the photocatalyst g-C3N4/α-Fe2O3 was synthesized and applied to photocatalytic degradation of fluoranthene in soil. The physicochemical properties of g-C3N4/α-Fe2O3 and various degradation parameters, such as catalyst dosage, the ratio of water/soil, and initial pH, were investigated in detail. In soil slurry reaction system (water/soil=10:1, w/w), the optimal degradation efficiency on fluoranthene was 88.7% after simulated sunlight irradiation for 12 h (contaminated soil=2 g, initial fluoranthene concentration=36 mg/kg, catalyst dosage=5%, and pH=6.8), and the photocatalytic degradation followed pseudo-first-order kinetics. The degradation efficiency of g-C3N4/α-Fe2O3 was higher compared with P25. Degradation mechanism analysis showed that •O2- and h+ are the main active species in photocatalytic degradation process of fluoranthene by g-C3N4/α-Fe2O3. Coupling g-C3N4 and α-Fe2O3 enhances the interfacial charge transport capacity via Z-scheme charge transfer route and inhibits the recombination of photogenerated electrons and holes of g-C3N4 and α-Fe2O3, then significantly improves the production of active species and photocatalytic activity. Results showed that photocatalytic treatment of soil by g-C3N4/α-Fe2O3 is an effective strategy for remediation of soils contaminated by PAHs.
Collapse
Affiliation(s)
- Guoliang Yang
- College of Resources and Environment, Qingdao Agricultural University, Qingdao Engineering Research Center for Rural Environment, Qingdao, People's Republic of China
| | - Yan Jiang
- College of Resources and Environment, Qingdao Agricultural University, Qingdao Engineering Research Center for Rural Environment, Qingdao, People's Republic of China
| | - Bingjie Yin
- College of Resources and Environment, Qingdao Agricultural University, Qingdao Engineering Research Center for Rural Environment, Qingdao, People's Republic of China
| | - Guocheng Liu
- College of Resources and Environment, Qingdao Agricultural University, Qingdao Engineering Research Center for Rural Environment, Qingdao, People's Republic of China
| | - Dong Ma
- College of Resources and Environment, Qingdao Agricultural University, Qingdao Engineering Research Center for Rural Environment, Qingdao, People's Republic of China
| | - Guangshan Zhang
- College of Resources and Environment, Qingdao Agricultural University, Qingdao Engineering Research Center for Rural Environment, Qingdao, People's Republic of China
| | - Guodong Zhang
- College of Resources and Environment, Qingdao Agricultural University, Qingdao Engineering Research Center for Rural Environment, Qingdao, People's Republic of China
| | - Yanjun Xin
- College of Resources and Environment, Qingdao Agricultural University, Qingdao Engineering Research Center for Rural Environment, Qingdao, People's Republic of China
| | - Qinghua Chen
- College of Resources and Environment, Qingdao Agricultural University, Qingdao Engineering Research Center for Rural Environment, Qingdao, People's Republic of China.
| |
Collapse
|