1
|
P SP, Tanushree P. Synergistic human health risks of microplastics and co-contaminants: A quantitative risk assessment in water. JOURNAL OF HAZARDOUS MATERIALS 2025; 491:137809. [PMID: 40081056 DOI: 10.1016/j.jhazmat.2025.137809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Revised: 01/29/2025] [Accepted: 02/28/2025] [Indexed: 03/15/2025]
Abstract
The pervasive presence of microplastics (MPs) in aquatic environments, coupled with their potential to act as vectors for toxic contaminants, raises significant concerns for human health. This study quantifies the health risks associated with the ingestion of microplastics and their co-contaminants in aquatic medium, considering both individual and interactive effects. The analysis encompasses four MP types (PP, PS, PET, PE) and prevalent contaminants including heavy metals (Cr, Cu, Ni, Pb), polycyclic aromatic hydrocarbons (PAHs, expressed as BaP equivalents), and plastic additives (DEHP, DBP, BPA)-to calculate individual Hazard Quotient (HQ), interaction-based Hazard Index (HIint), individual Incremental Lifetime Cancer Risk (ILCR), and interaction-based ILCR (ILCRint). The mean concentration of MPs in aqueous media was determined to be 2.19 mg/L (95 % CI), and Chronic Daily Intake (CDI) values were derived from particle counts converted to mass using polymer-specific densities. Reference Dose (RfD) values were calculated using the Weight of Evidence (WoE) approach, which integrates findings from rodent toxicity studies, identifying PP and PS as having low RfD values 25 × 10⁻⁴ mg/kg bw/day and 8 × 10⁻⁴ mg/kg bw/day, respectively. HQ-based toxicity rankings indicated the order of risk as PP > PS > PE > PET. Findings revealed a pronounced HIint of 18.646 × 10³ and 16.649 × 10⁶ at the 50th and 90th percentiles in children, underscoring significant synergistic effects from combined exposure to MPs and leached plastic additives. Co-contaminant scenarios further escalated health risks, with HI values reaching 52.236 in the presence of heavy metals and 53.141 with PAHs. The maximum allowable MP concentration, considering additive leaching, was estimated at 0.011 mg/L. This research highlights the need for firstly understanding the transformations of microplastic in the aquatic medium along with co-contaminants and framing regulatory measures and improved monitoring to protect human health from the growing threat of microplastic pollution. By integrating exposure modeling, dose-response assessment, and Monte Carlo simulations, the study delivers a robust framework for environmental health guidelines. It emphasizes the complex, multifaceted risks MPs pose and their associated contaminants, calling for innovative solutions to safeguard public health against this pervasive environmental challenge.
Collapse
Affiliation(s)
- Swathi Priya P
- Department of Civil Engineering, Indian Institute of Technology Madras, India
| | - Parsai Tanushree
- Department of Civil Engineering, Indian Institute of Technology Madras, India.
| |
Collapse
|
2
|
Santos D, Cabecinha E, Luzio A, Bellas J, Monteiro SM. Long-term effects of individual and combined exposure to microplastics and copper in zebrafish hypothalamic-pituitary-gonadal axis - A multi-biomarker evaluation. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2025; 378:124770. [PMID: 40037251 DOI: 10.1016/j.jenvman.2025.124770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 01/24/2025] [Accepted: 02/28/2025] [Indexed: 03/06/2025]
Abstract
Microplastics (MPs) pollution and metal contamination are two prominent environmental stressors with multifaceted implications for aquatic life and ecosystem health. However, the underlying toxicological mechanisms of MPs and metals co-exposure on fish reproduction processes are largely unknown. In this study, zebrafish (Danio rerio) were exposed to MPs (2 mg/L), copper (25 μg/L, Cu25), and their mixture (Cu25 + MPs), for 30 days. The oxidative stress response, along with the expression profile of the hypothalamic-pituitary-gonadal (HPG) axis-related genes in the brain and gonad of zebrafish, were evaluated. The findings demonstrated that exposure to MPs and Cu affects the antioxidant system of zebrafish brain and gonads, inhibiting GPx in individuals exposed to MPs, Cu25, and their mixture. The gene expression analysis revealed dysregulation of the HPG axis-related genes. Specifically, the androgen receptor (ar), estrogen receptor 1 (esr1), follicle-stimulating hormone (fsh), and gonadotropin-releasing hormone 2 (gnrh2) were upregulated in the brain, whereas the genes esr2a, ar, cytochrome P450 family 11 subfamily A member 1 (cyp11a) and cyp19a were upregulated in the gonads. Both the biochemical and gene expression results showed that the brain and gonads were differently affected by MPs and Cu with the effects varying with fish gender. Furthermore, the mixture exposure affected the brain the most, and the individual pollutants affected the gonads the most. Overall, this study highlights that MPs, alone or combined with Cu, adversely affect the HPG axis of zebrafish, posing a potential threat to the reproduction of fish populations.
Collapse
Affiliation(s)
- Dércia Santos
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences, CITAB, and Inov4Agro, Institute for Innovation, Capacity Building and Sustainability of Agri-Food Production, University of Trás-os-Montes and Alto Douro, Quinta de Prados, 5000-801 Vila Real, Portugal.
| | - Edna Cabecinha
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences, CITAB, and Inov4Agro, Institute for Innovation, Capacity Building and Sustainability of Agri-Food Production, University of Trás-os-Montes and Alto Douro, Quinta de Prados, 5000-801 Vila Real, Portugal
| | - Ana Luzio
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences, CITAB, and Inov4Agro, Institute for Innovation, Capacity Building and Sustainability of Agri-Food Production, University of Trás-os-Montes and Alto Douro, Quinta de Prados, 5000-801 Vila Real, Portugal
| | - Juan Bellas
- Centro Oceanográfico de Vigo, Instituto Español de Oceanografía, IEO-CSIC, Subida a Radio Faro 50, 36390 Vigo, Spain
| | - Sandra M Monteiro
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences, CITAB, and Inov4Agro, Institute for Innovation, Capacity Building and Sustainability of Agri-Food Production, University of Trás-os-Montes and Alto Douro, Quinta de Prados, 5000-801 Vila Real, Portugal
| |
Collapse
|
3
|
Lei D, Chen T, Fan C, Xie Q. Exposure to BaA inhibits trophoblast cell invasion and induces miscarriage by regulating the DEC1/ARHGAP5 axis and promoting ubiquitination-mediated degradation of MMP2. JOURNAL OF HAZARDOUS MATERIALS 2024; 479:135594. [PMID: 39191013 DOI: 10.1016/j.jhazmat.2024.135594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 08/10/2024] [Accepted: 08/19/2024] [Indexed: 08/29/2024]
Abstract
Benz[a]anthracene (BaA), a hazardous polycyclic aromatic hydrocarbon classified by the EPA, is a probable reproductive toxicant. Epidemiological studies suggest that BaA exposure may be a risk factor for recurrent miscarriage (RM). However, the underlying mechanisms are not well understood. This study identified DEC1 as a key gene through RNA-seq and single-cell RNA sequencing analysis. DEC1 expression was found to be downregulated in villous tissues from women with RM and in primary extravillous trophoblasts (EVTs) exposed to BaA. BaA suppressed DEC1 expression by promoting abnormal methylation patterns. Further analysis revealed that ARHGAP5 is a direct target of DEC1 in EVTs, where DEC1 inhibits trophoblast invasion by directly regulating ARHGAP5 transcription. Additionally, BaA destabilized matrix metalloproteinase 2 (MMP2) by activating the aryl hydrocarbon receptor (AhR) and promoting E3 ubiquitin ligase MID1-mediated degradation. In a mouse model, BaA induced miscarriage by modulating the DEC1/ARHGAP5 and MID1/MMP2 axes. Notably, BaA-induced miscarriage in mice was prevented by DEC1 overexpression or MID1 knockdown. These findings indicate that BaA exposure leads to miscarriage by suppressing the DEC1/ARHGAP5 pathway and enhancing the MID1/MMP2 pathway in human EVTs.
Collapse
Affiliation(s)
- Di Lei
- Centre for Reproductive Medicine, Renmin Hospital of Wuhan University, Wuhan 430000, China; Department of Obstetrics, Renmin Hospital of Wuhan University, Wuhan 430000, China
| | - Tingting Chen
- Department of Obstetrics, Renmin Hospital of Wuhan University, Wuhan 430000, China
| | - Cuifang Fan
- Department of Obstetrics, Renmin Hospital of Wuhan University, Wuhan 430000, China
| | - Qingzhen Xie
- Centre for Reproductive Medicine, Renmin Hospital of Wuhan University, Wuhan 430000, China.
| |
Collapse
|
4
|
Liang J, Ji F, Abdullah ALB, Qin W, Zhu T, Tay YJ, Li Y, Han M. Micro/nano-plastics impacts in cardiovascular systems across species. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 942:173770. [PMID: 38851343 DOI: 10.1016/j.scitotenv.2024.173770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 05/30/2024] [Accepted: 06/02/2024] [Indexed: 06/10/2024]
Abstract
The widespread presence of microplastics and nanoplastics (MPs/NPs) in the environment has become a critical public health issue due to their potential to infiltrate and affect various biological systems. Our review is crucial as it consolidates current data and provides a comprehensive analysis of the cardiovascular impacts of MPs/NPs across species, highlighting significant implications for human health. By synthesizing findings from studies on aquatic and terrestrial organisms, including humans, this review offers insights into the ubiquity of MPs/NPs and their pathophysiological roles in cardiovascular systems. We demonstrated that exposure to MPs/NPs is linked to various cardiovascular ailments such as thrombogenesis, vascular damage, and cardiac impairments in model organisms, which likely extrapolate to humans. Our review critically evaluated methods for detecting MPs/NPs in biological tissues, assessing their toxicity, and understanding their behaviour within the vasculature. These findings emphasise the urgent need for targeted public health strategies and enhanced regulatory measures to mitigate the impacts of MP/NP pollution. Furthermore, the review underlined the necessity of advancing research methodologies to explore long-term effects and potential intergenerational consequences of MP/NP exposure. By mapping out the intricate links between environmental exposure and cardiovascular risks, our work served as a pivotal reference for future research and policymaking aimed at curbing the burgeoning threat of plastic pollution.
Collapse
Affiliation(s)
- Ji Liang
- University Sains Malaysia, Minden, Penang 11800, Malaysia
| | - Feng Ji
- Department of Clinical Science and Research, Zhongda Hospital, Medical School, Southeast University, Nanjing 210009, China
| | | | - Wei Qin
- Department of Cardiothoracic Surgery, Nanjing First Hospital, Nanjing Medical University, Nanjing 211166, China
| | - Tian Zhu
- University Sains Malaysia, Minden, Penang 11800, Malaysia
| | - Yi Juin Tay
- University Sains Malaysia, Minden, Penang 11800, Malaysia
| | - Yiming Li
- Fishery Machinery and Instrument Research Institute, Chinese Academy of Fisheries Sciences, Shanghai 200092, China.
| | - Mingming Han
- University Sains Malaysia, Minden, Penang 11800, Malaysia.
| |
Collapse
|
5
|
An J, Park S, Jain N, Kim Y, Nimse SB, Churchill DG. Novel mycophenolic acid precursor-based fluorescent probe for intracellular H 2O 2 detection in living cells and Daphnia magna and Zebrafish model systems. Analyst 2024; 149:4477-4486. [PMID: 39041806 DOI: 10.1039/d4an00742e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/24/2024]
Abstract
Innovative for the scientific community and attracting attention in the extensive biomedical field are novel compact organic chemosensing systems built upon unique core molecular frameworks. These systems may demonstrate customized responses and may be adaptable to analytes, showing promise for potential in vivo applications. Our recent investigation focuses on a precursor of Mycophenolic acid, resulting in the development of LBM (LOD = 13 nM) - a specialized probe selective for H2O2. This paper details the synthesis, characterization, and thorough biological assessments of LBM. Notably, we conducted experiments involving living cells, daphnia, and zebrafish models, utilizing microscopy techniques to determine probe nontoxicity and discern distinct patterns of probe localization. Localization involved the distribution of the probe in the Zebrafish model within the gut, esophagus, and muscles of the antennae.
Collapse
Affiliation(s)
- Jongkeol An
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Sujeong Park
- Institute of Applied Chemistry and Department of Chemistry, Hallym University, Chuncheon, 24252, Republic of Korea
| | - Neha Jain
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Youngsam Kim
- Environmental Safety Group, KIST Europe Forschungsgesellschaft mbH, 66123 Saarbrücken, Germany
- Division of Energy and Environment Technology, University of Science and Technology, Daejeon 34141, Republic of Korea
| | - Satish Balasaheb Nimse
- Institute of Applied Chemistry and Department of Chemistry, Hallym University, Chuncheon, 24252, Republic of Korea
| | - David G Churchill
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
- KAIST Institute for Health Science and Technology (KIHST) (Therapeutic Bioengineering Section), Daejeon 34141, Republic of Korea
| |
Collapse
|
6
|
Kim GE, Kim DW, Zee S, Kim K, Park JW, Park CB. Co-exposure to microplastic and plastic additives causes development impairment in zebrafish embryos. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2024; 273:107001. [PMID: 38878329 DOI: 10.1016/j.aquatox.2024.107001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Revised: 05/30/2024] [Accepted: 06/12/2024] [Indexed: 08/10/2024]
Abstract
Since the run off of microplastic and plastic additives into the aquatic environment through the disposal of plastic products, we investigated the adverse effects of co-exposure to microplastics and plastic additives on zebrafish embryonic development. To elucidate the combined effects between microplastic mixtures composed of microplastics and plastic additives in zebrafish embryonic development, polystyrene (PS), bisphenol S (BPS), and mono-(2-ethylhexyl) phthalate (MEHP) were chosen as a target contaminant. Based on non-toxic concentration of each contaminant in zebrafish embryos, microplastic mixtures which is consisted of binary and ternary mixed forms were prepared. A strong phenotypic toxicity to zebrafish embryos was observed in the mixtures composed with non-toxic concentration of each contaminant. In particular, the mixture combination with ≤ EC10 values for BPS and MEHP showed a with a strong synergistic effect. Based on phenotypic toxicity to zebrafish embryos, change of transcription levels for target genes related to cell damage and thyroid hormone synthesis were analyzed in the ternary mixtures with low concentrations that were observed non-toxicity. Compared with the control group, cell damage genes linked to the oxidative stress response and thyroid hormone transcription factors were remarkably down-regulated in the ternary mixture-exposed groups, whereas the transcriptional levels of cyp1a1 and p53 were significantly up-regulated in the ternary mixture-exposed groups (P < 0.05). These results demonstrate that even at low concentrations, exposure to microplastic mixtures can cause embryonic damage and developmental malformations in zebrafish, depending on the mixed concentration-combination. Consequently, our findings will provide data to examine the action mode of zebrafish developmental toxicity caused by microplastic mixtures exposure composed with microplastics and plastic additives.
Collapse
Affiliation(s)
- Go-Eun Kim
- Environmental Exposure & Toxicology Research Center, Korea Institute of Toxicology (KIT), Jinju 52834, Republic of Korea
| | - Dae-Wook Kim
- Environmental Exposure & Toxicology Research Center, Korea Institute of Toxicology (KIT), Jinju 52834, Republic of Korea
| | - Seonggeun Zee
- Environmental Exposure & Toxicology Research Center, Korea Institute of Toxicology (KIT), Jinju 52834, Republic of Korea; Food Safety Risk Assessment Division, National Institute of Food and Drug Safety Evaluation, Cheongju 28159, Republic of Korea
| | - Kanghee Kim
- Environmental Exposure & Toxicology Research Center, Korea Institute of Toxicology (KIT), Jinju 52834, Republic of Korea
| | - June-Woo Park
- Environmental Exposure & Toxicology Research Center, Korea Institute of Toxicology (KIT), Jinju 52834, Republic of Korea
| | - Chang-Beom Park
- Environmental Exposure & Toxicology Research Center, Korea Institute of Toxicology (KIT), Jinju 52834, Republic of Korea.
| |
Collapse
|
7
|
Rojoni SA, Ahmed MT, Rahman M, Hossain MMM, Ali MS, Haq M. Advances of microplastics ingestion on the morphological and behavioral conditions of model zebrafish: A review. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2024; 272:106977. [PMID: 38820743 DOI: 10.1016/j.aquatox.2024.106977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 04/20/2024] [Accepted: 05/26/2024] [Indexed: 06/02/2024]
Abstract
Concerns have been conveyed regarding the availability and hazards of microplastics (MPs) in aquatic biota due to their widespread presence in aquatic habitats. Zebrafish (Danio rerio) are widely used as a model organism to study the adverse impacts of MPs due to their several compelling advantages, such as their small size, ease of breeding, inexpensive maintenance, short life cycle, year-round spawning, high fecundity, fewer legal restrictions, and genetic resemblances to humans. Exposure of organisms to MPs produces physical and chemical toxic effects, including abnormal behavior, oxidative stress, neurotoxicity, genotoxicity, immune toxicity, reproductive imbalance, and histopathological effects. But the severity of the effects is size and concentration-dependent. It has been demonstrated that smaller particles could reach the gut and liver, while larger particles are only confined to the gill, the digestive tract of adult zebrafish. This thorough review encapsulates the current body of literature concerning research on MPs in zebrafish and demonstrates an overview of MPs size and concentration effects on the physiological, morphological, and behavioral characteristics of zebrafish. Finding gaps in the literature paves the way for further investigation.
Collapse
Affiliation(s)
- Suraiya Alam Rojoni
- Department of Fisheries and Marine Bioscience, Jashore University of Science and Technology, Jashore 7408, Bangladesh
| | - Md Tanvir Ahmed
- Department of Fisheries and Marine Bioscience, Jashore University of Science and Technology, Jashore 7408, Bangladesh
| | - Mostafizur Rahman
- Department of Fisheries and Marine Bioscience, Jashore University of Science and Technology, Jashore 7408, Bangladesh
| | - Md Mer Mosharraf Hossain
- Department of Fisheries and Marine Bioscience, Jashore University of Science and Technology, Jashore 7408, Bangladesh
| | - Md Sadek Ali
- Department of Fisheries and Marine Bioscience, Jashore University of Science and Technology, Jashore 7408, Bangladesh
| | - Monjurul Haq
- Department of Fisheries and Marine Bioscience, Jashore University of Science and Technology, Jashore 7408, Bangladesh.
| |
Collapse
|
8
|
Lin P, Liu L, Ma Y, Du R, Yi C, Li P, Xu Y, Yin H, Sun L, Li ZH. Neurobehavioral toxicity induced by combined exposure of micro/nanoplastics and triphenyltin in marine medaka (Oryzias melastigma). ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024:124334. [PMID: 38852665 DOI: 10.1016/j.envpol.2024.124334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 05/19/2024] [Accepted: 06/05/2024] [Indexed: 06/11/2024]
Abstract
Microplastics/nanoplastics (MNPs) inevitably coexist with other pollutants in the natural environment, making it crucial to study the interactions between MNPs and other pollutants as well as their combined toxic effects. In this study, we investigated neurotoxicity in marine medaka (Oryzias melastigma) exposed to polystyrene micro/nanoplastics (PS-MNPs), triphenyltin (TPT), and PS-MNPs + TPT from physiological, behavioral, biochemical, and genetic perspectives. The results showed that marine medaka exposed to 200 ng/L TPT or 200 μg/L PS-NPs alone exhibited some degree of neurodevelopmental deficit, albeit with no significant behavioral abnormalities observed. However, in the PS-MP single exposure group, the average acceleration of short-term behavioral indices was significantly increased by 78.81%, indicating a highly stress-responsive locomotor pattern exhibited by marine medaka. After exposure to PS-MNPs + TPT, the swimming ability of marine medaka significantly decreased. In addition, PS-MNPs + TPT exposure disrupted normal neural excitability as well as activated detoxification processes in marine medaka larvae. Notably, changes in neural-related genes suggested that combined exposure to PS-MNPs and TPT significantly increased the neurotoxic effects observed with exposure to PS-MNPs or TPT alone. Furthermore, compared to the PS-MPs + TPT group, PS-NPs + TPT significantly inhibited swimming behavior and thus exacerbated the neurotoxicity. Interestingly, the neurotoxicity of PS-MPs was more pronounced than that of PS-NPs in the exposure group alone. However, the addition of TPT significantly enhanced the neurotoxicity of PS-NPs compared to PS-MPs + TPT. Overall, the study underscores the combined neurotoxic effects of MNPs and TPT, providing in-depth insights into the ecotoxicological implications of MNPs coexisting with pollutants and furnishing comprehensive data.
Collapse
Affiliation(s)
- Peiran Lin
- SDU-ANU Joint Science College, Weihai, Shandong, 264209, China
| | - Ling Liu
- Marine College, Shandong University, Weihai, Shandong, 264209, China
| | - Yuqing Ma
- Marine College, Shandong University, Weihai, Shandong, 264209, China
| | - Renyan Du
- Marine College, Shandong University, Weihai, Shandong, 264209, China
| | - Chuansen Yi
- SDU-ANU Joint Science College, Weihai, Shandong, 264209, China
| | - Ping Li
- Marine College, Shandong University, Weihai, Shandong, 264209, China
| | - Yanan Xu
- Marine College, Shandong University, Weihai, Shandong, 264209, China
| | - Haiyang Yin
- Marine College, Shandong University, Weihai, Shandong, 264209, China
| | - Le Sun
- Marine College, Shandong University, Weihai, Shandong, 264209, China
| | - Zhi-Hua Li
- Marine College, Shandong University, Weihai, Shandong, 264209, China.
| |
Collapse
|
9
|
Liu L, Du R, Niu L, Li P, Li ZH. A Latest Review on Micro- and Nanoplastics in the Aquatic Environment: The Comparative Impact of Size on Environmental Behavior and Toxic Effect. BULLETIN OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2024; 112:36. [PMID: 38353741 DOI: 10.1007/s00128-024-03865-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 01/29/2024] [Indexed: 02/16/2024]
Abstract
Micro and nanoplastics (MNPs) have attracted growing global research attention due to their distinct environmental impacts, addressing escalating concerns. The diverse materials, sizes, and shapes of MNPs result in a range of environmental impacts. Size, a crucial characteristic of MNPs, influences their environmental behavior, affecting processes like migration, sedimentation, aggregation, and adsorption. Moreover, size modulates the biodistribution and toxicity of MNPs in aquatic organisms. This review delves into the comprehensive impacts of plastic size, with a primary focus on environmental behavior and toxic effects. Ultimately, this review emphasizes the ecological implications of MNP size, laying a foundation for future research in this field.
Collapse
Affiliation(s)
- Ling Liu
- Marine College, Shandong University, Weihai, Shandong, 264209, China
| | - Renyan Du
- Marine College, Shandong University, Weihai, Shandong, 264209, China
| | - Linjing Niu
- Marine College, Shandong University, Weihai, Shandong, 264209, China
| | - Ping Li
- Marine College, Shandong University, Weihai, Shandong, 264209, China
| | - Zhi-Hua Li
- Marine College, Shandong University, Weihai, Shandong, 264209, China.
| |
Collapse
|
10
|
Liu L, Du RY, Jia RL, Wang JX, Chen CZ, Li P, Kong LM, Li ZH. Micro(nano)plastics in marine medaka: Entry pathways and cardiotoxicity with triphenyltin. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 342:123079. [PMID: 38061435 DOI: 10.1016/j.envpol.2023.123079] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 11/21/2023] [Accepted: 11/30/2023] [Indexed: 01/26/2024]
Abstract
The simultaneous presence of micro(nano)plastics (MNPs) and pollutants represents a prevalent environmental challenge that necessitates understanding their combined impact on toxicity. This study examined the distribution of 5 μm (PS-MP5) and 50 nm (PS-NP50) polystyrene plastic particles during the early developmental stages of marine medaka (Oryzias melastigma) and assessed their combined toxicity with triphenyltin (TPT). Results showed that 2 mg/L PS-MP5 and PS-NP50 could adhere to the embryo surface. PS-NP50 can passively enter the larvae and accumulate predominantly in the intestine and head, while PS-MP5 cannot. Nonetheless, both types can be actively ingested by the larvae and distributed in the intestine. 2 mg/L PS-MNPs enhance the acute toxicity of TPT. Interestingly, high concentrations of PS-NP50 (20 mg/L) diminish the acute toxicity of TPT due to their sedimentation properties and interactions with TPT. 200 μg/L PS-MNPs and 200 ng/L TPT affect complement and coagulation cascade pathways and cardiac development of medaka larvae. PS-MNPs exacerbate TPT-induced cardiotoxicity, with PS-NP50 exhibiting stronger effects than PS-MP5, which may be related to the higher adsorption capacity of NPs to TPT and their ability to enter the embryos before hatching. This study elucidates the distribution of MNPs during the early developmental stages of marine medaka and their effects on TPT toxicity, offering a theoretical foundation for the ecological risk assessment of MNPs.
Collapse
Affiliation(s)
- Ling Liu
- Marine College, Shandong University, Weihai, Shandong, 264209, China
| | - Ren-Yan Du
- Marine College, Shandong University, Weihai, Shandong, 264209, China
| | - Ruo-Lan Jia
- Marine College, Shandong University, Weihai, Shandong, 264209, China
| | - Jin-Xin Wang
- Marine College, Shandong University, Weihai, Shandong, 264209, China
| | - Cheng-Zhuang Chen
- Marine College, Shandong University, Weihai, Shandong, 264209, China
| | - Ping Li
- Marine College, Shandong University, Weihai, Shandong, 264209, China
| | - Ling-Ming Kong
- Marine College, Shandong University, Weihai, Shandong, 264209, China
| | - Zhi-Hua Li
- Marine College, Shandong University, Weihai, Shandong, 264209, China.
| |
Collapse
|